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Running PyNN Simulations on SpiNNaker

Introduction

This manual will introduce you to the basics of using the PyNN neural network language on SpiNNaker
neuromorphic hardware.

Installation
The PyNN toolchain for SpiNNaker (sPyNNaker), can be installed by following the instructions available
from here:

http://spinnakermanchester.github.io/2015.005.Arbitrary/PyNNOnNnSpinnakerlnstall.html

Matplotlib is marked as optional, but you will also need to install this dependency to complete some of the
forthcoming exercises.

Spiking Neural Networks

Biological neurons have been observed to produce sudden and short increases in voltage, commonly
referred to as spikes. The spike causes a charge to be transferred across the synapse between neurons.
The charge from all the presynaptic neurons connected to a postsynaptic neuron builds up, until that
neuron releases the charge itself in the form of a spike. The spike travels down the axon of the neuron
which then arrives after some delay at the synapses of that neuron, causing charge to be passed forward to
the next neuron, where the process repeats.

1) Neurons “spike”, causing charge to be passed
across the synapses between the neurons

3) The spike travels down the
axon of the neuron

2) When enough charge has been passed to
the post-synaptic neuron, it causes it to spike

Artificial spiking neural networks tend to model the membrane voltage of the neuron in response to the
incoming charge over time. The voltage is described using a differential equation over time, and the
solution to this equation is usually computed at fixed time-steps within the simulation. In addition to this, the
charge or current flowing across the synapse can also be modelled over time, depending on the model in
use.



The charge can result in either an excitatory response, in which the membrane voltage of the postsynaptic
neuron increases or an inhibitory response, in which the membrane voltage of the postsynaptic neuron
decreases as a result of the spike.

The PyNN Neural Network Description Language

PyNN is a language for building neural network models. PyNN models can then be run on a number of
simulators without modification (or with only minor modifications), including SpiNNaker. The basic steps of
building a PyNN network are as follows:

Setup the simulator

Create the neural populations

Create the projections between the populations
Setup data recording

Run the simulation

Retrieve and process the recorded data
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An example of this is as follows:

import pyNN.spiNNaker as p

p.setup(timestep=1.0)

pop_1 = p.Population(l, p.IF_curr_exp, {}, label="pop_1")

input = p.Population(l, p.SpikeSourceArray,

{"'spike_times': [[©]]}, label="input")

input_proj = p.Projection(input, pop_1, p.OneToOneConnector(
weights=5.0, delays=1), target="excitatory")

pop_1.record()

pop_1.record_v()

p.run(10)

import pylab

time = [i[1] for i in v if i[@] == @]
membrane_voltage = [i[2] for i in v if i[@] == @]
pylab.plot(time, membrane_voltage)
pylab.xlabel("Time (ms)")

pylab.ylabel("Membrane Voltage")

pylab.axis([@, 10, -75, -45])

pylab.show()

spike_time = [i[1] for i in spikes]
spike_id = [i[@] for i in spikes]
pylab.plot(spike_time, spike_id, ".")
pylab.xlabel("Time (ms)")
pylab.ylabel("Neuron ID")
pylab.axis([e, 10, -1, 1])
pylab.show()

This example runs using a 1.0ms timestep. It creates a single input source (A SpikeSourceArray) sending
a single spike at time 0, connected to a single neuron (with model IF _curr_exp). The connection is
weighted, so that a spike in the presynaptic neuron sends a current of 5 nanoamps (nA) to the excitatory
synapse of the postsynaptic neuron, with a delay of 1 millisecond. The spikes and the membrane voltage
are recorded, and the simulation is then run for 10 milliseconds. Graphs are then created of the membrane
voltage and the spikes produced.

PyNN provides a number of standard neuron models. One of the most basic of these is known as the
Leaky Integrate and Fire (LIF) model, and this is used above (IF_curr_exp). This models the neuron as a
resistor and capacitor in parallel; as charge is received, this builds up in the capacitor, but then leaks out
through the resistor. In addition, a threshold voltage is defined; if the voltage reaches this value, a spike is
produced. For a time after this, known as the refractory period, the neuron is not allowed to spike again.



Once this period has passed, the neuron resumes operation as before. Additionally, the synapses are
modelled using an exponential decay of the received current input (5 nA in the above example); the weight
of the current is added over a number of timesteps, with the current decaying exponentially between each.
A longer decay rate will result in more charge being added overall per spike that crosses the synapse.

In the above example, the default parameters of the IF_curr_exp are used. These are:

'cm': 1.0,
"tau_m': 20.0,
"tau_refrac': 2.0,
'v_reset': -70.0,
'v_rest': -65.0,
'v_thresh': -50.0,
"tau_syn_E': 5.0,
"tau_syn_I': 5.0,
'i_offset': 0.0, # A base input current to add each timestep

The capacitance of the LIF neuron in nano-Farads

The time-constant of the RC circuit, in milliseconds

The refractory period, in milliseconds

The voltage to set the neuron at immediately after a spike
The ambient rest voltage of the neuron

The threshold voltage at which the neuron will spike

The excitatory input current decay time-constant

The inhibitory input current decay time-constant

#
#
#
#
#
#
#
#
PyNN supports both current-based models and conductance-based models. In conductance models, the
input is measured in microSiemens, and the effect on the membrane voltage also varies with the current
value of the membrane voltage; the higher the membrane voltage, the more input is required to cause a
spike. This is modelled as the reversal potential of the synapse; when the membrane potential equals the

reversal potential, no current will flow across the synapse. A conductance-based version of the LIF model
is provided, which, in addition to the above parameters, also supports the following:

‘e rev_E': 0., # The reversal potential of the exponential synapse
‘e rev_I': -80.0 # The reversal potential of the inhibitory synapse

The initial value of the state variables of the neural model can also be set (such as the membrane voltage).
This is done via the initialize function of the population, which takes the name of the state variable as a
string (e.g. “v” for the membrane voltage), and the value to be assigned e.g. to set the voltage to -65.0mV:

pop.initialize(“v”, -65.0)

In PyNN, the neurons are declared in terms of a population of a number of neurons with similar properties.
The projection between populations therefore has a connector, which describes the connectivity between
the individual neurons in the populations. Some common connectors include:

e OneToOneConnector - each presynaptic neuron connects to one postsynaptic neuron (there should
be the same number of neurons in each population) with weight weights and delay delays.

e AllToAllConnector - all presynaptic neurons connect to all postsynaptic neurons with weight weights
and delay delays.

e FixedProbabilityConnector - each presynaptic neuron connects to each postsynaptic neuron with a
given fixed probability p_connect, with weight weights and delay delays.

e FromListConnector - the exact connectivity is described by conn list, which is a list of
(pre_synaptic_neuron_id, post_synaptic_neuron_id, weight, delay)

Commonly, random weights and/or delays are used. To specify this, the value of the weights or delays of
the connector are set to a RandombDistribution (note that the FromListConnector requires the specification
of explicit weights and delays, and so does not support this; instead the next() method of the random
distribution can be called to give random values for this connector). This supports several parameters via
the parameters argument, depending on the value of the distribution argument which identifies the
distribution type. The supported distributions include a ‘uniform’ distribution, with parameters of [minimum
value, maximum value]; and a ‘normal’ distribution with parameters of [mean, standard deviation]. A
boundary can also be specified as [minimum, maximum] to constrain the values generated (where an
unbounded end can make use of -numpy.inf or numpy.inf); this is often useful for keeping the delays within



range allowed by the simulator. The RandomDistribution can also be used when specifying neural
parameters, or when initialising state variables.

In addition to neuron models, the PyNN language also supports some utility models, which can be used to
simulate inputs into the network with defined characteristics. These include:

e SpikeSourceArray - this sends spikes at predetermined intervals defined by spike_times. In
general, PyNN forces each of the neurons in the population to spike at the same time, and so
spike_times is an array of times, but sPyNNaker also allows spike times to be an array of arrays,
each defining the the times at which each neuron should spike e.g. spike_times=[[0], [1]] means that
the first neuron will spike at Oms and the second at 1ms.

e SpikeSourcePoisson - this sends spikes at random times with a mean rate of rate spikes per
second, starting at time start (0.0ms by default) for a duration of duration milliseconds (the whole
simulation by default).

Using PyNN with SpiNNaker
In addition to the above steps, sPyNNaker requires the additional step of configuration via the

.spynnaker.cfg file to indicate which physical SpiNNaker machine is to be used. This file is located in your
home directory, and the following properties must be configured:

[Machine]
machineName = None
version = None

The machineName refers to the host or IP address of your SpiNNaker board. For a 4-chip board that you
have directly connected to your machine, this is usually (but not always) set to 192.168.240.253, and the
version is set to 3, indicating a “SpiNN-3" board (often written on the board itself). Most 48-chip boards are
given the IP address of 192.168.240.1 with a version of 5.

The range of delays allowed when using sPyNNaker depends upon the timestep of the simulation. The
range is 1 to 144 timesteps, so at 1ms timesteps, the range is 1.0ms to 144.0ms, and at 0.1ms, the range is
0.1ms to 14.4ms.

The default number of neurons that can be simulated on each core is 256; larger populations are split up
into 256-neuron chunks automatically by the software. Note though that the cores are also used for other
things, such as input sources, and delay extensions (which are used when any delay is more than 16
timesteps), reducing the number of cores available for neurons.

Task 1.1: A simple neural network [Easy]

This task will create a very simple network from scratch, using some of the basic features of PyNN and
SpiNNaker.

Write a network with a 1.0ms timestep, consisting of two input source neurons connected to two
current-based LIF neurons with default parameters, on a one-to-one basis, with a weight of 5.0 nA and a
delay of 2ms. Have the first input neuron spike at time 0.0ms and the second spike at time 1.0ms. Run the
simulation for 10 milliseconds. Record and plot the spikes received against time.

Task 1.2: Changing parameters [Easy]

This task will look at the parameters of the neurons and how changing the parameters will result in different
network behaviour.

Using your previous script, set tau_syn_E to 1.0 in the IF_curr_exp neurons. Record the membrane
voltage in addition to the spikes. Print the membrane voltage out after the simulation (you can plot it if you



prefer, but you should note that the array returned from get_v() contains a list of [neuron_id, time, voltage]
and so you will need to separate out the voltages of the individual neurons).

1. Did any of the neurons spike?
2. What was the peak membrane voltage of any of the neurons, compared to the default threshold
voltage of -50mV?

Try increasing the weight of the connection and see what effect this has on the spikes and membrane
voltage.

Task 2.1: Synfire Chain [Moderate]

This task will create a network known as a Synfire chain, where a neuron or set of neurons spike and cause
activity in an ongoing chain of neurons or populations, which then repeats.

Setup the simulation to use 1ms timesteps.

Create an input population of 1 source spiking at 0.0ms.

Create a synfire population with 100 neurons.

With a FromListConnector, connect the input population to the first neuron of the synfire population,

with a weight of 5nA and a delay of 1ms.

5. Using another FromListConnector, connect each neuron in the synfire population to the next
neuron, with a weight of 5nA and a delay of 5ms.

6. Connect the last neuron in the synfire population to the first.

7. Record the spikes produced from the synfire populations.

8. Run the simulation for 2 seconds, and then retrieve and plot the spikes from the synfire population.

Task 2.2: Random Values [Easy]

Update the network above so that the delays in the connection between the synfire population and itself are
generated from a uniform random distribution with values between 1.0 and 15.0. Update the run time to be
5 seconds.

>N

Task 3.1: Balanced Random Cortex-like Network [Hard]

This task will create a network that this similar to part of the Cortex in the brain. This will take some input
from outside of the network, representing other surrounding neurons in the form of poisson spike sources.
These will then feed into an excitatory and an inhibitory network set up in a balanced random network. This
will use distributions of weights and delays as would occur in the brain.

1. Set up the simulation to use 0.1ms timesteps.

2. Choose the number of neurons to be simulated in the network.

3. Create an excitatory population with 80% of the neurons and an inhibitory population with 20% of
the neurons.

4. Create excitatory poisson stimulation population with 80% of the neurons and an inhibitory poisson
stimulation population with 20% of the neurons, both with a rate of 1000Hz.

5. Create a one-to-one excitatory connection from the excitatory poisson stimulation population to the
excitatory population with a weight of 0.1nA and a delay of 1.0ms.

6. Create a similar excitatory connection from the inhibitory poisson stimulation population to the
inhibitory population.

7. Create an excitatory connection from the excitatory population to the inhibitory population with a
fixed probability of connection of 0.1, and using a normal distribution of weights with a mean of 0.1
and standard deviation of 0.1 (remember to add a boundary to make the weights positive) and a
normal distribution of delays with a mean of 1.5 and standard deviation of 0.75 (remember to add a
boundary to keep the delays within the allowed range on SpiNNaker).

8. Create a similar connection between the excitatory population and itself.



10.
11.

12.
13.
14.

Create an inhibitory connection from the inhibitory population to the excitatory population with a
fixed probability of connection of 0.1, and using a normal distribution of weights with a mean of -0.4
and standard deviation of 0.1 (remember to add a boundary to make the weights negative) and a
normal distribution of delays with a mean of 0.75 and standard deviation of 0.375 (remember to add
a boundary to keep the delays within the allowed range on SpiNNaker).

Create a similar connection between the inhibitory population and itself.

Initialize the membrane voltages of the excitatory and inhibitory populations to a uniform random
number between -65.0 and -55.0.

Record the spikes from the excitatory population.

Run the simulation for 1 or more seconds.

Retrieve and plot the spikes.

The graph should show what is known as Asynchronous Irregular spiking activity - this means that the
neurons in the population don’t spike very often and when they do, it is not at the same time as other
neurons in the population.

Task

3.2: Network Behavior [Moderate]

Note in the above network that the weight of the inputs is the same as the mean weight of the excitatory
connections (0.1nA) and that the mean weight of the inhibitory connections is 4 times this value (-0.4nA).
Try setting the excitatory connection mean weight and input weights to 0.11nA and the inhibitory mean

weight

to -0.44nA, and see how this affects the behavior. What other behavior can you get out of the

network by adjusting the weights?



5th SpiNNaker
Workshop

Day 2

September
8th 2015

14:00 Lab time (with coffee at 15:00)

Manchester, UK



Simple Data Input Output and Visualisation on
Spinnaker Lab Manual

1. Introduction

This manual will introduce you to the basics of live retrieval and injection of data (in the form of
spikes) for PyNN scripts that are running on SpiNNaker neuromorphic hardware.

2. Installation

The PyNN 0.7 toolchain for SpiNNaker (sPyNNaker 2015.005), can be installed by following the
instructions available from here:
http://spinnakermanchester.github.io/2015.005.Arbitrary/PyNNOnSpinnakerlnstall.html

Matplotlib is marked as optional, but you will also need to install this dependency to complete
some of the forthcoming exercises.

The sPyNNakerExternalDevicesPlugin 2015.009 can be installed by following the instructions
available from here:
http://spinnakermanchester.github.io/2015.005.Arbitrary/PyNNOnSpinnakerInstall.html

The Visualiser 2015.002 module can be downloaded from here:
https://github.com/SpiNNakerManchester/Visualiser
and can be compiled by running the command make -f Makefile.<os>

To compile the Visualiser and the ¢ code that can support the live injection and retrieval
functionality, you will need Gee and SQL and OpenGL libraries for c. The instructions to
download and install these can be found here:

(link to be filled in)

To refer on how to configure your sPyNNaker installation to use your SpiNNaker machine,
please refer to “Using PyNN with SpiNNaker” section of the “Running PyNN Simulations on
SpiNNaker” lab manual.



3. PyNN Support

This section discusses the standard support from |PyNN related to spike injection and retrieval.

3.1 Output

The standard support for data output for a platform such as SpiNNaker, through the PyNN
language, is to use the methods record(), record_v(), for declaring the need to record, and
get_Spikes(), get_v(), for retrieval of the specific data.

The issue with the get functions are that they are called after run() completes, and therefore are
no longer live. In the 2015.005 implementation of sPyNNaker, all of the data declared to be
recorded via record(), record_v(), is stored on the SDRAM of the chips that the corresponding
populations were placed on. This means that there is a finite amount of recorded data that can
be stored before recordings fail.

By writing the data to SDRAM, the data is stored locally and therefore is guaranteed to be read
at some point in the future. This memory requirement for recording is considered during the
partitioning process, but if the memory that your recording requires, is more than the machines
total available space left after other essential memory requirements, then your model will not be
able to be ran at all.

Its worth noting that future releases of the sPyNNaker back end should be able to remove this
constraint, but it currently is not supported.

3.2 Input

The standard support for data input for a platform such as SpiNNaker, through the PyNN
language, is to use the neural models SpikeSourceArray and SpikeSourcePoisson. The
issue with both of these models is that they are either random rate based (the
spikeSourcePoisson) or are a playback mode (spikeSourceArray).

In sPyNNaker 2015.005, the playback mode of the SpikeSourceArray does not have the same
memory constraint as the record functionality, but by removing the SDRAM limit, it is no longer
able to be recorded via the record() functionality. Future releases of the sPyNNaker back end
should be able to remove this constraint, but it currently is not supported.



4. External Device Plugin Support

As stated previously, the issue with this is that PyNN 0.7 expects its run() method to block for
the entire time of the run, and therefore it is impossible to set up a real time extraction or
retrieval of data via this FrontEnd (sPyNNaker), and has no current support for live retrieval or
live injection.

Its worth noting that future releases of PyNN (0.9) may use the MUSIC interface to support live
injection and retrieval of data. But the current software version of sPyNNaker (2015.005) only
supports PyNN 0.7 and therefore there is no built in support.

To compensate for this, the sPyNNakerExternalDevicesPlugin module was created that
contains support for live injection and retrieval of data from a running PyNN 0.7 simulation
during the blocking of run().

4.1 Live Output

To activate live retrieval from a given population, the command
activate_live_output_for(<Population_object>) is used. This informs the sPyNNaker backend
to add the supporting utility model (Live packet gatherer) into the graph object (which
sPyNNaker uses to represent your PyNN neural models) and an edge between your population
and the associate LPG for your ports.

Other parameters for the activate_live_output_for() function are defined below:

Parameter Description

port The port number to receive packets from the SpiNNaker
machine.

database notify _host The hostname for the database notification protocol (described
below)

database notify_port_ num [ The port number for the database notification protocol
(described below)

database_ack_port_num The port number that the database notification protocol will
listen to, to receive the ack packet.




4.2 Live Injection

To activate the live injection functionality, you need to instantiate a new neural model (called a
Spikelnjector) which is located in spynnaker_external_devices_plugin.pyNN.Spikelnjector

The Spikelnjector is considered as any other neural model in PyNN, so you can build a
population with a number of neurons etc in the normal way, as shown below:

injector_forward = Frontend.Population(
5, ExternalDevices.SpikeInjector, [‘port’: 12367],
label="spike_injector_forward')

The key parameters of the Spikelnjector are as follows:

Parameter Description

port The port that packets are going to be injected
in from.

virtual_key The base routing key that the spike injector is
going to use for routing. This parameter is
optional.

4.3 Python Live reciever

The following block of code creates a live packet receiver:
# declare python code when received spikes for a timer tick
def receive_spikes(label, time, neuron_ids):
for neuron_id in neuron_ids:

print “Received spike at time {} from {}-{}”.format(

1

2

3

4

5 time, label, neuron_id)
6 # import python live spike connection

7 from spynnaker_external_devices_plugin.pyNN.connections.\

8 spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection
9 # set up python live spike connection

10 live_spikes_connection = SpynnakerLiveSpikesConnection(

11 receive_labels=[“receiver”], local_port=19995, send_labels=None)

12 # register python receiver with live spike connection



13 live_spikes_connection.add_receive callback(“receiver”, receive_spikes)

14 p.run(5000)

5.

Lines 1 to 5 creates a function that takes as its input all the neuron ids that fired at a
specific time, from the population with the given label. From here, it generates a print
message for each neuron.

Lines 6 to 8 imports the python support for live injection/live retrieval. The
SpynnakerLiveSpikesConnection handles both live retrieval and live injection.

Lines 9 to 11 instantiates the SpynnakerLiveSpikesConnection, and informs the
connection that it will receive data under the label “receiver” on port 19996, but will not
be injecting data at all.

Lines 12 to 13 informs the connection that for any packets being received, needs to be
forwarded to the function receive_spikes defined on lines 1 to 5.

line 14 executes the model on SpiNNaker.

4.4 Python Live injector

The following block of code creates a live packet injector:

# create python injector

def send_spike(label, sender):

sender.send_spike(label, 0, send_full keys=True)

# import python injector connection

spynnaker_live_spikes_connection import SpynnakerlLiveSpikesConnection

# set up python injector connection

live_spikes_connection = SpynnakerLiveSpikesConnection(

1
2
3
4
5 from spynnaker_external_devices_plugin.pyNN.connections.\
6
7
8
9

receive labels=None, local port=19996, send_labels=[“spike_sender”])

10 # register python injector with injector connection

11 live_spikes_connection.add_start_callback(“spike_sender”, send_spike)

12 p.run(5000)

Lines 1 to 3 creates a little function that will inject a spike from neuron 0 from the spike
injector.

Lines 4 to 6 imports the python support for live injection/live retrieval. The
SpynnakerLiveSpikesConnection handles both live retrieval and live injection.

Lines 7 to 9 instantiates the SpynnakerLiveSpikesConnection, and informs the
connection that it will not receive any data, but will inject data via the label spike_sender
on port 19996.

Lines 10 to 11 informs the connection that when the simulation starts, to call the
send_spike function defined on lines 1 to 3.



5. Line 12 executes the model on SpiNNaker.

5. Database Notification protocol

The support built behind all this software is a simple notification protocol on a database that’'s
written during compilation time. The notification protocol is illustrated below:

SpiNNaker

* 5. Sends executables,
starts simulation

-~

sPyNNaker front end

s1ayoed

1. Writes Database
L

Database

3. Reads |Database

2. send EIEIO command message

saying database ready to read

Visualiser

L 4

6. Sends EIEIO Data packets which

contain live spikes

aneoal 0] Apeal sasiensia Buifes
sbessaw puswwos OQ|J|3J pUasS ¥

The steps within the notification protocol are defined below:

1. The sPyNNaker front end writes a database that contains all the data objects generated
from sPyNNaker during the compilation process.

2. The notification protocol sends a EIEIO command message to all the devices which are
listening to hear that the database has been written. This functionality is hidden behind
the Visualiser and SpynnakerLiveSpikesConnection software interfaces.

3. These devices then read the database for whatever data they require. These are often to
deduce a mapping between received routing keys and neuron ids for the transmitted
populations.

4. Once these devices have read the database, they notify the sPyNNaker front end that

they are ready for the simulation to start.
Once all devices have notified the sPyNNaker front end, the simulation begins.
6. The sPyNNaker front end also notifies the devices when the simulation has begun.

o



7. The SpiNNaker machine transmits/ receives packets to/from external injections and
retrieval devices.

6. Caveats

To use the live injection and retrieval functionality does not come for free. The functionality only
supports the use of the ethernet connection, which means that there is a limited bandwidth of a
maximum of approx 30 MB/s. This bandwidth is shared between both types of functionality, as

well as system support for certain types of neural models, such as the SpikeSourceArray.

Furthermore, this functionality depends upon the lossy communication fabric of the SpiNNaker
machine. This means that even though a neuron fires a spike you may not see it via the live
retrieval functionality. If you need to ensure you receive every packet that has been transmitted,
we recommend using the standard PyNN functionality.

By using this functionality, you are making your script non portable between different simulators.
The activate_live_output_for(<pop_object>) and Spikelnjector models are not supported by
other PyNN backends (such as Nest, Brian etc).

Finally, by using this functionality, you lose a number of SpiNNaker cores for this functionality.

Therefore a model which would just fit onto your SpiNNaker machine before would likely fail to
fit on the machine when these functionalities are added in.

7. Visualiser

The visualiser module contains a ¢ based raster plot which is designed to integrate with the
notification protocol described previously.

To compile the visualiser code, go into the visualiser module. Then execute:

make -f Makefile.<os>

The visualiser ¢ code contains 4 different parameters. These are defined below:



Parameter

Description

-colour_map

Path to a file containing the population labels to receive, and
their associated colours

-hand_shake port

optional port which the visualiser will listen to for database hand
shaking

-database

optional file path to where the database is located, if needed for
manual configuration

-remote_host

optional remote host, which will allow port triggering

7.1 colour_map file format

The colour_map file consists of a collection of lines, where each line contains 4 values
separated by tabs. These values, in order are:

1. The population label.
2. The red colour value.

3. The green colour value.

4. The blue colour value.

An example file is shown below:

“spike_forward

spike_backwards

0 255

255 0




8. Tasks

The following tasks when completed will have hopefully taught you how to use the live injection
and live retrieval functionality supported by the sPyNNakerExternalDevicesPlugin 2015.009
module.

We have assumed here that you were able to complete the Running PyNN Simulations on
SpiNNaker tasks. We will be building upon the result from task 2.1 Synfire Chain [Moderate]
located here:

[insert link here]

Please go back to this lab manual and complete this task before attempting these if you havent
already.

Task 1.1: A simple synfire chain with a injected spike via python injector
[EASY]

This task will create a synfire chain which is stimulated from a injector spike generated on host
and then injected into the simulation.

Remove the spike source array population.

Replace it with the Spikelnjector population.

Build a python injector function.

Import and instantiate an SpynnakerLiveSpikesConnection connection.

link a start callback to the python injector function.

akrwd-~

Task 1.2: A simple synfire chain with live streaming via the python receiver
[EASY]

Go back to the original code produced by task 2.1 Synfire Chain [Moderate] from Running
PyNN Simulations on SpiNNaker, and update it to stream the spikes from the If _cur_exp
population.

1. remember to call the activate_live_output_for(<pop_object>)

2. Build a python receiver function that prints out the neuron ids for the population.

3. Import and instantiate an SpynnakerLiveSpikesConnection connection.

4. link a receive callback to the python receiver function.



Task 1.3: A simple synfire chain with live injection and live streaming via
the python support [Easy]

Take the code from the previous 2 tasks and integrate them together to produce one that injects
and streams the packets back to the terminal.
1. Remember that you can use both the recieve_labels and send_labels of the same
SpynnakerLiveSpikesConnection.

Task 1.4: A simple synfire chain with live injection via python and live
streaming via the c visualiser [Medium]

Take the code from the previous task and remove the python receiver code (or don't if you feel
confident) and activate the visualizer to take the packets the original python receiver code
processed.

1. Remember to compile the visualiser

2. Remember to generate the correct colour_map

3. Remember to remove the python receiver code (or don't if you're feeling confident).

Task 1.5: 2 Synfire chains which set each other off using python injectors
whilst still using the c visualiser [Very Hard]

Take the code from the previous task and modify it so that there are two synfire populations

which are tied to one injector population. Modify the receive function so that it contains some
logic that fires the second neuron when the last neuron in the first synfire fires, and does the
same when the last neuron for the second synfire sets off some neuron id of the first synfire

chain.

1. you will need to change the number of neurons the spike injector contains.

2. You will need to change the connector from the spike injector and each synfire
population.

3. You will need to modify the receive function, and add a global variable for the
SpynnakerLiveSpikesConnection.

4. You'll need at least 2 SpynnakerLiveSpikesConnection and multiple
activate_live_output_for(<pop_objevt>) for each population.

5. Remember that each population can only be tied to one LivePacketGatherer, so to
visualise and do closed loop systems require more populations.

6. You will need to modify the ¢ visualiser colour_map to take into account the new synfire
population.
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Task 1.6: 2 Synfire chains which set each other off using python injectors
and live retrieval with 2 visualiser instances [Very Hard/Easy]

This task takes everything you’ve learnt so far and raises the level. Using the code from the
previous task. Create two visualiser instances, each of which only processes one synfire
population.

1. Remember all the lessons from the previous tasks.

2. Remember to change the ports on the activate_live_output_for(<pop_object>)
accordingly.

3. You will need to create at least 2 SpynnakerLiveSpikesConnection’s. But it might be
worth starting with 3 and reducing it to two once you've got it working.

4. Remember the different colour_maps

Congratulations. Assuming you’ve successfully completed all the tasks, you should now know

how to inject and retrieve packets from a running PyNN script using functionalities supported by

the sPyNNakerExternalDevicesPlugin module.

Now if you want to learn how things work under the hood of the
SpynnakerLiveSpikesConnection and the activate_live_output_for(<pop_object>), please feel
free to try the advanced 10 lab manual.
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Creating New Neuron Models for SpiNNaker

Introduction

This manual will guide you in the creation of new neuron models to be run on SpiNNaker. This includes the
C code that will be compiled to run on the SpiNNaker hardware, as well as the Python code which interacts
with the PyNN script to configure the model.

Installation

In order to create new models, you will need to ensure that you have set up a development environment
suitable for compiling C code for SpiNNaker. This can be done by following the instructions here:

http://spinnakermanchester.qithub.io/2015.005.Arbitrary/PyNNONnSpiNNakerExtensions.html

Project Layout

The recommended layout for a new model project is shown below; this example shows a model called
“my_model”, with current-based exponential synapses. It is recommended that the C and Python code is

kept in the same project to help keep them synchronized.
4 & my_new_model
4 (= c_models
4 (= 5rc
4 [= peuron
4 (= builds
4 == my_model_curr_exp
& Makefile
=| Makefile.common
4 (= models
lgl neuron_model_my_model_curr_impl.c
[¢l neuron_model_my_model_curr_implh
= Makefile.commaon
& Makefile
4 (= examples
» [Bl my_example.py
4 f# python_models
4 8 model_binaries
] _init__.py
4 1 neural_models
B _init_py
> [B] my_model_curr_exp.py
- B _init_.py
- [B setup.py

This template structure can be downloaded from:
http://spinnakermanchester.qgithub.io/2015.005.Arbitrary/template new model.zip

C code header file
The C header file defines:

e The neuron data structure neuron_t. This includes the parameters and state for each neuron to be
executed on a core. This commonly includes the membrane voltage of the neuron, as well as an
offset input current.



e The global parameters data structure global neuron_params_t. This includes parameters that
are shared across all neurons within a population. This might include such things as the time step
of the simulation.

e A definition of a function input_t neuron_model convert_ input(input_t input). This can
be used to perform any scaling of input between the input buffers and the neuron model. This
allows the values in the input buffers to maintain a higher level of precision for computation, but then
returns the value to the expected scale for the input of the neuron. This is currently done for
conductance-based models, where input conductances are usually in fractions of micro-siemens; in
standard s16.15 fixed-point format, these fractional values waste a lot of the precision, since the top
16-bits will not be used. Multiplying every value by 1024 increases the resolution of these values,
but the neuron model expects the values to be in microsiemens; this function divides the input
values by 1024 when conductances are used (done using a right-shift by 10 for efficiency).

See neuron_model_my_model_curr_exp.h in the template for an example of a header file. Comments
show where the file should be updated to create your own model.

C code file

The C code file defines the functions that make up the interface of the neuron API. Note that pointer types
are automatically created for the data structures defined in the header as follows:

neuron_t * — neuron_pointer_t
global_neuron_params_t * — global_neuron_params_pointer_t

The neuron interface requires the following functions to be implemented:

@® void neuron_model_set_global neuron_params(
global_neuron_params_pointer_t params)

This function is used to set the global parameters after they have been read by the initialization
function. This would often be used to store the parameters in a static variable for later use.

@® state_t neuron_model get_membrane_voltage(neuron_pointer_t neuron)
This function should return the membrane voltage of the neuron from the given neuron structure.
This may simply return the value of a variable in the structure, or it might perform a more complex
calculation to obtain the membrane voltage. The value returned is used for the recording of the
membrane voltage in the simulation.

® void neuron_model print(restrict neuron_pointer_t neuron)
This function is only used when the neuron model is compiled in “debug” mode (see later). It should
use the “log_debug” function to print each of the state variables and parameters of the neuron that
might be useful in debugging.

@® bool neuron_model state_update(input_t exc_input, input_t inh_input,
input_t external_bias, neuron_pointer_t neuron)
This function takes the excitatory and inhibitory input; any external bias input (used in some
plasticity models); and a neuron data structure; and uses these to compute the new state of the
given neuron at this timestep. This function is where any differential equation solving should be
implemented. After the state update, the function should return whether the neuron is considered to
have spiked as a boolean (true if the neuron has spiked, false otherwise). Note that the input does



not specify current or conductance; no conversion of the weights are done before this function is
called, other than any scaling performed in neuron_model_convert_input.
See neuron_model_my_model_curr_exp.c in the template for an example of an implementation of the
neuron interface.

A number of other modules are available for use for performing mathematical functions as part of the
neuron state update. The spinn_common library provides a number of efficient fixed-point implementations
of common functions. This includes random.h, which provides random number generation, normal.h,
which provides normal distributions, exp . h, which provides an exp function and 1og.h which provides a log
function.

Makefiles

There are a number of Makefiles and Makefile.common files in the template. These have mostly been
configured for you. The Makefile.common files set up directory structures, and include the appropriate
Makefiles from the SpyNNaker module. The only Makefile that should need to be edited for your model is
the one in the build folder for your executable; in the template, this is:
c_models/src/neuron/builds/my_model curr_exp/Makefile

The Makefile builds the application that will run on SpiNNaker. This is made up of the neuron model that
you have created, as well as the rest of the common neuron implementation. This includes the synapse
dynamics that are supported by the build, as well as the synapse and spike processing code. The example
provided is for a build with support for static synapses only. The inclusion of plastic synapses is covered
elsewhere.

The important parts of this Makefile that need to be updated are:

@ MODEL_OBJS - This includes a list of object files to be produced; note that the path of the object file
is the same as the path of the C file, although the actual build process will push this into a build
folder. In addition to the object file of the C file described above, this also includes the synapse
dynamics type of the build (static in the template).

@ NEURON_MODEL_H - This points at the neuron model header file.

@ SYNAPSE_TYPE_H - This provides the synapse type for the build. The synapse type controls the
shaping of the synapses in response to the input weights. Within sPyNNaker, support so far
includes exponential synapses (with one excitatory and one inhibitory synapse per neuron which
decay exponentially with a configured time-constant) and dual-excitatory exponential synapses (with
2 separate excitatory synapses and one inhibitory synapse per neuron, decaying as per the
previous type).

Note that the combination of the NEURON_MODEL_H and SYNAPSE_TYPE_H will determine the overall model -
thus my _model curr_exp specifies the inclusion of neuron_model my model curr.h as the model and
synapse_type_exponential_impl.h as the synapse type.

Once the Makefile has been created, you can build the binary by simply typing:
make

As the build relies on header files that are not explicitly specified in the Makefile, some of the changes that
you make may require you to clean the build before building it, by running



make clean
Finally, you can also build the application in debug mode by typing:

make DEBUG=DEBUG
This will enable the log_debug statements in the code, which print out information to the iobuf buffers on
the SpiNNaker machine; to read this there is a simple application in the example folder that can read iobuf
buffers, which can be invoked as follows:

python iobuf.py <machine name> <app_name>
where <machine_name> is the hostname or IP address of the SpiNNaker board, and <app_name> is the
name of application (without the .aplx extension). This will retrieve the iobuf buffers for every instance of
the application that is found to be running.

Python PyNN Model

Once the C code has been constructed, the PyNN model must be created in Python to translate the PyNN
parameters into a form that the C code can understand. In PyNN, populations can be made up of an
arbitrary number of neurons, however to maintain real-time operation the number of neurons that are
simulated on each core must be limited. The PACMAN module is used by sPyNNaker to partition the
populations into subpopulations, based on the specified maximum number of atoms per core of the model,
as well as the resources required by the synaptic matrix. The DataSpecification module is then used to
write the data for each subpopulation. This is then loaded on to the machine, along with binary executable,
using SpiNNMan.

As with the C code, there are number of components that can be re-used, so that only properties relevant
to the new model itself need to be defined. This is done by extending the classes that define these
properties. For example, the exponential synapse type described previously can be included by extending:
spynnaker.pyNN.models.abstract_models.abstract_model_components\
.abstract_exp_population_vertex.AbstractExponentialPopulationVertex

To make use of the common codebase for all populations, all models must extend:
spynnaker.pyNN.models.abstract _models.abstract_population_vertex\
.AbstractPopulationVertex

Once the class has been defined, a number of other properties and functions need to be defined:

@® _model based_max_atoms_per_core - This keeps track of the maximum neurons per core for this
model. This is a user-configurable parameter, but the initial value is defined here as an absolute
maximum. The absolute maximum supported by the data structures elsewhere in the C code is
255, so if you are unsure, you can use this value. If your model is particularly complex, you should
set this to a lower value, as more processing time will be required per neuron.

@® _ init_ (self, n_neurons, machine_time_step, timescale_factor,
spikes_per _second, ring buffer_sigma, constraints=None, label=None,
-)

This is the initializer of the model class. The parameters of this initializer must include the following
variables to match the sPyNNaker interface. These values will be passed down from sPyNNaker,
and are mostly passed on to superclass initializers, to it is not critical that you understand what they
all do here; however a short description is given below:

O the number of neurons (n_neurons),

O the machine timestep (machine_time_step) in microseconds,



the timescale factor (timescale_factor),

the maximum expected spikes per second (spikes_per_second),

the number of sigmas in the ring buffer distribution to allow for (ring_buffer_sigma),
any additional constraints on the vertex (constraints), and

The vertex label (1abel)

© 0000

In addition to these parameters, you should include any parameters required by the other classes
that are extended. You can then also add your own parameters as required by your model. All the
parameters must be given default values, including those required by the superclasses (not
including those listed above, which are given values automatically); this allows the user to only
specify those values that they want to change. The machine_time_step parameter can be used to
convert any values that are in milliseconds to values that are in numbers of time steps (e.g. 10
milliseconds at a timestep of 100 microseconds is 10/ (100 / 1000.0) = 100 machine timesteps).

Within the init method, the following must be done:
e Call the initializer of AbstractPopulationVertex. This should pass on the parameters
listed above, and should also pass the following parameters:

O n_params - The total number of parameters and state variables defined in the
neuron_t data structure in the C code. This may be more than the number of
parameters passed to the initializer, as there may be variables that are not
user-configurable.

O n_global _params - The total number of parameters defined in the
neuron_global_params_t data structure in the C code.

O binary - This is the name of the executable that is produced when the Makefile runs.
This is defined in the Makefile. This is the simple name of the file rather than the full
path to the binary.

O weight_scale - If any weight scaling is done in neuron_model_convert_input,
the dividing factor must be specified here, so that the weights can be pre-multiplied
by this amount. This value defaults to 1.0, so it doesn’t need to be specified if it isn’t
used.

O max_atoms_per_core - You can pass the _model based_max_atoms_per_core
variable defined above for this parameter. This will allow the user to configure this in
a script if desired.

e Call the initializers of other included components. This will pass on the parameters required
by these components.

e Store any of your own parameters. These are usually defined as:
self. <param> = utility calls.convert_param_to numpy(<param>, n_neurons)
The user can specify parameters using a single value; a list of values (with one per neuron);
or a RandomDistribution object. The convert_param_to_numpy function normalises
these into a numpy array.

@® initialize_<var> - This is a set of functions, one for each of the state variables (i.e. those that
change during the simulation). This allows the user to call the PyNN initialize() function. Note that
the initial values are usually also available via the class constructor (usually postfixed with _init), but
that PyNN doesn’t usually expose state variables in this way. These functions should also make



use of the utility calls.convert_param_to numpy function to normalise the parameter
values.

e Property and setter for each parameter (i.e. those variables that don’t change during the simulation).
This allows the user to call the PyNN set() function for these variables. As with the above the
parameter values should be normalised.

@® model _name(self) - This property (use the @property decorator) simply returns the model name.

@® set_model _max_atoms_per_core(new_value) - This static method (use the @staticmethod
decorator) sets the value of _model_based_max_atoms_per_core, to allow the user to override
the default (with a smaller value).

@® get _cpu_usage_for_atoms(self, vertex_slice, graph) - This method returns an estimate
of the number of cpu clock cycles required per timer tick to run the model for the number of neurons
given by vertex_slice.n_atoms. This value is unlikely to be critical at this point, so using the
function as it is specified in the template should work correctly.

@® get _parameters(self) - This method returns an array of NeuronParameter instances to match
the parameters and state variables defined in the neuron_t data structure in the C header file. The
order of the array must match the order of the parameters and state variables as defined in the
neuron_t data structure. Along with each parameter, the data type must also be given. This is
done using the DataType enum; the most commonly used values are DataType.S1615, which
corresponds to a C fixed-point accum data type (or REAL in most of our code); and
DataType.UINT32 and DataType.INT32 which correspond to unsigned and signed 32-bit integers
respectively (uint32_t and int32_t).

@® get_global parameters(self) - This method returns an array of NeuronParameter instances.
This must return the values of the global parameters exactly as defined in the
global neuron_params_t data structure in the C header file, including the order of the
parameters.

@® is population_vertex(self) - This method needs to be defined, but just needs to return True.
This is used to keep track of the types of the vertices.

e Any additional abstract methods defined by the extended classes. For example,
AbstractExponentialPopulationVertex requires the is_exponential(self) method to
return True.

Python __init__.py files

Most of the __init__.py files in the template do not contain any code. The one within python_models is the
exception; this file adds the model binaries module to the executable paths, allowing sPyNNaker to
search this folder for your compiled binary. You can also import your module here to make it easy to use in
other scripts.

Python setup.py file
This file enables you to install the new module. This is set up to install all the modules in the template; if
you add any modules, these also need to be added to this file (it is not recursive; each module has to be



added separately). To add the module to your python environment in such a way that you can still edit i,
you can run:

[sudo] python setup.py develop [--user]
You need to use sudo if you are installing centrally on Linux or Mac OS X; on windows you need to be in an
Administrative console. Add --user instead if you want to install only for your username (you shouldn’t
mix these two options, or you will end up installing it only for the root user).

Using your module
In order to use the new module, you need to import your module in addition to PyNN e.g. for the template
module, you can do the following:

import pyNN.spiNNaker as p

import python_model as new_models

pop = p.Population(1l, new_models.MyModelCurrExp)

A more detailed example is shown in the template in examples/my_example.py.

Task 1: A Simple Neural Model [Easy]

This task will create a simple neural model using the template, and execute it on SpiNNaker.

Change the template by adding two parameters, one representing a decay (default value of 0.1) and one
representing a rest voltage (default value of -65.0). The parameters should be REAL values
(DataType.S1615). Change the model to subtract the difference between the current voltage and the rest
voltage multiplied by the decay from the membrane voltage, before adding the total input i.e.

v_membrane = v_membrane - ((v_membrane - v_rest) * decay) + input

Run the example script and see what happens.

Task 2: A Spiking Neuron Model [Moderate]

This task will look at adding a threshold at which the neuron spikes.

Add further parameters to the model created previously for the threshold voltage of the neuron (REAL,
default value -60.0), the reset voltage (REAL, default value -70.0) and another parameter which is the
refractory period (uint32_t, default value 2.0), in milliseconds. You will also need a state variable to keep
a refractory timer (int32_t). Change the model C code to spike (return true) when the neuron voltage is
greater than or equal to the threshold voltage after the update. If the neuron spikes, the voltage should
then be set to the reset voltage, and the refractory timer should be set to the refractory period. Add a
condition so that the neuron membrane voltage is only updated while the refractory timer is less than or
equal to 0. If it is greater than 0, the refractory timer should be reduced by one.

Update the python code to match the C code. Note that the python code will need to convert the refractory
period in milliseconds to the number of machine time steps.

Update the example script to record and plot the spikes, and run it again.



Task 3: A Stochastic Threshold Model [Hard]

This task will look at more complex model using some of the provided functions in the spinn_common
library. Note that the models are automatically compiled with this library, so no additions to the Makefile are
necessary.

Take the neuron model created in the previous task, and add a parameter representing the probability of
the neuron firing if it is over the threshold value. This parameter will be between 0 and 1 in Python (default
of 0.5), but as the random number generator generates an integer value, this should be converted into a
uint32_t value between 0 and Ox7FFFFFFF. Add a global parameter which is the seed of the random
number generator. This is an array of 4 uint32_t values for the simplest random number generator in
normal.h. Validate the Marsaglia KISS 64 RNG seed during initialisation of the global parameters
(validate _mars_kiss64 seed(mars_kiss64 seed t seed)). When the neural model is over the
threshold voltage, call the RNG with the seed (mars_kiss64_seed(mars_kiss64_seed_t seed)). The
neuron should only spike if the value is greater than than the probability.

Rerun the example script and see how the number of spikes differs for different settings of the spike
probability.
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Adding new models of synaptic plasticity

August 28, 2015

Contents of package

examples/stdp _triplet.py PyNN script that reproduces experimental pro-
tocol developed by Sjdstrom et al. [2].

neural modelling/src/neuron/Makefile Makefile which lists all the neu-
ron models defined in this module.

neural modelling/src/neuron/builds/Makefile.common Makefile which
lists new STDP components defined by this module.

neural modelling/src/neuron/builds/IF curr exp stdp mad pair_additive/Makefile
Makefile to build SpiNNaker executable with spike-pair STDP rule.

neural modelling/src/neuron/builds/IF curr exp stdp mad triplet additive/Makefile
Makefile to build SpiNNaker executable with Pfister and Gerstner [1]
spike-triplet STDP rule.

neural modelling/src/neuron/plasticity /stdp/timing dependence/timing pair impl.c
C source file containing setup code for spike-pair STDP timing depen-
dence.

neural modelling/src/neuron/plasticity /stdp/timing dependence/timing pair implLh
C header file containing implementation of spike-pair STDP timing depen-
dence discussed in presentation.

neural modelling/src/neuron/plasticity /stdp/timing dependence/timing triplet impl.c
C source file containing setup code for spike-triplet STDP timing depen-
dence.

neural modelling/src/neuron/plasticity /stdp/timing dependence/timing triplet impl.h
C header file containing implementation of spike-triplet STDP rule dis-
cussed in presentation.

workshop 2015 adding synaptic_plasticity/ _ init _ .py Python mod-
ule entry point containing code to hook module into sPyNNaker and im-
port timing dependences sub-module.



workshop 2015 adding synaptic plasticity /spike pair time dependency.py
Python class to instantiate and configure spike-pair timing dependence
from PyNN.

workshop 2015 adding synaptic plasticity /spike triplet time dependency.py
Python class to instantiate and configure spike-triplet timing dependence
from PyNN.

Additional code changes

My presentation covered the code changes that are required to implement the
behaviour spike-triplet rule on SpiNNaker. However there are some other, less
interesting changes that are also required to build a functioning learning rule.
Remaining changes to Python and C are discussed in comments at the following
URL http://tinyurl.com/ouk2gj2.

Exercises

These are all more suggestions than anything else, I'd be interested to help with
any triplet-rule based experimentation.

Exercise 1

As mentioned in the presentation, the SpiNNaker package already comes with an
implementation of the full spike-triplet rule developed by Pfister and Gerstner
[1]. This is more computationally expensive than the version developed in this
workshop session, but the extra parameters may potentially allow it to better fit
experimental data. Try switching the stdp triplet.py example in the package
to use this rule, configured with the parameters fitted by Pfister and Gerstner:

timing dependence = sim.PfisterSpikeTripletRule (
tau plus=16.8, tau minus=33.7,
tau_x=101, tau_ y=114)

weight dependence = sim.AdditiveWeightDependence (
w_min=0.0, w_max=max weight,
A plus=bE—10 #* start w, A minus=7E-3 * start w,
A3 plus=6.2e—3 * start w, A3 minus=2.3E—4 x start w)

Does this actually reduce the error compared to the version developed in
this workshop? Why might this be? The talk this morning on ‘Maths & fixed
point libraries’ may give you some clues!

Exercise 2

Pfister and Gerstner [1] also fitted their model to some experimental data by
Wang et al. [3]. These follow the spike-triplet protocol shown in figure 1 which
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(a) Pre-post-pre triplet (b) Post-pre-post triplet
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Figure 1: Wang et al. [3] triplet protocol. Each experiment consists of 60 triplets
of spikes, one second apart.

—0.01 +0.04 5 -5 0.33 +0.04 -5 5
0.03 +0.04 10 | -10 0.344+0.04 | -10 10
0.01 £0.03 15 -5 0.22+£0.08 | -15 -5
0.24 4+ 0.06 5 -15 0.294+0.05 | -5 15

(a) Pre-post-pre triplets (b) Post-pre-post triple

Table 1: Weight changes induced by Wang et al. [3] triplet protocol.

resulted in the weight changes shown in table 1. Can you make a version of
stdp_triplet.py that reproduces this protocol?
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Data Specification for AER over Ethernet

"AEtheRnet"

Proposal version 0.3, 9 December 2014
Alex Rast, David Lester

1 Introduction

This specification addresses the data format for spikes to be sent over Ethernet between
compatible AER-generating and receiving devices. It is expected that the interface can be
bidirectional: a device can both issue and receive spikes. However, it is not required that a
given device must be able to do both; a device could be either a blind issuer of spikes or a
passive receiver.

2 Definitions

Throughout this document several terms will be used repeatedly as defined below.

AER: Address-event representation: an event coded as a binary number indicating the event
source.

AEtheRnet: The protocol this document describes.

Key: A valid address in the AER address space.

Packet: The basic bundling unit of the AEtheRnet protocol, including any transport-related
framing.

Block: An amount of data, bundled into an AEtheRnet packet, not including any headers, all in
the same format as specified in the AEtheRnet header.

Device: A hardware device or software process, treated as a black box, that can send and/or
receive AEtheRnet packets.

Stream: An internal channel on a device, responding to AER packets in some particular
expected way, capable of receiving and/or sending AER packets in their native internal format.
A device could in principle support several different streams with possibly different interfaces.

Machine word descriptions: The text indicates the internal format of machine words using a
graphical format as below. The highest bit-position indicates the expected word size. Optional
bits are assumed to be detected using a flag which if not set causes the bits to be ignored.

Reserved bits (leave as 0) Optional bits Field |B|Field

31 16 15 76 321 0

3 Supported Content Formats

The protocol supports 3 different types of content:

A. Packed AER addresses; these may be either 16- or 32-bit.

B. Packed AER addresses with payloads; either 16+16 or 32+32-bit.

C. Device-specific internal commands with internal format determined by the device.

4 General Comments on Data Handling

Transport: This specification does not specify the transport. In principle, any Ethernet-



compatible transport could be used. Designers of interfaces should consider the facilities
provided by the transport when developing AEtheRnet interfaces. Note that some transports
will normally result in data words possibly misaligned according to machine word boundaries.
The specification provides a mechanism to address this.

Packet Type Handling: It is not required that all devices be able to service all packet types. For
example, a device that had only 16 bit internal registers would not be required to service 32-bit
packets. However, the interface must be designed such that receipt of a packet of unsupported
type not cause the device to go into an invalid state; i.e. if it receives an unsupported type it
should discard the packet and continue to service supported packets. Implementers must
specify clearly in interface documentation which packet types are supported.

Endianness: The assumption is that in normal use, packets will be transported over the wire
in big-endian format, but represented on the device in little-endian format. All machine words
are described as in the device representation, i.e. little-endian.

Errors: AEtheRnet does not attempt to detect or correct errors. If an error does occur, the
behaviour is UNDEFINED. Designers of interfaces may use transport facilities (e.g. CRC) to
recover from errors if desired, but this is not required. In particular there is no provision for
what processing occurs if an invalid AEtheRnet header is received.

Acknowledgements: No devices acknowledge receipt of AEtheRnet packets; similar to
hardware AER, the protocol is fire-and-forget. No command sent using a command packet may
expect a reply packet of any type.

Command Processing: The interpretation of data in a command is entirely device-specific.
AEtheRnet does not impose any restrictions on the format of data in this field, including
endianness and error handling, so the comments related to errors and endianness above may
not apply in the case of a command.

Latency: For real-time traffic, latency before a packet is sent will be a concern. A device which
buffers AER spikes before forwarding them in either direction must ensure that no spike is
forwarded later than the time when it should have been received by the receiving target.
Therefore devices must send partially-filled AEtheRnet packets as soon as the earliest latency
period of any of its members is exceeded. Once a packet is full (contains 256 items or is as
large as the device's internal buffer size), it must be sent immediately. Communicating devices
can use Command packets, with a suitable protocol, if necessary, to inform each other of their
latency requirements and buffering limits.

Packet Ordering: Packets must be issued in sequential time order. If packet payloads contain
timestamps then the value of the timestamp must be strictly increasing with packet sequence
number. Receiving devices must discard any spikes whose timestamps are received out of
strict sequential order.

5 Packet Format

AEtheRnet packets consist of a header and data, packed into possibly variable-length blocks of
up to 2K bytes. Each packet contains a single data type (with the exception of command
packets). There are 5 different possible headers. The most fundamental is the Basic data
header, a 16-bit halfword followed directly by the data. The Prefixed data header consists of 2



16-bit halfwords, the first with the same format as the Basic header, the second being a prefix
to OR with all AER keys in the block (position-dependent) to assemble the compete key, and
the Command header is a 16-bit halfword followed immediately by device-specific command
information. Data (as opposed to command) AEtheRnet packets may also have a fixed payload
base, to be ORed with sent payloads. If the packet does not send payloads then the fixed
payload base is understood to be a constant payload with each AER key. The underlying word
size of the packet determines the size of this payload base. A complete AEtheRnet packet
therefore can have one of the following 9 structures:

Header Command Information

15 0

Header Key Key

15 0 31/15 0 31/15 0
Header Key Payload Key Payload

15 0 31/15 0 31/15 0 31/15 0 31/15 0
Header | Prefix Key Key

15 0 15 0 31/15 0 31/15 0
Header | Prefix Key Payload Key Payload

15 0 15 0 31/15 0 31/15 0 31/15 0 31/15 0
Header | Fixed Payload Key Key

15 0 31/15 0 31/15 0 31/15 0
Header| Payload Base Key Payload Key Payload
15 0 31/15 0 31/15 0 31/15 0 31/15 0 31/15 0
Header | Prefix | Fixed Payload Key Key

15 0 15 0 31/15 0 31/15 0 31/15 0
Header | Prefix | Payload Base Key Payload Key Payload
15 0 15 0 31/15 0 31/15 0 31/15 0 .. 31/15 0 31/15 0

All headers have as their 2 MSBs a pair of bits "P" (for "Prefixed") and "F" (for "Format") that
identify the header type. Prefixed headers have either 10 or 11 depending on whether the
prefix is to be ORed with the lower or upper halfword of the key respectively. If the protocol is
sending 16-bit keys then a 1 in the F bit for Prefixed headers will extend the internal format of
the keys to 32-bit. Likewise if the protocol is sending 32-bit keys a 0 in the F bit for Prefixed
headers will truncate the key to 16-bit. Command headers always have 10 for their MSBs and
Basic headers have 00 in their MSBs.




The rest of the Command header is the device-specific command code. For Basic and Prefixed
headers, a flag"D" (for "Data") allow a fixed pattern to be ORed with payloads. If the packet
has no payload the fixed pattern is used as a fixed payload. The data type of the packet (16 or
32 bit) sets the size of the expected field, which should always be the last header item before
the start of keys. A second flag, "T" allows payloads to be interpreted as timestamps. If this bit
is set, the receiver should interpret each spike as being sent at the time indicated by its
payload. (If D and T are both set with no payload in the packet type, the system can efficiently
send a block of spikes at the same time). The next 2 bits indicate the datatype in the packet,
followed by 2 Tag bits that identify the stream, and finally 8 Count bits that give the number
of data items, where an item is either a key or a key/payload pair.

The decode of the datatype flags is as follows:
P - Bit 15
0 = No key prefix
1 = With key prefix
F - Bit 14
0 = Basic packet; OR prefix with lower halfword
1 = Command packet; OR prefix with upper halfword
D - Bit 13
0 = No payload prefix
1 = With payload prefix
T - Bit 12
0 = Payloads are not timestamps
1 = Payloads are timestamps
Type - Bits 11:10
00 = 16-bit key
01 = 16-bit keys and 16-bit payloads, alternating.
10 = 32-bit key
11 = 32-bit keys and 32-bit payloads, alternating.

Thus the header formats have the following structure:

Formats of a data header:

P|F D|T| Type | Tag Count Key Prefix (if P) or Data (not P)
1514 13 1211 109 8 7 0 15 0
0/0|1|T| Type | Tag Count Payload Prefix

1514 13 1211 109 8 7 0 15 0
1 F|1|T| Type| Tag Count Key Prefix Payload Prefix
1514 13 1211 109 8 7 0 15 0 31/15 0

Format of a command header:

01 Command (Device-specific)
15 14 13 0




