Simple Data Input Output and Visualisation on
Spinnaker Lab Manual

1. Introduction

This manual will introduce you to the basics of live retrieval and injection of data (in the form of
spikes) for PyNN scripts that are running on SpiNNaker neuromorphic hardware.

2. Installation

The PyNN 0.7 toolchain for SpiNNaker (sPyNNaker 2015.005), can be installed by following the
instructions available from here:
https://github.com/SpiNNakerManchester/SpiNNakerManchester.qgithub.io/ (link to be filled in)

Matplotlib is marked as optional, but you will also need to install this dependency to complete
some of the forthcoming exercises.

The sPyNNakerExternalDevicesPlugin 2015.009 can be installed by following the instructions
available from here:
https://github.com/SpiNNakerManchester/SpiNNakerManchester.github.io/ (link to be filled in)

The Visualiser 2015.002 module can be downloaded from here:
https://github.com/SpiNNakerManchester/Visualiser (link to be filled in)
and can be compiled by running the command make -f Makefile.<os>

To compile the Visualiser and the ¢ code that can support the live injection and retrieval
functionality, you will need Gce and SQL and OpenGL libraries for c. The instructions to
download and install these can be found here:

(link to be filled in)

To refer on how to configure your sPyNNaker installation to use your SpiNNaker machine,
please refer to “Using PyNN with SpiNNaker” section of the “Running PyNN Simulations on
SpiNNaker” lab manual, found here:

(link to be filled in)

https://github.com/SpiNNakerManchester/SpiNNakerManchester.github.io/
https://github.com/SpiNNakerManchester/SpiNNakerManchester.github.io/
https://github.com/SpiNNakerManchester/Visualiser

3. PyNN Support

This section discusses the standard support from |PyNN related to spike injection and retrieval.

3.1 Output

The standard support for data output for a platform such as SpiNNaker, through the PyNN
language, is to use the methods record(), record_v(), for declaring the need to record, and
get_Spikes(), get_v(), for retrieval of the specific data.

The issue with the get functions are that they are called after run() completes, and therefore are
no longer live. In the 2015.005 implementation of sPyNNaker, all of the data declared to be
recorded via record(), record_v(), is stored on the SDRAM of the chips that the corresponding
populations were placed on. This means that there is a finite amount of recorded data that can
be stored before recordings fail.

By writing the data to SDRAM, the data is stored locally and therefore is guaranteed to be read
at some point in the future. This memory requirement for recording is considered during the
partitioning process, but if the memory that your recording requires, is more than the machines
total available space left after other essential memory requirements, then your model will not be
able to be ran at all.

Its worth noting that future releases of the sPyNNaker back end should be able to remove this
constraint, but it currently is not supported.

3.2 Input

The standard support for data input for a platform such as SpiNNaker, through the PyNN
language, is to use the neural models SpikeSourceArray and SpikeSourcePoisson. The
issue with both of these models is that they are either random rate based (the
spikeSourcePoisson) or are a playback mode (spikeSourceArray).

In sPyNNaker 2015.005, the playback mode of the SpikeSourceArray does not have the same
memory constraint as the record functionality, but by removing the SDRAM limit, it is no longer
able to be recorded via the record() functionality. Future releases of the sPyNNaker back end
should be able to remove this constraint, but it currently is not supported.

4. External Device Plugin Support

As stated previously, the issue with this is that PyNN 0.7 expects its run() method to block for
the entire time of the run, and therefore it is impossible to set up a real time extraction or
retrieval of data via this FrontEnd (sPyNNaker), and has no current support for live retrieval or
live injection.

Its worth noting that future releases of PyNN (0.9) may use the MUSIC interface to support live
injection and retrieval of data. But the current software version of sPyNNaker (2015.005) only
supports PyNN 0.7 and therefore there is no built in support.

To compensate for this, the sPyNNakerExternalDevicesPlugin module was created that
contains support for live injection and retrieval of data from a running PyNN 0.7 simulation
during the blocking of run().

4.1 Live Output

To activate live retrieval from a given population, the command
activate_live_output_for(<Population_object>) is used. This informs the sPyNNaker backend
to add the supporting utility model (Live packet gatherer) into the graph object (which
sPyNNaker uses to represent your PyNN neural models) and an edge between your population
and the associate LPG for your ports.

Other parameters for the activate_live_output_for() function are defined below:

Parameter Description

port The port number to receive packets from the SpiNNaker
machine.

database_notify_host The hostname for the database notification protocol (described
below)

database_notify _port_ num | The port number for the database notification protocol
(described below)

database _ack port_ num The port number that the database notification protocol will
listen to, to receive the ack packet.

4.2 Live Injection

To activate the live injection functionality, you need to instantiate a new neural model (called a
Spikelnjector) which is located in spynnaker_external_devices_plugin.pyNN.Spikelnjector

The Spikelnjector is considered as any other neural model in PyNN, so you can build a
population with a number of neurons etc in the normal way, as shown below:

injector_forward = Frontend.Population(
5, ExternalDevices.SpikeInjector, [‘port’: 12367],
label="spike_injector_forward")

The key parameters of the Spikelnjector are as follows:

Parameter Description

port The port that packets are going to be injected
in from.

virtual_key The base routing key that the spike injector is
going to use for routing. This parameter is
optional.

4.3 Python Live reciever

The following block of code creates a live packet receiver:
declare python code when received spikes for a timer tick
def receive_spikes(label, time, neuron_ids):
for neuron_id in neuron_ids:

print “Received spike at time {} from {}-{}”.format(

1

2

3

4

5 time, label, neuron_id)
6 # import python live spike connection

7 from spynnaker_external_devices_plugin.pyNN.connections.\

8 spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection
9 # set up python live spike connection

10 live_spikes_connection = SpynnakerLiveSpikesConnection(

11 receive_labels=[“receiver”], local port=19995, send_labels=None)

12 # register python receiver with live spike connection

13 live_spikes_connection.add_receive_callback(“receiver”, receive_spikes)
14 p.run(5000)

5.

Lines 1 to 5 creates a function that takes as its input all the neuron ids that fired at a
specific time, from the population with the given label. From here, it generates a print
message for each neuron.

Lines 6 to 8 imports the python support for live injection/live retrieval. The
SpynnakerLiveSpikesConnection handles both live retrieval and live injection.

Lines 9 to 11 instantiates the SpynnakerLiveSpikesConnection, and informs the
connection that it will receive data under the label “receiver” on port 19996, but will not
be injecting data at all.

Lines 12 to 13 informs the connection that for any packets being received, needs to be
forwarded to the function receive_spikes defined on lines 1 to 5.

line 14 executes the model on SpiNNaker.

4.4 Python Live injector

The following block of code creates a live packet injector:

1
2
3
4
5
6
7
8
9

create python injector

def send_spike(label, sender):

sender.send_spike(label, 0, send_full keys=True)

import python injector connection

from spynnaker_external_devices_plugin.pyNN.connections.\

spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection

set up python injector connection

live_spikes_connection = SpynnakerLiveSpikesConnection(

receive_labels=None, local_port=19996, send_labels=[“spike_sender”])

10 # register python injector with injector connection

11 live_spikes_connection.add_start_callback(“spike_sender”, send_spike)

12 p.run(5000)

Lines 1 to 3 creates a little function that will inject a spike from neuron 0 from the spike
injector.

Lines 4 to 6 imports the python support for live injection/live retrieval. The
SpynnakerLiveSpikesConnection handles both live retrieval and live injection.

Lines 7 to 9 instantiates the SpynnakerLiveSpikesConnection, and informs the
connection that it will not receive any data, but will inject data via the label spike_sender
on port 19996.

4. Lines 10 to 11 informs the connection that when the simulation starts, to call the
send_spike function defined on lines 1 to 3.
5. Line 12 executes the model on SpiNNaker.

4.5 C Live receiver
NEEDS FILLING IN

4.6 C Live injection
NEEDS FILLING IN

5. Database Notification protocol

The support built behind all this software is a simple notification protocol on a database that's
written during compilation time. The notification protocol is illustrated below:

SpiNNaker

4 5. Sends executables,
starts simulation

e

sPyNNaker front end

sjayoed

1. Writes Database
]

Database

3. Reads |Database

2. send EIEIO command message

saying database ready to read

'

Visualiser

.

6. Sends EIEIO Data packets which

contain live spikes

anleoal 0] Apeal Jaslensia BulAes
abessaw puewwod O]3|3 puas ¥

The steps within the notification protocol are defined below:
1. The sPyNNaker front end writes a database that contains all the data objects generated
from sPyNNaker during the compilation process.

2. The notification protocol sends a EIEIO command message to all the devices which are
listening to hear that the database has been written. This functionality is hidden behind
the Visualiser and SpynnakerLiveSpikesConnection software interfaces.

3. These devices then read the database for whatever data they require. These are often to
deduce a mapping between received routing keys and neuron ids for the transmitted
populations.

4. Once these devices have read the database, they notify the sPyNNaker front end that
they are ready for the simulation to start.

5. Once all devices have notified the sPyNNaker front end, the simulation begins.

The sPyNNaker front end also notifies the devices when the simulation has begun.

7. The SpiNNaker machine transmits/ receives packets to/from external injections and
retrieval devices.

o

6. Caveats

To use the live injection and retrieval functionality does not come for free. The functionality only
supports the use of the ethernet connection, which means that there is a limited bandwidth of a
maximum of approx 30 MB/s. This bandwidth is shared between both types of functionality, as
well as system support for certain types of neural models, such as the SpikeSourceArray.

Furthermore, this functionality depends upon the lossy communication fabric of the SpiNNaker
machine. This means that even though a neuron fires a spike you may not see it via the live
retrieval functionality. If you need to ensure you receive every packet that has been transmitted,
we recommend using the standard PyNN functionality.

By using this functionality, you are making your script non portable between different simulators.
The activate_live output_for(<pop_object>) and Spikelnjector models are not supported by
other PyNN backends (such as Nest, Brian etc).

Finally, by using this functionality, you lose a number of SpiNNaker cores for this functionality.

Therefore a model which would just fit onto your SpiNNaker machine before would likely fail to
fit on the machine when these functionalities are added in.

7. Visualiser

The visualiser module contains a ¢ based raster plot which is designed to integrate with the
notification protocol described previously.

To compile the visualiser code, go into the visualiser module. Then execute:

make -f Makefile.<os>

The visualiser ¢ code contains 4 different parameters. These are defined below:

Parameter Description

-colour_map Path to a file containing the population labels to receive, and
their associated colours

-hand_shake_port optional port which the visualiser will listen to for database hand
shaking
-database optional file path to where the database is located, if needed for

manual configuration

-remote_host optional remote host, which will allow port triggering

7.1 colour_map file format

The colour_map file consists of a collection of lines, where each line contains 4 values
separated by tabs. These values, in order are:

1. The population label.

2. The red colour value.

3. The green colour value.

4. The blue colour value.
An example file is shown below:

“spike_for‘war‘d %] %] 255
spike_backwards %] 255 0
8. Tasks

The following tasks when completed will have hopefully taught you how to use the live injection
and live retrieval functionality supported by the sPyNNakerExternalDevicesPlugin 2015.009
module.

We have assumed here that you were able to complete the Running PyNN Simulations on
SpiNNaker tasks. We will be building upon the result from task 2.1 Synfire Chain [Moderate]

located here:

[insert link here]

Please go back to this lab manual and complete this task before attempting these if you havent
already.

Task 1.1: A simple synfire chain with a injected spike via python injector
[EASY]

This task will create a synfire chain which is stimulated from a injector spike generated on host
and then injected into the simulation.

Remove the spike source array population.

Replace it with the Spikelnjector population.

Build a python injector function.

Import and instantiate an SpynnakerLiveSpikesConnection connection.

link a start callback to the python injector function.

a bk ownN-~

Task 1.2: A simple synfire chain with live streaming via the python receiver
[EASY]

Go back to the original code produced by task 2.1 Synfire Chain [Moderate] from Running
PyNN Simulations on SpiNNaker, and update it to stream the spikes from the If_cur_exp
population.

1. remember to call the activate_live_output_for(<pop_object>)

2. Build a python receiver function that prints out the neuron ids for the population.

3. Import and instantiate an SpynnakerLiveSpikesConnection connection.

4. link a receive callback to the python receiver function.

Task 1.3: A simple synfire chain with live injection and live streaming via
the python support [Easy]

Take the code from the previous 2 tasks and integrate them together to produce one that injects
and streams the packets back to the terminal.
1. Remember that you can use both the recieve labels and send_labels of the same
SpynnakerLiveSpikesConnection.

Task 1.4: A simple synfire chain with live injection via python and live
streaming via the c visualiser [Medium]

Take the code from the previous task and remove the python receiver code (or don't if you feel
confident) and activate the visualizer to take the packets the original python receiver code
processed.

1. Remember to compile the visualiser
2. Remember to generate the correct colour_map
3. Remember to remove the python receiver code (or don’t if you're feeling confident).

Task 1.5: 2 Synfire chains which set each other off using python injectors
whilst still using the c visualiser [Very Hard]

Take the code from the previous task and modify it so that there are two synfire populations

which are tied to one injector population. Modify the receive function so that it contains some
logic that fires the second neuron when the last neuron in the first synfire fires, and does the
same when the last neuron for the second synfire sets off some neuron id of the first synfire

chain.

1. you will need to change the number of neurons the spike injector contains.

2. You will need to change the connector from the spike injector and each synfire
population.

3. You will need to modify the receive function, and add a global variable for the
SpynnakerLiveSpikesConnection.

4. You'll need at least 2 SpynnakerLiveSpikesConnection and multiple
activate_live_output_for(<pop_objevt>) for each population.

5. Remember that each population can only be tied to one LivePacketGatherer, so to
visualise and do closed loop systems require more populations.

6. You will need to modify the ¢ visualiser colour_map to take into account the new synfire
population.

Task 1.6: 2 Synfire chains which set each other off using python injectors
and live retrieval with 2 visualiser instances [Very Hard/Easy]

This task takes everything you've learnt so far and raises the level. Using the code from the
previous task. Create two visualiser instances, each of which only processes one synfire
population.

1. Remember all the lessons from the previous tasks.

2. Remember to change the ports on the activate_live_output_for(<pop_object>)
accordingly.

3. You will need to create at least 2 SpynnakerLiveSpikesConnection’s. But it might be
worth starting with 3 and reducing it to two once you’ve got it working.

4. Remember the different colour_maps

Task 2.1: A simple synfire chain with a injected spike via c injector [EASY]
[Needs filling in]

10

Task 2.2: A simple synfire chain with live streaming via the c receiver
[EASY]

[Needs filling in]

Task 2.3: A simple synfire chain with live injection and live streaming via
the c support [Easy]

[Needs filling in]

Task 2.4: A simple synfire chain with live injection via c and live streaming
via the c visualiser [Medium]

[Needs filling in]

Task 2.5: 2 Synfire chains which set each other off using c injectors
[Medium]

[Needs filling in]

Task 2.6: 2 Synfire chains which set each other off using c injectors and live
retrieval with 2 visualiser instances [Hard]

[Needs filling in]

Task 3: (optional) Create some model which uses all interfaces [Very Hard]

[assumes c code built]

This task is the merging of all the functionalities covered in this lab manual. Take the codes
from both task 2.6 and 1.6 and integrate them together so that:
1. One injector is controlled by the c code, whilst another is done via the python interface.
2. Still uses 2 visualisers to stream the results.
3. Uses the python receive interface to count 5 firings of a given neuron id and then
changes the neuron stimulated by the python injector.

hints:

11

1. remember to keep a global connection object for the python codes.
Congratulations. Assuming you've successfully completed all the tasks, you should now know
how to inject and retrieve packets from a running PyNN script using functionalities supported by
the sPyNNakerExternalDevicesPlugin module.
Now if you want to learn how things work under the hood of the
SpynnakerLiveSpikesConnection and the activate_live_output_for(<pop_object>), please feel

free to try the advanced IO lab manual found here:

[insert link here]

12

Simple Data Input Output and Visualisation on
Spinnaker Lab Manual

Task Solutions:

Task 1.1: A simple synfire chain with a injected spike via python injector
[EASY]

import spynnaker.pyNN as Frontend
import spynnaker_external_devices_plugin.pyNN as ExternalDevices
from spynnaker_external_devices_plugin.pyNN.connections\
.spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection
plotter in python
import pylab
initial call to set up the front end (pynn requirement)
Frontend.setup(timestep=1.0, min_delay=1.0, max_delay=144.0)
neurons per population and the length of runtime in ms for the simulation,
as well as the expected weight each spike will contain
n_neurons = 100
run_time = 8000
weight_to_spike = 2.0
neural parameters of the ifcur model used to respond to injected spikes.
(cell params for a synfire chain)
cell params_lif = {'cm': ©.25, 'i offset': 0.0, 'tau_m': 20.0, 'tau_refrac': 2.0,
"tau_syn E': 5.0, 'tau_syn I': 5.0, 'v_reset': -70.0, 'v_rest':
-65.0,
'v_thresh': -50.0}
create synfire populations (if cur exp)
pop_forward = Frontend.Population(n_neurons, Frontend.IF_curr_exp,
cell params_lif, label='pop_forward')
Create injection populations
injector_forward = Frontend.Population(
n_neurons, ExternalDevices.SpikeInjector,
{'port':12365}, label='spike_injector_forward')
Create a connection from the injector into the populations
Frontend.Projection(injector_forward, pop_forward,
Frontend.OneToOneConnector(weights=weight_to_spike))
Synfire chain connections where each neuron is connected to its next neuron
NOTE: there is no recurrent connection so that each chain stops once it
reaches the end
loop_forward = list()
loop_backward = list()

13

for i in range(®@, n_neurons - 1):
loop_forward.append((i, (i + 1) % n_neurons, weight_to_spike, 3))
Frontend.Projection(pop_forward, pop_forward,
Frontend.FromListConnector(loop_forward))
record spikes from the synfire chains so that we can read off valid results
in a safe way afterwards, and verify the behavior
pop_forward.record()
Create a sender of packets for the forward population
def send_input_forward(label, sender):
print "Sending forward spike for neuron 0"
sender.send_spike(label, 0)
Set up the live connection for sending spikes
live_spikes_connection = SpynnakerLiveSpikesConnection(
receive_labels=None, local port=19999,
send_labels=["spike_injector_forward"])
Set up callbacks to occur at the start of simulation
live_spikes_connection.add_start_callback("spike_injector_forward",
send_input_forward)
Run the simulation on spiNNaker
Frontend.run(run_time)
Retrieve spikes from the synfire chain population
spikes_forward = pop_forward.getSpikes()
If there are spikes, plot using matplotlib
if len(spikes_forward) != 0:
pylab.figure()
if len(spikes_forward) != 0:
pylab.plot([i[1] for i in spikes_forward],
[i[@] for i in spikes_forward], "b.")
pylab.ylabel('neuron id")
pylab.xlabel('Time/ms")
pylab.title('spikes")
pylab.show()
else:
print "No spikes received"
Clear data structures on spiNNaker to leave the machine in a clean state for
future executions
Frontend.end()

14

Task 1.2: A simple synfire chain with live streaming via the python receiver
[EASY]

imports of both spynnaker and external device plugin.
import spynnaker.pyNN as Frontend
import spynnaker_external_devices_plugin.pyNN as ExternalDevices
from spynnaker_external_devices_plugin.pyNN.connections\
.spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection
plotter in python
import pylab
initial call to set up the front end (pynn requirement)
Frontend.setup(timestep=1.0, min_delay=1.0, max_delay=144.0)
neurons per population and the length of runtime in ms for the simulation,
as well as the expected weight each spike will contain
n_neurons = 100
run_time = 8000
weight_to_spike = 2.0
neural parameters of the ifcur model used to respond to injected spikes.
(cell params for a synfire chain)
cell params_1lif = {'cm': ©.25, 'i_offset': 0.0, 'tau_m': 20.0, 'tau_refrac': 2.0,
'tau_syn_E': 5.0, 'tau_syn_I': 5.0, 'v_reset': -70.0, 'v_rest':
-65.0,
'v_thresh': -50.0}
create synfire populations (if cur exp)
pop_forward = Frontend.Population(n_neurons, Frontend.IF_curr_exp,
cell params_lif, label='pop_ forward')
Create injection populations
injector_forward = Frontend.Population(
1, Frontend.SpikeSourceArray,
{'spike_times': [[@]]}, label='spike_playback_forward")
Create a connection from the injector into the populations
Frontend.Projection(injector_forward, pop_forward,
Frontend.FromListConnector([(0, 0, weight_to_spike, 1)]))
Synfire chain connections where each neuron is connected to its next neuron
NOTE: there is no recurrent connection so that each chain stops once it
reaches the end
loop_forward = list()
for i in range(®, n_neurons - 1):
loop_forward.append((i, (i + 1) % n_neurons, weight_to_spike, 3))
Frontend.Projection(pop_forward, pop_forward,
Frontend.FromListConnector(loop_forward))
record spikes from the synfire chains so that we can read off valid results
in a safe way afterwards, and verify the behavior
pop_forward.record()
Activate the sending of live spikes
ExternalDevices.activate_live output_for(

15

pop_forward, database_notify_host="localhost",
database_notify_port_num=19996)
Create a receiver of live spikes
def receive_spikes(label, time, neuron_ids):
for neuron_id in neuron_ids:
print "Received spike at time", time, "from", label, , heuron_id
if not using the c visualiser, then a new spynnaker live spikes connection
is created to define that there are python code which receives the
outputted spikes.
live_spikes_connection = SpynnakerLiveSpikesConnection(
receive_labels=["pop_forward"], local_port=19996, send_labels=None)
Set up callbacks to occur when spikes are received
live_spikes_connection.add_receive_callback("pop_forward", receive_spikes)
Run the simulation on spiNNaker
Frontend.run(run_time)
Retrieve spikes from the synfire chain population
spikes_forward = pop_forward.getSpikes()
If there are spikes, plot using matplotlib
if len(spikes_forward) != 0:
pylab.figure()
if len(spikes_forward) != 0:
pylab.plot([i[1] for i in spikes_forward],
[i[@] for i in spikes_forward], "b.")
pylab.ylabel('neuron id")
pylab.xlabel('Time/ms")
pylab.title('spikes")
pylab.show()

else:
print "No spikes received"
Clear data structures on spiNNaker to leave the machine in a clean state for
future executions
Frontend.end()

16

Task 1.3: A simple synfire chain with live injection and live streaming via
the python support [Easy]

imports of both spynnaker and external device plugin.
import spynnaker.pyNN as Frontend
import spynnaker_external_devices_plugin.pyNN as ExternalDevices
from spynnaker_external_devices_plugin.pyNN.connections\
.spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection
plotter in python
import pylab
initial call to set up the front end (pynn requirement)
Frontend.setup(timestep=1.0, min_delay=1.0, max_delay=144.0)
neurons per population and the length of runtime in ms for the simulation,
as well as the expected weight each spike will contain
n_neurons = 100
run_time = 8000
weight_to_spike = 2.0
neural parameters of the ifcur model used to respond to injected spikes.
(cell params for a synfire chain)
cell params_1lif = {'cm': 0.25, 'i offset': 0.0, 'tau_m': 20.0, 'tau_refrac': 2.0,
"tau_syn_E': 5.0, 'tau_syn I': 5.0, 'v_reset': -70.0, 'v_rest':
-65.0,
'v_thresh': -50.0}
create synfire populations (if cur exp)
pop_forward = Frontend.Population(n_neurons, Frontend.IF_curr_exp,
cell params_lif, label='pop_forward')
Create injection populations
injector_forward = Frontend.Population(
n_neurons, ExternalDevices.SpikeInjector,
{'port':12365}, label='spike_injector_forward')
Create a connection from the injector into the populations
Frontend.Projection(injector_forward, pop_forward,
Frontend.OneToOneConnector(weights=weight_to_spike))
Synfire chain connections where each neuron is connected to its next neuron
NOTE: there is no recurrent connection so that each chain stops once it
reaches the end
loop_forward = list()
loop_backward = list()
for i in range(®, n_neurons - 1):
loop_forward.append((i, (i + 1) % n_neurons, weight_to_spike, 3))
Frontend.Projection(pop_forward, pop_forward, Frontend.FromListConnector(loop_forward))
record spikes from the synfire chains so that we can read off valid results
in a safe way afterwards, and verify the behavior
pop_forward.record()
Activate the sending of live spikes

17

ExternalDevices.activate_live_output_for(
pop_forward, database_notify_host="localhost",
database_notify_port_num=19996)
Create a sender of packets for the forward population
def send_input_forward(label, sender):
print "Sending forward spike for neuron 0"
sender.send_spike(label, 0)
Create a receiver of live spikes
def receive_spikes(label, time, neuron_ids):
for neuron_id in neuron_ids:
print "Received spike at time", time, "from", label,
Set up the live connection for sending spikes
live_spikes_connection = SpynnakerLiveSpikesConnection(
receive_labels=None, local_port=19999, send_labels=["spike_injector_forward"])
Set up callbacks to occur at the start of simulation
live_spikes_connection.add_start_callback("spike_injector_forward", send_input_forward)
if not using the c visualiser, then a new spynnaker live spikes connection
is created to define that there are python code which receives the
outputted spikes.
live_spikes_connection = SpynnakerLiveSpikesConnection(
receive_labels=["pop_forward"], local_port=19996, send_labels=None)
Set up callbacks to occur when spikes are received
live_spikes_connection.add_receive_callback("pop_forward", receive_spikes)
Run the simulation on spiNNaker
Frontend.run(run_time)
Retrieve spikes from the synfire chain population
spikes_forward = pop_forward.getSpikes()
If there are spikes, plot using matplotlib
if len(spikes_forward) != 0:
pylab.figure()
if len(spikes_forward) != 0:
pylab.plot([i[1] for i in spikes_forward],
[i[@] for i in spikes_forward], "b.")
pylab.ylabel('neuron id')
pylab.xlabel('Time/ms")
pylab.title('spikes")
pylab.show()

-", neuron_id

else:
print "No spikes received"
Clear data structures on spiNNaker to leave the machine in a clean state for
future executions
Frontend.end()

18

Task 1.4: A simple synfire chain with live injection via python and live
streaming via the c visualiser [Medium]

imports of both spynnaker and external device plugin.
import spynnaker.pyNN as Frontend
import spynnaker_external_devices_plugin.pyNN as ExternalDevices
from spynnaker_external_devices_plugin.pyNN.connections\
.spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection
plotter in python
import pylab
initial call to set up the front end (pynn requirement)
Frontend.setup(timestep=1.0, min_delay=1.0, max_delay=144.0)
neurons per population and the length of runtime in ms for the simulation,
as well as the expected weight each spike will contain
n_neurons = 100
run_time = 8000
weight_to_spike = 2.0
neural parameters of the ifcur model used to respond to injected spikes.
(cell params for a synfire chain)
cell params_1lif = {'cm': ©.25, 'i_offset': 0.0, 'tau_m': 20.0, 'tau_refrac': 2.0,
'tau_syn_E': 5.0, 'tau_syn_I': 5.0, 'v_reset': -70.0, 'v_rest':
-65.0,
'v_thresh': -50.0}
create synfire populations (if cur exp)
pop_forward = Frontend.Population(n_neurons, Frontend.IF_curr_exp,
cell params_lif, label='pop_ forward')
Create injection populations
injector_forward = Frontend.Population(
n_neurons, ExternalDevices.SpikeInjector,
{'port':12365}, label='spike_ injector_forward")
Create a connection from the injector into the populations
Frontend.Projection(injector_forward, pop_forward,
Frontend.OneToOneConnector(weights=weight_to_spike))
Synfire chain connections where each neuron is connected to its next neuron
NOTE: there is no recurrent connection so that each chain stops once it
reaches the end
loop_forward = list()
for i in range(®, n_neurons - 1):
loop_forward.append((i, (i + 1) % n_neurons, weight_to_spike, 3))
Frontend.Projection(pop_forward, pop_forward,
Frontend.FromListConnector(loop_forward))
record spikes from the synfire chains so that we can read off valid results
in a safe way afterwards, and verify the behavior
pop_forward.record()
Activate the sending of live spikes
ExternalDevices.activate_live output_for(

19

pop_forward, database_notify_host="localhost",
database_notify_port_num=19996)
Create a sender of packets for the forward population
def send_input_forward(label, sender):
print "Sending forward spike for neuron 0"
sender.send_spike(label, 0)
if not using the c visualiser, then a new spynnaker live spikes connection
is created to define that there are python code which receives the
outputted spikes.
live_spikes_connection = SpynnakerLiveSpikesConnection(
receive_labels=["pop_forward"], local_ port=19996,
send_labels=[“spike_injector_forward”])
Set up callbacks to occur at the start of simulation
live_spikes_connection.add_start_callback("spike_injector_forward", send_input_forward)
Run the simulation on spiNNaker
Frontend.run(run_time)
Retrieve spikes from the synfire chain population
spikes_forward = pop_forward.getSpikes()
If there are spikes, plot using matplotlib
if len(spikes_forward) != 0:
pylab.figure()
if len(spikes_forward) != 0:
pylab.plot([i[1] for i in spikes_forward],
[i[@] for i in spikes_forward], "b.")
pylab.ylabel('neuron id")
pylab.xlabel('Time/ms")
pylab.title('spikes")
pylab.show()
else:
print "No spikes received"
Clear data structures on spiNNaker to leave the machine in a clean state for
future executions
Frontend.end()

Visualiser stuff

command line: colour_map (“single synfire”):
./vis -colour-map single_synfire pop_forward 0 0 255

20

Task 1.5: 2 Synfire chains which set each other off using python injectors
whilst still using the c visualiser [Hard]

imports of both spynnaker and external device plugin.
import spynnaker.pyNN as Frontend
import spynnaker_external_devices_plugin.pyNN as ExternalDevices
from spynnaker_external_devices_plugin.pyNN.connections\
.spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection
plotter in python
import pylab
from threading import Condition
initial call to set up the front end (pynn requirement)
Frontend.setup(timestep=1.0, min_delay=1.0, max_delay=144.0)
neurons per population and the length of runtime in ms for the simulation,
as well as the expected weight each spike will contain
n_neurons = 100
run_time = 8000
weight_to_spike = 2.0
neural parameters of the ifcur model used to respond to injected spikes.
(cell params for a synfire chain)
cell params_lif = {'cm': ©.25, 'i_offset': 0.0, 'tau_m': 20.0, 'tau_refrac': 2.0,
'tau_syn_E': 5.0, 'tau_syn_ I': 5.0, 'v_reset': -70.0, 'v_rest':
-65.0,
'v_thresh': -50.0}
create synfire populations (if cur exp)
pop_forward = Frontend.Population(n_neurons, Frontend.IF_curr_exp,
cell params_lif, label='pop_forward')
pop_backward = Frontend.Population(n_neurons, Frontend.IF_curr_exp,
cell params_lif, label='pop_backward"')
create equiv of parrot populations for closed loop calculation
pop_forward_parrot = Frontend.Population(
n_neurons, Frontend.IF_curr_exp, cell params_lif, label='pop_forward_parrot')
pop_backward_parrot = Frontend.Population(
n_neurons, Frontend.IF_curr_exp, cell params_lif, label='pop_backward_parrot')
Create injection populations
injector_forward = Frontend.Population(
n_neurons, ExternalDevices.SpikeInjector, {"port": 19344},
label="spike_injector_forward')
Create a connection from the injector into the populations
Frontend.Projection(injector_forward, pop_forward,
Frontend.FromListConnector([0, 0, weight_ to_spike, 3]))
Frontend.Projection(injector_forward, pop_backward,
Frontend.FromListConnector([1, 99, weight_to_spike, 3]))
Add links to the parrot populations for closed loop calculations
Frontend.Projection(pop_forward, pop_forward_parrot,
Frontend.OneToOneConnector(weight_to_spike, 1))

21

Frontend.Projection(pop_backward, pop_backward_parrot,
Frontend.OneToOneConnector(weight_to_spike, 1))
Synfire chain connections where each neuron is connected to its next neuron
NOTE: there is no recurrent connection so that each chain stops once it
reaches the end
loop_forward = list()
loop_backward = list()
for i in range(®, n_neurons - 1):
loop_forward.append((i, (i + 1) % n_neurons, weight_to_spike, 3))
loop_backward.append(((i + 1) % n_neurons, i, weight_to_spike, 3))
Frontend.Projection(pop_forward, pop_forward,
Frontend.FromListConnector(loop_forward))
Frontend.Projection(pop_backward, pop_backward,
Frontend.FromListConnector(loop_backward))
record spikes from the synfire chains so that we can read off valid results
in a safe way afterwards, and verify the behavior
pop_forward.record()
pop_backward.record()
Activate the sending of live spikes
ExternalDevices.activate_live_output_for(
pop_forward, database_notify_host="localhost",
database_notify_port_num=19996)
ExternalDevices.activate_live output_for(
pop_backward, database_notify_host="localhost",
database_notify_port_num=19996)
Activate the sending of spikes for the python reciever
ExternalDevices.activate_live output_for(
pop_forward, database_notify_host="localhost",
database_notify_port_num=19995, port=13333)
ExternalDevices.activate_live_output_for(
pop_backward, database_notify_host="localhost",
database_notify_port_num=19995, port=13333)
Create a condition to avoid overlapping prints
print_condition = Condition()
Create a sender of packets for the forward population
def send_input_forward(label, sender):
print "Sending forward spike for neuron 0"
sender.send_spike(label, 0)
Create a receiver of live spikes
def receive_spikes(label, time, neuron_ids):
for neuron_id in neuron_ids:
print_condition.acquire()
print "Received spike at time", time, "from", label,
print_condition.release()

-", neuron_id

if neuron_id == @ and label== "pop_backward_parrot":
live_spikes_connection.send_spike("pop_forward", 0)
elif neuron_id == 99 and label== "pop_forward_parrot":

live _spikes_connection.send_spike("pop_backward", 1)

22

Set up the live connection for sending spikes
live_spikes_connection = SpynnakerLiveSpikesConnection(
local_port=19996, send_labels=["spike_injector_forward"])
Set up the live connection for sending spikes
live_spikes_connection_receiver = SpynnakerLiveSpikesConnection(
receive_labels=["pop_forward_parrot"”, "pop_backward_parrot"], local_port=19995)
Set up callbacks to occur at the start of simulation
live_spikes_connection.add_start_callback("spike_injector_forward",
send_input_forward)
Set up callbacks to occur when spikes are received
live_spikes_connection_receiver.add_receive_callback(
"pop_forward_parrot", receive_spikes)
live_spikes_connection_receiver.add_receive_callback(
"pop_backward_parrot", receive_spikes)
Frontend.run(run_time)

Retrieve spikes from the synfire chain population
spikes_forward = pop_forward.getSpikes()
spikes_backward = pop_backward.getSpikes()
If there are spikes, plot using matplotlib
if len(spikes_forward) != @ or len(spikes_backward) != 0:
pylab.figure()
if len(spikes_forward) != 0:
pylab.plot([i[1] for i in spikes_forward],
[i[@] for i in spikes_forward], "b.")
if len(spikes_backward) != 0:
pylab.plot([i[1] for i in spikes_backward],
[i[@] for i in spikes_backward], "r.")
pylab.ylabel('neuron id")
pylab.xlabel('Time/ms")
pylab.title('spikes")
pylab.show()
else:
print "No spikes received"
Clear data structures on spiNNaker to leave the machine in a clean state for
future executions
Frontend.end()

Visualiser stuff

command line:
./vis -colour-map duel_synfire

colour_map (“duel synfire”):

pop_forward © (%] 255
pop_backward © 255 %]

23

Task 1.6: 2 Synfire chains which set each other off using python injectors
and live retrieval with 2 visualiser instances [Very Hard]

imports of both spynnaker and external device plugin.
import spynnaker.pyNN as Frontend
import spynnaker_external_devices_plugin.pyNN as ExternalDevices
from spynnaker_external_devices_plugin.pyNN.connections\
.spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection
plotter in python
import pylab
from threading import Condition
initial call to set up the front end (pynn requirement)
Frontend.setup(timestep=1.0, min_delay=1.0, max_delay=144.0)
neurons per population and the length of runtime in ms for the simulation,
as well as the expected weight each spike will contain
n_neurons = 100
run_time = 8000
weight_to_spike = 2.0
neural parameters of the ifcur model used to respond to injected spikes.
(cell params for a synfire chain)
cell params_lif = {'cm': ©.25, 'i_offset': 0.0, 'tau_m': 20.0, 'tau_refrac': 2.0,
'tau_syn_E': 5.0, 'tau_syn_ I': 5.0, 'v_reset': -70.0, 'v_rest':
-65.0,
'v_thresh': -50.0}
create synfire populations (if cur exp)
pop_forward = Frontend.Population(n_neurons, Frontend.IF_curr_exp,
cell params_lif, label='pop_forward')
pop_backward = Frontend.Population(n_neurons, Frontend.IF_curr_exp,
cell params_lif, label='pop_backward"')
create equiv of parrot populations for closed loop calculation
pop_forward_parrot = Frontend.Population(
n_neurons, Frontend.IF_curr_exp, cell params_lif, label='pop_forward_parrot')
pop_backward_parrot = Frontend.Population(
n_neurons, Frontend.IF_curr_exp, cell params_lif, label='pop_backward_parrot')
Create injection populations
injector_forward = Frontend.Population(
n_neurons, ExternalDevices.SpikeInjector, {"port": 19344},
label="spike_injector_forward')
Create a connection from the injector into the populations
Frontend.Projection(injector_forward, pop_forward,
Frontend.FromListConnector([0, 0, weight_ to_spike, 3]))
Frontend.Projection(injector_forward, pop_backward,
Frontend.FromListConnector([1, 99, weight_to_spike, 3]))
Add links to the parrot populations for closed loop calculations
Frontend.Projection(pop_forward, pop_forward_parrot,
Frontend.OneToOneConnector(weight_to_spike, 1))

24

Frontend.Projection(pop_backward, pop_backward_parrot,
Frontend.OneToOneConnector(weight_to_spike, 1))
Synfire chain connections where each neuron is connected to its next neuron
NOTE: there is no recurrent connection so that each chain stops once it
reaches the end
loop_forward = list()
loop_backward = list()
for i in range(®, n_neurons - 1):
loop_forward.append((i, (i + 1) % n_neurons, weight_to_spike, 3))
loop_backward.append(((i + 1) % n_neurons, i, weight_to_spike, 3))
Frontend.Projection(pop_forward, pop_forward,
Frontend.FromListConnector(loop_forward))
Frontend.Projection(pop_backward, pop_backward,
Frontend.FromListConnector(loop_backward))
record spikes from the synfire chains so that we can read off valid results
in a safe way afterwards, and verify the behavior
pop_forward.record()
pop_backward.record()
Activate the sending of live spikes
ExternalDevices.activate_live_output_for(
pop_forward, database_notify_host="localhost",
database_notify_port_num=19996, port=19234)
ExternalDevices.activate_live output_for(
pop_backward, database_notify_host="localhost",
database_notify_port_num=19994)
Activate the sending of spikes for the python reciever
ExternalDevices.activate_live output_for(
pop_forward, database_notify_host="localhost",
database_notify_port_num=19995, port=13333)
ExternalDevices.activate_live_output_for(
pop_backward, database_notify_host="localhost",
database_notify_port_num=19995, port=13333)
Create a condition to avoid overlapping prints
print_condition = Condition()
Create a sender of packets for the forward population
def send_input_forward(label, sender):
print "Sending forward spike for neuron 0"
sender.send_spike(label, 0)
Create a receiver of live spikes
def receive_spikes(label, time, neuron_ids):
for neuron_id in neuron_ids:
print_condition.acquire()
print "Received spike at time", time, "from", label,
print_condition.release()

-", neuron_id

if neuron_id == @ and label== "pop_backward_parrot":
live_spikes_connection.send_spike("pop_forward", 0)
elif neuron_id == 99 and label== "pop_forward_parrot":

live _spikes_connection.send_spike("pop_backward", 1)

25

Set up the live connection for sending spikes
live_spikes_connection = SpynnakerLiveSpikesConnection(
local_port=19996, send_labels=["spike_injector_forward"])
Set up the live connection for sending spikes
live_spikes_connection_receiver = SpynnakerLiveSpikesConnection(

receive_labels=["pop_forward_parrot"”, "pop_backward_parrot"], local_port=19995)

Set up callbacks to occur at the start of simulation
live_spikes_connection.add_start_callback("spike_injector_forward",
send_input_forward)

Set up callbacks to occur when spikes are received

live_spikes_connection_receiver.add_receive_callback(
"pop_forward_parrot", receive_spikes)

live_spikes_connection_receiver.add_receive_callback(
"pop_backward_parrot", receive_spikes)

Frontend.run(run_time)

Retrieve spikes from the synfire chain population
spikes_forward = pop_forward.getSpikes()
spikes_backward = pop_backward.getSpikes()
If there are spikes, plot using matplotlib
if len(spikes_forward) != @ or len(spikes_backward) != 0:
pylab.figure()
if len(spikes_forward) != 0:
pylab.plot([i[1] for i in spikes_forward],
[i[@] for i in spikes_forward], "b.")
if len(spikes_backward) != 0:
pylab.plot([i[1] for i in spikes_backward],
[i[@] for i in spikes_backward], "r.")
pylab.ylabel('neuron id")
pylab.xlabel('Time/ms")
pylab.title('spikes")
pylab.show()
else:
print "No spikes received"
Clear data structures on spiNNaker to leave the machine in a clean state for
future executions
Frontend.end()

Visualiser stuff

command line 1:

./vis -colour-map first_synfire

command line 2:
./vis -colour-map second synfire -hand_shake_ port 19994

26

colour_map (“first _synfire”): colour _map (“second synfire”):
pop_forward © (%] 255 pop_backward 0 255 0

Task 2.1: A simple synfire chain with a injected spike via c injector [EASY]
[Needs filling in]

Task 2.2: A simple synfire chain with live streaming via the c receiver
[EASY]

[Needs filling in]

Task 2.3: A simple synfire chain with live injection and live streaming via
the c support [Easy]

[Needs filling in]

Task 2.4: A simple synfire chain with live injection via c and live streaming
via the c visualiser [Medium]

[Needs filling in]

Task 2.5: 2 Synfire chains which set each other off using c injectors
[Medium]

[Needs filling in]

Task 2.6: 2 Synfire chains which set each other off using c injectors and live
retrieval with 2 visualiser instances [Hard]

[Needs filling in]

Task 3: (optional) Create some model which uses all interfaces [Very Hard]

[Needs filling in]

27

