Creating New Neuron Models for SpiNNaker

Introduction

This manual will guide you in the creation of new neuron models to be run on SpiNNaker. This includes the
C code that will be compiled to run on the SpiNNaker hardware, as well as the Python code which interacts
with the PyNN script to configure the model.

Installation

In order to create new models, you will need to ensure that you have set up a development environment
suitable for compiling C code for SpiNNaker. This can be done by following the instructions here:

http://spinnakermanchester.qgithub.io/2015.005.Arbitrary/PyNNONSpiNNakerExtensions.html

Project Layout

The recommended layout for a new model project is shown below; this example shows a model called
“my_model”, with current-based exponential synapses. It is recommended that the C and Python code is

kept in the same project to help keep them synchronized.
4 & my_new_model
4 (= c_models
4 (= src
4 (= neuron
4 (= builds
4 = my_model_curr_exp
& Makefile
=| Makefile.common
4 (= models
[€ neuron_model_my_model_curr_impl.c
[¢l neuron_model_my_model_curr_implh
= Makefile.commaon
e Makefile
4 (= examples
» [Bl my_example.py
4 f# python_models
4 1 model_binaries
@ _init_.py
4 # neural_models
B _init_.py
> [B] my_model_curr_exp.py
- B _init_.py
- [B setup.py

This template structure can be downloaded from:
http://spinnakermanchester.github.io/2015.005.Arbitrary/template_new_model.zip

C code header file
The C header file defines:

e The neuron data structure neuron_t. This includes the parameters and state for each neuron to be
executed on a core. This commonly includes the membrane voltage of the neuron, as well as an
offset input current.


http://spinnakermanchester.github.io/2015.005.Arbitrary/PyNNOnSpiNNakerExtensions.html
http://spinnakermanchester.github.io/2015.005.Arbitrary/template_new_model.zip

e The global parameters data structure global neuron_params_t. This includes parameters that
are shared across all neurons within a population. This might include such things as the time step
of the simulation.

e A definition of a function input_t neuron_model convert_input(input_t input). This can
be used to perform any scaling of input between the input buffers and the neuron model. This
allows the values in the input buffers to maintain a higher level of precision for computation, but then
returns the value to the expected scale for the input of the neuron. This is currently done for
conductance-based models, where input conductances are usually in fractions of micro-siemens; in
standard s16.15 fixed-point format, these fractional values waste a lot of the precision, since the top
16-bits will not be used. Multiplying every value by 1024 increases the resolution of these values,
but the neuron model expects the values to be in microsiemens; this function divides the input
values by 1024 when conductances are used (done using a right-shift by 10 for efficiency).

See neuron_model_my_model_curr_exp.h in the template for an example of a header file. Comments
show where the file should be updated to create your own model.

C code file

The C code file defines the functions that make up the interface of the neuron API. Note that pointer types
are automatically created for the data structures defined in the header as follows:

neuron_t * — neuron_pointer_t
global_neuron_params_t * — global_neuron_params_pointer_t

The neuron interface requires the following functions to be implemented:

@® void neuron_model_set_global neuron_params(
global _neuron_params_pointer_t params)

This function is used to set the global parameters after they have been read by the initialization
function. This would often be used to store the parameters in a static variable for later use.

@® state_t neuron_model get_membrane_voltage(neuron_pointer_t neuron)
This function should return the membrane voltage of the neuron from the given neuron structure.
This may simply return the value of a variable in the structure, or it might perform a more complex
calculation to obtain the membrane voltage. The value returned is used for the recording of the
membrane voltage in the simulation.

@® void neuron_model print(restrict neuron_pointer_t neuron)
This function is only used when the neuron model is compiled in “debug” mode (see later). It should
use the “log_debug” function to print each of the state variables and parameters of the neuron that
might be useful in debugging.

@® bool neuron_model state update(input_t exc_input, input_t inh_input,
input_t external_bias, neuron_pointer_t neuron)
This function takes the excitatory and inhibitory input; any external bias input (used in some
plasticity models); and a neuron data structure; and uses these to compute the new state of the
given neuron at this timestep. This function is where any differential equation solving should be
implemented. After the state update, the function should return whether the neuron is considered to
have spiked as a boolean (true if the neuron has spiked, false otherwise). Note that the input does



not specify current or conductance; no conversion of the weights are done before this function is
called, other than any scaling performed in neuron_model_convert_input.
See neuron_model_my _model_curr_exp.c in the template for an example of an implementation of the
neuron interface.

A number of other modules are available for use for performing mathematical functions as part of the
neuron state update. The spinn_common library provides a number of efficient fixed-point implementations
of common functions. This includes random.h, which provides random number generation, normal.h,
which provides normal distributions, exp . h, which provides an exp function and 1og.h which provides a log
function.

Makefiles

There are a number of Makefiles and Makefile.common files in the template. These have mostly been
configured for you. The Makefile.common files set up directory structures, and include the appropriate
Makefiles from the SpyNNaker module. The only Makefile that should need to be edited for your model is
the one in the build folder for your executable; in the template, this is:
c_models/src/neuron/builds/my_model curr_exp/Makefile

The Makefile builds the application that will run on SpiNNaker. This is made up of the neuron model that
you have created, as well as the rest of the common neuron implementation. This includes the synapse
dynamics that are supported by the build, as well as the synapse and spike processing code. The example
provided is for a build with support for static synapses only. The inclusion of plastic synapses is covered
elsewhere.

The important parts of this Makefile that need to be updated are:

@ MODEL_OBJS - This includes a list of object files to be produced; note that the path of the object file
is the same as the path of the C file, although the actual build process will push this into a build
folder. In addition to the object file of the C file described above, this also includes the synapse
dynamics type of the build (static in the template).

@ NEURON_MODEL_H - This points at the neuron model header file.

@ SYNAPSE_TYPE_H - This provides the synapse type for the build. The synapse type controls the
shaping of the synapses in response to the input weights. Within sPyNNaker, support so far
includes exponential synapses (with one excitatory and one inhibitory synapse per neuron which
decay exponentially with a configured time-constant) and dual-excitatory exponential synapses (with
2 separate excitatory synapses and one inhibitory synapse per neuron, decaying as per the
previous type).

Note that the combination of the NEURON_MODEL_H and SYNAPSE_TYPE_H will determine the overall model -
thus my _model curr_exp specifies the inclusion of neuron_model my model curr.h as the model and
synapse_type_exponential_impl.h as the synapse type.

Once the Makefile has been created, you can build the binary by simply typing:
make

As the build relies on header files that are not explicitly specified in the Makefile, some of the changes that
you make may require you to clean the build before building it, by running



make clean
Finally, you can also build the application in debug mode by typing:

make DEBUG=DEBUG
This will enable the log_debug statements in the code, which print out information to the iobuf buffers on
the SpiNNaker machine; to read this there is a simple application in the example folder that can read iobuf
buffers, which can be invoked as follows:

python iobuf.py <machine_name> <app_name>
where <machine_name> is the hostname or IP address of the SpiNNaker board, and <app_name> is the
name of application (without the .aplx extension). This will retrieve the iobuf buffers for every instance of
the application that is found to be running.

Python PyNN Model

Once the C code has been constructed, the PyNN model must be created in Python to translate the PyNN
parameters into a form that the C code can understand. In PyNN, populations can be made up of an
arbitrary number of neurons, however to maintain real-time operation the number of neurons that are
simulated on each core must be limited. The PACMAN module is used by sPyNNaker to partition the
populations into subpopulations, based on the specified maximum number of atoms per core of the model,
as well as the resources required by the synaptic matrix. The DataSpecification module is then used to
write the data for each subpopulation. This is then loaded on to the machine, along with binary executable,
using SpiNNMan.

As with the C code, there are number of components that can be re-used, so that only properties relevant
to the new model itself need to be defined. This is done by extending the classes that define these
properties. For example, the exponential synapse type described previously can be included by extending:
spynnaker.pyNN.models.abstract_models.abstract_model_components\
.abstract_exp_population_vertex.AbstractExponentialPopulationVertex

To make use of the common codebase for all populations, all models must extend:
spynnaker.pyNN.models.abstract_models.abstract population_vertex\
.AbstractPopulationVertex

Once the class has been defined, a number of other properties and functions need to be defined:

@® _model based_max_atoms_per_core - This keeps track of the maximum neurons per core for this
model. This is a user-configurable parameter, but the initial value is defined here as an absolute
maximum. The absolute maximum supported by the data structures elsewhere in the C code is
255, so if you are unsure, you can use this value. If your model is particularly complex, you should
set this to a lower value, as more processing time will be required per neuron.

@® _ init_ (self, n_neurons, machine_time_step, timescale_factor,
spikes_per_second, ring buffer_sigma, constraints=None, label=None,
-)

This is the initializer of the model class. The parameters of this initializer must include the following
variables to match the sPyNNaker interface. These values will be passed down from sPyNNaker,
and are mostly passed on to superclass initializers, to it is not critical that you understand what they
all do here; however a short description is given below:

O the number of neurons (n_neurons),

O the machine timestep (machine_time_step) in microseconds,



the timescale factor (timescale_factor),

the maximum expected spikes per second (spikes_per_second),

the number of sigmas in the ring buffer distribution to allow for (ring_buffer_sigma),
any additional constraints on the vertex (constraints), and

The vertex label (1abel)

© 0000

In addition to these parameters, you should include any parameters required by the other classes
that are extended. You can then also add your own parameters as required by your model. All the
parameters must be given default values, including those required by the superclasses (not
including those listed above, which are given values automatically); this allows the user to only
specify those values that they want to change. The machine time_step parameter can be used to
convert any values that are in milliseconds to values that are in numbers of time steps (e.g. 10
milliseconds at a timestep of 100 microseconds is 10 / (100 / 1000.0) = 100 machine timesteps).

Within the init method, the following must be done:
e Call the initializer of AbstractPopulationVertex. This should pass on the parameters
listed above, and should also pass the following parameters:

O n_params - The total number of parameters and state variables defined in the
neuron_t data structure in the C code. This may be more than the number of
parameters passed to the initializer, as there may be variables that are not
user-configurable.

O n_global _params - The total number of parameters defined in the
neuron_global_params_t data structure in the C code.

O binary - This is the name of the executable that is produced when the Makefile runs.
This is defined in the Makefile. This is the simple name of the file rather than the full
path to the binary.

O weight_scale - If any weight scaling is done in neuron_model_convert_input,
the dividing factor must be specified here, so that the weights can be pre-multiplied
by this amount. This value defaults to 1.0, so it doesn’t need to be specified if it isn’t
used.

O max_atoms_per_core - You can pass the _model_based_max_atoms_per_core
variable defined above for this parameter. This will allow the user to configure this in
a script if desired.

e Call the initializers of other included components. This will pass on the parameters required
by these components.

e Store any of your own parameters. These are usually defined as:
self. <param> = utility calls.convert_param_to_numpy(<param>, n_neurons)
The user can specify parameters using a single value; a list of values (with one per neuron);
or a RandomDistribution object. The convert_param_to_numpy function normalises
these into a numpy array.

@® initialize_<var> - This is a set of functions, one for each of the state variables (i.e. those that
change during the simulation). This allows the user to call the PyNN initialize() function. Note that
the initial values are usually also available via the class constructor (usually postfixed with _init), but
that PyNN doesn’t usually expose state variables in this way. These functions should also make



use of the utility calls.convert param_to_numpy function to normalise the parameter
values.

e Property and setter for each parameter (i.e. those variables that don’t change during the simulation).
This allows the user to call the PyNN set() function for these variables. As with the above the
parameter values should be normalised.

@® model_name(self) - This property (use the @property decorator) simply returns the model name.

@® set_model _max_atoms_per_core(new_value) - This static method (use the @staticmethod
decorator) sets the value of _model_based_max_atoms_per_core, to allow the user to override
the default (with a smaller value).

@® get _cpu_usage for_atoms(self, vertex_slice, graph) - This method returns an estimate
of the number of cpu clock cycles required per timer tick to run the model for the number of neurons
given by vertex_slice.n_atoms. This value is unlikely to be critical at this point, so using the
function as it is specified in the template should work correctly.

@® get_parameters(self) - This method returns an array of NeuronParameter instances to match
the parameters and state variables defined in the neuron_t data structure in the C header file. The
order of the array must match the order of the parameters and state variables as defined in the
neuron_t data structure. Along with each parameter, the data type must also be given. This is
done using the DataType enum; the most commonly used values are DataType.S1615, which
corresponds to a C fixed-point accum data type (or REAL in most of our code); and
DataType.UINT32 and DataType.INT32 which correspond to unsigned and signed 32-bit integers
respectively (uint32_t and int32_t).

@® get_global parameters(self) - This method returns an array of NeuronParameter instances.
This must return the values of the global parameters exactly as defined in the
global neuron_params_t data structure in the C header file, including the order of the
parameters.

@® is population_vertex(self) - This method needs to be defined, but just needs to return True.
This is used to keep track of the types of the vertices.

e Any additional abstract methods defined by the extended classes. For example,
AbstractExponentialPopulationVertex requires the is_exponential(self) method to
return True.

Python __init__.py files

Most of the __init__.py files in the template do not contain any code. The one within python_models is the
exception; this file adds the model_binaries module to the executable paths, allowing sPyNNaker to
search this folder for your compiled binary. You can also import your module here to make it easy to use in
other scripts.

Python setup.py file
This file enables you to install the new module. This is set up to install all the modules in the template; if
you add any modules, these also need to be added to this file (it is not recursive; each module has to be



added separately). To add the module to your python environment in such a way that you can still edit it,
you can run:

[sudo] python setup.py develop [--user]
You need to use sudo if you are installing centrally on Linux or Mac OS X; on windows you need to be in an
Administrative console. Add --user instead if you want to install only for your username (you shouldn’t
mix these two options, or you will end up installing it only for the root user).

Using your module
In order to use the new module, you need to import your module in addition to PyNN e.g. for the template
module, you can do the following:

import pyNN.spiNNaker as p

import python_model as new_models

pop = p.Population(l, new_models.MyModelCurrkExp)

A more detailed example is shown in the template in examples/my_example.py.

Task 1: A Simple Neural Model [Easy]

This task will create a simple neural model using the template, and execute it on SpiNNaker.

Change the template by adding two parameters, one representing a decay (default value of 0.1) and one
representing a rest voltage (default value of -65.0). The parameters should be REAL values
(DataType.S1615). Change the model to subtract the difference between the current voltage and the rest
voltage multiplied by the decay from the membrane voltage, before adding the total input i.e.

v_membrane = v_membrane - ((v_membrane - v_rest) * decay) + input

Run the example script and see what happens.

Task 2: A Spiking Neuron Model [Moderate]

This task will look at adding a threshold at which the neuron spikes.

Add further parameters to the model created previously for the threshold voltage of the neuron (REAL,
default value -60.0), the reset voltage (REAL, default value -70.0) and another parameter which is the
refractory period (uint32_t, default value 2.0), in milliseconds. You will also need a state variable to keep
a refractory timer (int32_t). Change the model C code to spike (return true) when the neuron voltage is
greater than or equal to the threshold voltage after the update. If the neuron spikes, the voltage should
then be set to the reset voltage, and the refractory timer should be set to the refractory period. Add a
condition so that the neuron membrane voltage is only updated while the refractory timer is less than or
equal to 0. If it is greater than 0, the refractory timer should be reduced by one.

Update the python code to match the C code. Note that the python code will need to convert the refractory
period in milliseconds to the number of machine time steps.

Update the example script to record and plot the spikes, and run it again.



Task 3: A Stochastic Threshold Model [Hard]

This task will look at more complex model using some of the provided functions in the spinn_common
library. Note that the models are automatically compiled with this library, so no additions to the Makefile are
necessary.

Take the neuron model created in the previous task, and add a parameter representing the probability of
the neuron firing if it is over the threshold value. This parameter will be between 0 and 1 in Python (default
of 0.5), but as the random number generator generates an integer value, this should be converted into a
uint32_t value between 0 and Ox7FFFFFFF. Add a global parameter which is the seed of the random
number generator. This is an array of 4 uint32_t values for the simplest random number generator in
normal.h. Validate the Marsaglia KISS 64 RNG seed during initialisation of the global parameters
(validate mars_kiss64_seed(mars_kiss64 seed t seed)). When the neural model is over the
threshold voltage, call the RNG with the seed (mars_kiss64_seed(mars_kiss64_seed_t seed)). The
neuron should only spike if the value is greater than than the probability.

Rerun the example script and see how the number of spikes differs for different settings of the spike
probability.



