
Lab manual
SpiNNaker interfacing external devices

1 – Introduction
This portion of the manual introduces the interfaces between the SpiNNaker
system and the real  world,  using both  sensors  (retinas,  cochleas,  etc.)  and
actuators (motor controllers, etc.).

2 – Installation of the plugin
The  I/O  interfaces  are  provided  by  the  sPyNNakerExternalDevicesPlugin
module, which can be installed using the command

sudo pip install sPyNNakerExternalDevicesPlugin

for a system-wide installation, or for a different method (e.g. virtualenv), please
refer to sPyNNaker module installation instructions, adapting the commands to
the sPyNNakerExternalDevicesPlugin module.

3 – EIEIO Protocol
The EIEIO protocol, acronym for “External/Internal Event Input/Output”, is used
to communicate spike events between neuromorphic devices and simulators.
The protocol is transport-independent, and it may be used over a wide variety
of communication channels.  Each packet consists of  a 16-bit  packet header
followed  by  data.  The  communication  is  stateless,  meaning  that  all  the
information required to interpret the data is contained in the header itself. The
format of the header is:

Bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
P F D T Type Version Count 



The decode of the header configuration bits is as follows:

Field name Position Value Description 

P&F 15 - 14 

00 Basic data packet, no key prefix 
01 Command packet 
10 Data packet with lower halfword key prefix 
11 Data packet with upper halfword key prefix 

D 13 
0 No payload prefix 
1 With payload prefix 

T 12 
0 Payload are not timestamps 
1 Payload are timestamps 

Type 11 - 10 

00 16-bit key 
01 16-bit key and payload, alternating 
10 32-bit key 
11 32-bit key and payload, alternating 

Version 9 - 8 00 Version 0 of the protocol

The count parameter indicates how many entries there are in the packet. The
maximum value is 256, however, any device may support only packets up to a
certain  size.  Any  transmission  needs  to  be  limited  to  the  smallest  of  the
supported sizes between the sender and the receiver. Any prefix signalled in
the packet header, either related to the key or to the payload, needs to be
OR-ed with the value in the data part of the packet to obtain the transmitted
value.

The  header  offers  the  possibility  to  send  9  types  of  EIEIO  packets:  one
command packet format and 8 data type formats. For the command packet,
the bits are organized as follows:

Bit 
15 14 13-0 Payload 
0 1 Command ID Command and device-specific 

Where the command ID is a 14-bit number. The identifier of the command and
the packet payload are specific of the device and the command.

The data packet formats and the correspondent header configuration bits are:



Numbers  starting  with  prefix  '0b'  are  expressed in  binary  format.  Numbers
starting with prefix '0x' are expressed in hexadecimal format.

The numbers  below the  packet  template  indicate  the bit  positioning in  the
packet. Multi-byte values are transmitted following the little-endian ordering of
the bytes. The size of any portion of the packet is defined by “type” bits (bits
11-10  in  the  header),  which  have  been  left  undefined  in  the  header
configuration bits.

Where the prefix is included, the bit related to the upper or lower half word
prefix  (bit  14)  is  left  undefined,  as  the  format  of  the  packet  is  unaffected.
Where the packet presents payload, the timestamp bit (bit 12) is left undefined,
as the format of  the packet  is  unaffected.  The number of  keys (or  couples
key/payload) are defined by the “Count” parameter in the header field.

The  optional  field  “prefix”  is  used  to  reduce  the  amount  of  data  which  is
transmitted with each event in a packet. If all the events have e.g. a common
upper half-word, then this can be indicated at transmission time in the packet
as  a  prefix.  The  receiver,  parsing  the  packet,  will  reconstruct  the  key
performing an OR operation: the prefix is shifted in the correct position (e.g.
upper or lower half-word) and each key contained in the packet is OR-ed with



such prefix. The same infrastructure is in place for payload, with one addition:
it is possible for a packet to identify only one payload which is common for all
the key transmitted with a packet. The payload may also be used to identify
the timestamp of each event. The common payload may useful e.g. to identify
the time at which the events contained in a single packet were generated.

4 – Models for external interfaces
External  interfaces  can  be  subdivided  in  two  classes:  input  models,  which
sense the environment and provide spikes to the SpiNNaker system, and output
models, which receive spikes from SpiNNaker and perform operations in the
real world, such as moving a robot.

SpiNNaker  supports  input  injection  using  three  different  methods:  Ethernet
interface, spiNNaker link and spiNNlink. The first method is relatively slow, but
uses a “plug-and-play” network protocol, UDP, to transport spikes encoded in
EIEIO packets (EIEIO over UDP).

SpiNNaker  link  uses  a  2-of-7  encoding  to  transmit  packet  directly  to  the
SpiNNaker  router.  All  the  details  for  this  protocol  are  specified  in  the
“Application Note 7 – SpiNNaker Links” [Steve Temple, 2012].

Finally, although spiNNlinks use SATA connectors and cabling, the protocol used
for the transmission allows to funnel 8 spiNNaker links into a single spiNNlink.

In general input to be provided may be classified in four possible classes:

1. Input is known before the start of the simulation and it may be stored
entirely in simulator's memory.

2. Input is known before the start of the simulation and it cannot be stored
in its entirety in simulator's memory.

3. Input is unknown before the start of the simulation and information refers
to the current time of the simulation.

4. Input  is  unknown  before  the  start  of  the  simulation  and  information
received may refer to a different time (e.g. future) of the simulation.

In PyNN, SpikeSourceArray populations may classify either in the first or the
second class, depending on the size of the spike train to be injected.

Input/Output  devices,  instead,  generate  input  which  belongs  to  class  3
(generally speaking – e.g. retinas on a robot feeding a neural network to allow
a robot to move in the environment). Such models require the description of
the connector to which each device connects. The description of the connector
is an identifier starting from 0 to n-1, where n is the number of spiNNaker link
connectors on the board.

As indication for versions 3 and 5 of the SpiNNaker boards, following are two



images to represent connector IDs.

The following models are defined to be used in PyNN scripts to define the I/O
interfaces

Illustration 1: SpiNNaker version 5 board

Illustration 2: SpiNNaker version 3 board

SpiNNaker link ID: 1

SpiNNaker link ID: 0

SpiNNaker link ID: 0



4.1 – Input model
This set of models includes examples of PyNN population models used to input
and  output  spikes  to/from SpiNNaker  using  one  of  the  interfaces  described
above.

4.1 – Input From Ethernet
This is the most common of the interfaces as it provides a way to inject spikes
using the Ethernet interfaces. This is mainly described in the simple I/O lab
manual,  together with a number of  examples.  However,  here we cover the
same topic in more details.

The SpikeInjector model was originally designed to propagate spikes coming
from the Ethernet channel, at the time they are received. Subsequently, there
buffering functionality has been added, so that future spikes may be stored for
future use.

The sum of these features covers the requirement for the SpikeSourceArray
PyNN population,  covering  both  classes  1  and  2  of  input  described  earlier.
However, also classes 3 and 4 are covered, since the input may be provided
either from a host PC or an external device communicating with EIEIO protocol.

The only restriction is that the input provided during the simulation need to
refer to monotonically increasing timestamps, as the simulation moves only
forward in time.

EIEIO packets identified by the on-board population include all  the types of
packet specified by the protocol. In case packets specify 32-bit neural events,
the on-board population propagates multicast packets with the specified 32-bit
routing keys, without modifications. However, in case received packets include
only 16 bit keys (with or without payload), these need to be extended to 32
bits, as the SpiNNaker architecture is 32-bit wide. If the packet specifies a key
prefix, this is added as specified in the packet (upper/lower halfword) and the
key is transmitted in multicast packet without further modifications.

If  the  key  is  16  bit  wide,  with  no  prefix,  The  application  on  SpiNNaker
automatically  converts  the  16-bit  key  to  32  bits  prepending  the  source
population ID.

4.2 – Output via Ethernet
The  activate_live_output_for  function  is  used  to  activate  the  live  output  of
multicast  packets  from the  SpiNNaker  network.   The  multicast  packets  are
grouped into EIEIO packets to be sent to the output world via Ethernet.  The
EIEIO packets sent out are set by default to include 32 bit keys and a fixed
payload  which  represents  the  timestamp  in  which  the  keys  have  been
generated.  The  packet  format  may be defined  by  the  user  configuring  the



appropriate  optional  parameters  of  the  function.  A  summary  list  of  the
available parameters with the default value and a description is shown below:

Parameter Default Description
population - PyNN population that will send 

spikes to the output world
port As per configuration 

file spynnaker.cfg
Target UDP port for the packets 
sent

host As per configuration 
file spynnaker.cfg

Target host for the packets sent

use_prefix False Use a key prefix in packet 
header

key_prefix None Key prefix to use
prefix_type None Upper / Lower halfword for key 

prefix
message_type 32 bit without 

payload
16 / 32 bit keys and payloads

right_shift 0 If keys to be sent are 16 bits, 
32-bit keys from SpiNNaker may
be right-shifted

payload_as_time_stamp
s

True Payload indicate time stamp of 
events

use_payload_prefix True Use a payload prefix in packet 
header

payload_prefix None Payload prefix to use

The content of the packet (parameter message_type) is specified using a few
constants  defined  in  the  enum  EIEIOType  define  in  module
spinnman.messages.eieio.eieio_type. Possible values are described in the table
below:

EIEIOType.KEY_16_BIT Indicates  that  data  in  the  EIEIO packet  is
keys which are 16 bits

EIEIOType.KEY_PAYLOAD_16_BIT Indicates  that  data  in  the  EIEIO packet  is
keys and payloads of 16 bits

EIEIOType.KEY_32_BIT Indicates  that  data  in  the  EIEIO packet  is
keys of 32 bits

EIEIOType.KEY_PAYLOAD_32_BIT Indicates  that  data  in  the  EIEIO packet  is
keys and payloads of 32 bits

4.3 – SpiNNakerLink devices
Devices connected to a SpiNNakerLink required that the network is configured
to send multicast packets to and from the device.  To do this,  you need to
create  a  model  for  your  device,  which  extends  from  the  python
AbstractVirtualVertex  class.   This  class  requires  that  you  pass  in  the
spinnaker_link_id of the link to which your device is connected.  Once you have



done this, you can create a PyNN population with the model.  To use the device
as input to a population, you can then simply use the device as a target in a
projection.   To  output  spikes  to  the  device  however,  you  cannot  use  a
projection, as the device does not have a synaptic matrix.  Instead, a function
activate_live_output_to(population, device) is used; this create a link from the
population to the device.  Note that the spikes will not be filtered – every spike
produced by the population will be sent to the device.  These will be sent as 32-
bit multicast packets.

7 – Tasks with external interfaces
Task 1 – Injected Packets from an External Device [Easy]

The idea of this task is to simulate the injection of packets from a more realistic
hardware device i.e. one that cannot read the database. In order to simulate
this device, you will need to open a socket to talk to the machine. As this lab is
not about creating sockets, some example code is provided to help with this
part of the task. This is available from here:

http://spinnakermanchester.github.io/2015.005.Arbitrary/workshop_m
aterial/external_devices_tasks/advanced_external_devices_1.py

To run the device, run:

python advanced_external_devices_1.py <machine-name> <port> <key>

where <machine-name> is the IP address of your SpiNNaker board, <key> is the

base key to use to send spikes, and <port> is the port that the injector is set

up to listen on.

The task, then, is to set up injection from this device. The device transmits
spikes for 10 neurons using a fixed base key specified on the command line.
Set up a SpikeInjector population to receive the spikes and a connect this to an
IF_curr_exp population  with  10  neurons,  using  a  1-to-1  connection  with

weights  of  5nA.  Record  the  IF_curr_exp population  and create  a  graph of

spikes.

The script should be run for approximately 6000 milliseconds.

Task 2: Sending Packets to an External Device [Moderate]

The idea of this task is to simulate the reception of packets at an external
device. Again, a device has been created for you here:

http://spinnakermanchester.github.io/2015.005.Arbitrary/workshop_m
aterial/external_devices_tasks/advanced_external_devices_2.py

To run the device, run:



python advanced_external_devices_2.py <port>

where <port> is the port that the spikes are being sent to

The task is to set up the sending of spikes to this device. The device has 4
neurons, for forwards, backwards, left and right. Set up a spike source array
and activate live output for the device. The device expects to receive only 16-
bit  keys,  and doesn’t  understand any other packet formats i.e.  no prefix or
timestamp is expected.  It will respond to neuron ids Send some spikes from
the spike source array and look at  the output  from the script.   The device
doesn’t care about the bits in the rest of the key – only the bottom 2 bits will be
examined.

Task 3: SpiNNakerLink device [Hard]

The idea of this task is to go through the motions of creating a device that
connects to a SpiNNaker link.  Although you won’t actually have such a device,
the software can still set up connections as if this were the case, and you can
then examine the routing tables and trace where the packets will go.  A script
has been created to read the routing tables.  This is available here:

http://spinnakermanchester.github.io/2015.005.Arbitrary/workshop_m
aterial/external_devices_tasks/advanced_external_devices_3.py

To run the device, run:

python advanced_external_devices_3.py <machine_name> <x> <y>

where <machine-name> is the IP address of your SpiNNaker board, <x> is the x-

coordinate of a chip on the board, and <y> is the y-coordinate of a chip on the

board.

The task is to create a virtual device vertex that can be used as a Population in
a PyNN script.  This is done as follows:

1. Create a new class which extends from 
pacman.model.abstract_classes.abstract_virtual_vertex.
AbstractVirtualVertex

and also from
spinn_front_end_common.abstract_models.
abstract_outgoing_edge_same_contiguous_keys_restrictor.
AbstractOutgoingEdgeSameContiguousKeysRestrictor

2. The initializer of the class need to take the parameters to be compatible 
with the PyNN interface: machine_time_step, timescale_factor, 
spikes_per_second, ring_buffer_sigma, label, n_neurons, 
constraints



3. The initializer also needs to take a spinnaker_link_id parameter to 

pass on to the AbstractVirtualVertex

4. Check that the user value of n_neurons is compatible with your device.

5. Call the AbstractVirtualVertex initializer, passing the number of 

neurons (n_neurons), the label and the max_atoms_per_core, which 

should be equal to the number of neurons (to avoid the device being 
partitioned).

6. Call the AbstractOutgoingEdgeSameContiguousKeysRestrictor 

initializer.

7.  Add a method
get_outgoing_edge_constraints(self, partitioned_edge, 
graph_mapper)

that will get the constraints from the 
AbstractOutgoingEdgeSameContiguousKeysRestrictor

and then append to this list an additional constraint:
KeyAllocatorFixedKeyAndMaskConstraint([KeyAndMask(0x42000000,
0xFFFF0000)])

(assuming you have stored the key and mask using these variable 
names).

8. Add method is_virtual_vertex, which should return True

9. Add method get_model_name which should return a string containing the 

name of your device

Create  a  PyNN  script  which  creates  a  population  of  your  device  using  a
spinnaker_link_id of 0, and choose a key and mask for your device.  Create a
population  of  neurons  and  a  projection  from  the  device  population  to  the
population of neurons.  Additionally, use activate_live_output_to to create a link
from the population back to the device.  Run the simulation for 10ms (it is not
critical, as the device isn’t really there). 

Using the script downloaded above, get the routing table for chip 0, 0.  Look at
the entries and see if you can see those which will receive spikes from your
device and those which will send spikes to your device.
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