
Lab manual
Synaptic plasticity on SpiNNaker with PyNN

1 – Introduction
This  portion  of  the  manual  introduces  the  methodology  to  instantiate  and
perform a spiking neural network simulation on SpiNNaker using PyNN.

2 – Installation of the plugin
The main software package to be used for this lab is sPyNNaker. However a few
models  are  additional  to  the  basic  package  and  require  the
sPyNNakerExtraModelsPlugin which can be installed using the command

sudo pip install sPyNNakerExtraModelsPlugin

for a system-wide installation, or for a different method (e.g. virtualenv), please
refer to sPyNNaker module installation instructions, adapting the commands to
the sPyNNakerExtraModelsPlugin module.

3 – Spike Timing-Dependent Plasticity (STDP)
This class of synaptic learning is induced by tight temporal correlation between
a pre-synaptic and a post-synaptic spike event. It is a temporally asymmetric
form of Hebbian learning, and it is believed to be at the basis of learning and
information storage in the human brain.

On the  basis  of  this  rule,  in  the  case where  a  pre-synaptic  spike  is  tightly
followed by a post-synaptic spike, then there is a causal relationship between
the  two  events,  and  the  synapse  which  carried  the  pre-synaptic  event  is
potentiated. 

On the other hand, in the case the post-synaptic spike is emitted shortly before
the post-synaptic spike is emitted, an anti-causal relation is present between
those  spikes,  and  the  synapse  which  carried  the  pre-synaptic  event  is
depressed.

This learning rule may be summarised with the help of  the following figure
[Sjöström and Gerstner (2010), Scholarpedia]:



The image highlights that the amount of potentiation or depression depends on
the  relative  timing  of  the  pre-  and  post-synaptic  spikes  using  the  double-
exponential-like function. If the time of the post-synaptic spike is centred on
the 0 of the function, then the pre-synaptic spike time highlights how much
potentiation/depression the synapse undergoes.

However,  the  function  is  not  univocal,  as  different  experiments  have
highlighted different behaviours depending on the conditions (e.g. [Graupner
and Brunel (2012), PNAS]). Other authors have also suggested a correlation
between triplets and quadruplets of pre- and post-synaptic spikes to trigger
adequately synaptic potentiation or depression.

4 – Plasticity in PyNN
In PyNN the synaptic plasticity can be instantiated using the SynapseDynamics
class.  This  class  identifies  two  main  types  of  dynamics:  slow  and  fast.
SpiNNaker only implements slow STDP rules, which in PyNN are identified by
the STDPMechanism class.

The constructor for the SynapseDynamics class is:

Illustration 1: Description of the STDP learning rule



SynapseDynamics(fast, slow)

Where each of the parameter is optional, and therefore it may describe either a
fast  rule  (short-term  plasticity  –  STP),  slow  rule  (spike  timing-dependent
plasticity – STDP) or both.

As described earlier, the STDP rule depends on the relative timing between pre-
and post-synaptic spikes, and the final synaptic weight depends on the weight
before the rule is  applied.  These dependencies actually reflect the way the
class STDPMechanism is instantiated in PyNN:

STDPMechanism(timing_dependence, weight_dependence,              

              voltage_dependence)

PyNN also allows for a voltage dependence, however, this is not currently used
in any of the rules implemented on SpiNNaker, therefore will not be included in
later descriptions).

Each of these dependencies is optional, so that any combination of them can
be used by learning rules. If we consider the general STDP rule, each portion of
the rule can be specified as:

timing_dependence = SpikePairRule(tau_plus, tau_minus)

The two parameters of  this class identify the exponential decay rate of the
STDP function, as described in figure 1 earlier in this manual.

The second of these dependencies is on weight, as the final synaptic weight
depends on the weight of the synapse before the learning rule is applied. This
dependency  is  specified  based  on  an  additive  or  a  multiplicative  weight
dependence through two different classes, as specified below:

weight_rule = AdditiveWeightDependence(                           

                                    w_min, w_max, A_plus, A_minus)

weight_rule = MultiplicativeWeightDependence(                     

                                    w_min, w_max, A_plus, A_minus)

The parameters of these class can be described using the two figures below,
where  the  vertical  axis  represents  the  synaptic  weight  evolution,  and  the
horizontal axis represents time:



W_min  and  W_max  always  represent  saturation  values,  which  the  synaptic
weight cannot exceed.

Combining all these class instantiations in a simple example script to define a
learning rule:

time_rule = SpikePairRule(tau_plus=1, tau_minus=1)

weight_rule = AdditiveWeightDependence(                           

                      w_min=0.0, w_max=2, A_plus=0.5, A_minus=0.5)

stdp_model = STDPMechanism(                                       

   timing_dependence = time_rule, weight_dependence = weight_rule)

syn_dyn = SynapseDynamics(slow = stdp_model)

proj = Projection(                                                

  pop_src, pop_dst, p.AllToAllConnector(weights, delays), syn_dyn)

The  last  command  instantiates  a  projection  between  a  source  population
(pop_src) and a destination population (pop_dst).

It is possible to retrieve synaptic parameters (weights and delays) at the end of
a simulation, using standard PyNN API function calls:

weights = proj.getWeights([format='list' | 'array'])

delays = proj.getDelays([format='list' | 'array'])

The parameter “format” in this function call is optional, and it identifies the

Illustration 2: Additive weight dependence 
parameters

Illustration 3: Multiplicative weight 
dependence parameters



format of  the weight  or  delay structure that  is  returned.  Weights  or  delays
returned as “list” identify each single active synapse, but not pre- and post-
synaptic  neuron  IDs.  This  may  be  useful  to  process  weights  or  delays
considering only active synapses, rather than all the possible combinations. For
specific analysis,  in which pre- and post-synaptic neuron ID is  required,  the
second  format,  “array”,  specifies  that  weights  and  delays  are  returned  as
matrix,  where  each  row  identifies  a  pre-synaptic  neuron  and  each  column
identifies a post-synaptic neuron. In case there is no synapse for specific pre-
and post-synaptic  neuron combination(s),  a value of  NaN is  returned in  the
appropriate matrix location(s).

5 – Tasks with synaptic plasticity
In the following example, often a synapse is required to have enough weight to
make the post-synaptic neuron fire exactly once.

To help the development of such condition, an example of such condition is
described  here.  Using  an  LIF  neuron  (IF_curr_exp) with  the  following
parameters requires a synaptic weight of 2.0 to generate an output spike for
each incoming spike:

cell_params_lif = {'cm'        : 0.25, # nF
                   'i_offset'  : 0.0,
                   'tau_m'     : 20.0,
                   'tau_refrac': 2.0,
                   'tau_syn_E' : 5.0,
                   'tau_syn_I' : 5.0,
                   'v_reset'   : ­70.0,
                   'v_rest'    : ­65.0,
                   'v_thresh'  : ­50.0
                   }

Other combinations of parameters and synaptic weights are possible, and can
be easily tested by each participant.

Task 1 – Simple supervised learning [Easy]

Write a network with two LIF neurons connected with a plastic synapse with
initial weight 0. A third SpikeSourceArray neuron excites the first LIF neuron
which spikes. A fourth SpikeSourceArray neuron excites the second LIF neuron
which  spikes  (see  image  below).  This  last  neuron  is  called  the  “teaching
neuron”, and has a synaptic weight so high that the post-synaptic neuron fires
exactly  once for  every incoming spike.  If  the SpikeSourceArray neurons are
timed correctly, the plastic synapse should show potentiation.



If the network is described in such way that neuron LIF 1 spikes, neuron LIF 2
receives the spike and then fires, the synapse between LIF 1 and LIF 2 should
result potentiated. This can be tested checking that LIF 2 is able to fire as effect
of excitation coming form the LIF 1 neuron. Synaptic weights can be retrieved
and displayed to highlight modification during the simulation.

Task 2 – Simple supervised learning [Easy]

In the network described in task modify the initial conditions so that the initial
weight of the synapse is relatively high, but lower than the weight required by
LIF 2 to fire. Then the timing of the spikes needs to be changed in such a wat
that neuron LIF 2 fires and after receives a spike from neuron LIF 1. At the end
of the simulation this task will show depression of the plastic synapse between
LIF 1 and LIF 2.

Task 3 – Supervised learning with multiple neurons [Moderate]

This  task  is  a  combination  of  the  two previous  tasks  to  show in  the  same
network  both  synaptic  potentiation  and  depression  following  supervised
learning.  Define  a  set  of  10  SpikeSourceArray  input  neurons  which  project
spikes to a population of 10 LIF neurons with a synaptic weight enough high so
that each incoming spike generates an output spike. The 10 LIF neurons project
spikes to a single output LIF neuron with plastic synapses and initial weights se
to half the weight required to spike. The output LIF neuron has also a teaching
neuron attached to it.  The network should look like the one in the diagram
below:



The spike times for the input and teaching neurons can be set in such a way
that the the input neurons fire in a sequence, and the teaching neuron fires at
the same time as the middle neuron of the input layer. With the appropriate
learning  parameters,  the  synaptic  weight  for  the  early-spiking  neurons  is
getting depressed, while the synaptic weights of the neurons after the middle
one are getting potentiated. The final weights should reflect the shape of the
STDP curve.
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