
Event-Driven Neural Simulation

Alex Rast

SpiNNaker Workshop, September 2015

1. What happens When
 a Simulation Runs?
 a. Design Assumptions
 b. Tool Chain Instantiation
 c. On-System Startup
 d. Real-Time Execution

2. Responding to Events
 a. Packet Received
 b. User Event
 c. DMA Done
 d. Timer Tick

 Session Outline

3. Time and Events
 a. Event Priorities
 b. What is "Real-Time"?
 c. Adjusting Time Resolution
 d. Using Retarded Time

4. So how do You Make
 a Working Model?
 a. Handling Events
 b. Memory Utilisation
 c. Debugging and (Lack of) Visibility
 d. What SpiNNaker Can Do

Design Assumptions

Fig1: SpiNNaker Chip

1. Memory: Cores only need access their own
limited local memory. No global memory.

2. Communications: Via AER spikes only,
multicast sourcerouted.

3. Event Rates: Realtime at "biologically
meaningful" resolution. Hardware is much faster
than any simulation time scale.

4. Model Dynamic Complexity: Very simple
models are good enough. Most biological
minutiæ don't matter.

5. Time Model: Execution is eventdriven; time
"models itself" (is implicit).

 What Happens When A
Simulation Runs?

 What Happens When A
Simulation Runs?

Fig2: The Tool Chain stack

Stage 1: Instantiation
Through Tool Chain

1. Script binds to SpiNNaker
front-end

2. Front-end converts the script into
a set of nodes and edges

3. PACMAN partitions the nodes to
cores and edges to routing table
info and synaptic matrices in
SDRAM

4. DSG transforms the partitioned
graph into a set of instantiation
specifications

5. DSE unpacks the specification
into an on-chip executable

1

Description of the system to be run

Graph representation

Front End Interfaces
(PYNN, Graph)

PACMAN

Data Spec
 Generation/Execution

Model Execution

Placements, Routings

Binaries

3

4

S
p
in

n
M

a
n

2

 What Happens When A
Simulation Runs?

Fig3: Application Startup

Stage 2: On-System Startup
1. Generation of Core Data Structures:
● Neural Parameter Structures
● Synaptic Parameter Structures
● Synaptic Row Lengths
● Master Population Table
● Synaptic Connection Matrix
● STDP Parameters (if any)

2. Registering Callbacks
● Spike Received (buffer and ask for a DMA read)
● Timer Interrupt (start processing the next state

update)
● DMA Complete (dump inputs into ring buffers

and update SDTP)
● User Event (retrieve synapses from SDRAM)

3. Wait for Synchronisation, then Go!

1

Unpacked Data Specification

Chip and Core Config

Synapses

Callback Registration

Sync and Go

2

3
D

a
ta

 S
tru

ctu
re

s
C

a
llb

a
cks

Neural Params
Synapse
 Params

Row Lengths Master Pop
 Table

STDP
Params

Packet Timer DMA User

 What Happens When A
Simulation Runs?

Fig4: Execution Model

Stage 3: Real-Time Execution

1. Packet Received [High Priority]:

2. User Event [Normal] (Request DMA)

3. DMA Completed [Normal]

4. Timer Tick [Low Priority]

NeuronTimer

Packet

User

DMA

Packet Buffer

Synaptic Rows

Update
STDP

Update
State

Ring
Buffer

Write
Back

Weights

Neuron
Params

Spike
In

Clock
Tick

Spike
Out

 Responding to Events

Fig4a: Execution Model

Packet Received

a) Dump packet into a buffer

b) Ask for a User event, if necessary

NeuronTimer

Packet

User

DMA

Packet Buffer

Synaptic Rows

Update
STDP

Update
State

Ring
Buffer

Write
Back

Weights

Neuron
Params

Spike
In

Clock
Tick

Spike
Out

Fig4b: Execution Model

User Event

 a) Retrieve next packet from buffer

 b) Look up row address (in Master
 Population Table)

 c) Set up the DMA in the controller

 d) Start the next DMA transfer

 e) Swap DMA buffers (for next transfer)

NeuronTimer

Packet

User

DMA

Packet Buffer

Synaptic Rows

Update
STDP

Update
State

Ring
Buffer

Write
Back

Weights

Neuron
Params

Spike
In

Clock
Tick

Spike
Out

 Responding to Events

Fig4c: Execution Model

DMA Completed

For each target in the row:

 a) Start next DMA (everything under User Event)

 b) Inject the current weight into the ring buffer at the
 delay indicated by the row's delay field

 c) Update STDP, if enabled

 d) Write back weight values to SDRAM via DMA

 NeuronTimer

Packet

User

DMA

Packet Buffer

Synaptic Rows

Update
STDP

Update
State

Ring
Buffer

Write
Back

Weights

Neuron
Params

Spike
In

Clock
Tick

Spike
Out

 Responding to Events

Fig4d: Execution Model

Timer Tick

For each neuron on the core:

 a) Decay the ringbuffer entries

 b) Inject the current ringbuffer entry onto the
 neuron

 c) Perform the neural state update

 d) If neuron has reached threshold, spike.

 e) If STDP is enabled, update for any postsynaptic
 spikes.NeuronTimer

Packet

User

DMA

Packet Buffer

Synaptic Rows

Update
STDP

Update
State

Ring
Buffer

Write
Back

Weights

Neuron
Params

Spike
In

Clock
Tick

Spike
Out

 Responding to Events

Time And Events

Why? Events can overlap. Some events
(packet received!) are critical. Priorities
manage which events are serviced when.

Priority -1: Override priority. Can only
assign to one event. MUST be serviced
immediately. Assigned to packet received.

Priority ≥ 0: "Normal" priority. Maskable
events with various priority levels. Assigned
to all other events: DMA done (0), User (0),
Timer (2)

How? Set up in API when callback
registered for event using
spin1_callback_on(event, callback, priority)

Fig5: Event Priority and
Interrupt Servicing

Event Priorities

DMA

Packet
DMA

Timer

DMA

DMA

Timer

Event Mask Process Time

Packet
Received

Packet
Received

DMA
Done

DMA
Done

Timer
Tick

Packet
Timer

Idle

Timer
Tick

Time And Events

Machine Time: Core clock time.
Unique to each core; NOT system-
global. Intervals much smaller than
Timer or "real-time".

Timer Time: Time between Timer
ticks. Typically 1 ms; can be changed
with an API call. Speedable-up or
slowable relative to "real time".

Wall-Clock Time: External reference
time. May be used by external devices
(e.g. robots). Real-world "real-time".

Fig6: Different Time Domains

What is "Real-Time"?

...

void Timer_update(...)

do_something

do_another_thing

void Timer_update(...)

}{ Machine
Time

Timer
Time

{Wall-Clock
Time

(The Real
World)

do_something

...

resume Timer_update()

continue Timer_update()

void retina_event(timestamp 2)

 resume Timer_update()

void retina_event(timestamp 1)

Timer_update()

Time And Events

Units: Timer resolution is currently in
microsecond units

API: spin1_set_timer_tick() sets the time
resolution (in μs).

Tool Chain: machineTimeStep in
[Machine] section of spynnaker.cfg sets the
time resolution (in μs).

Fig7: Different Time
 Resolutions

Adjusting Time Resolution

Tick = 1000 μs

Tick = 3000
μs

Time And Events

Timescale Factor (F): Scales down
Timer time so that n timer ticks with
machine time step m μs corresponds to
n*m*F real-world μs

Toolchain Only: Not reflected in
running code on the machine; this
applies the time scaling through the
toolchain itself.

In spynnaker.cfg: set with
timeScaleFactor in the [Machine]
section.

Using Retarded Time

Fig8: Retarded Time

Tick = 1000 μs

Tick = 10000 μs

TimeScaleFactor = 10

Fig9: Sources of Congestion

Unload the Fabric ASAP: Make the FIQ for
packet-received efficient to prevent packet drops.

Issue Output Events As They Happen:
Buffering output spikes only leads to bursty traffic
and congestion.

Keep Time Resolution Coarse: Smaller
timesteps drastically narrow the event receipt
window.

DMA in Large Blocks: The controller is
optimised for ~2k block size; small blocks may
require a greater number of more inefficient
transfers (DMA interrupts).

Slow Time, If Necessary: Slowing
the time from real-time gives more slack
for events to complete.

Handling Events

State
Update

DMA

SDRAM

Input
Buffer

So How do You Make
 a Working Model?

}T
tick

4GB (Typ?) DRAM

Fig10: What Cores See

Per Core:
64KB DTCM: All the neural parameters plus
synaptic ring buffers PLUS temporary
variables, lookup tables, etc. must fit in this
space.

32KB ITCM: All the running code for a given
model must fit in this space. This includes the
SARK RTOS and the SpiNNaker API.

Per Chip:
128MB SDRAM: Partitioned amongst
working cores. Synaptic weights, delays, and
timestamps plus some system variables must
fit here.

Memory Limitations

128 MB SDRAM

7MB/
Core

Cache
3 MB
(Typ?)

DTCM
64 K

ITCM
32 K

An Intel
 CPU

A SpiNNaker
Core

So How do You Make
 a Working Model?

So How do You Make
 a Working Model?

Fig11: Debug Output

There is No Global State: Cores run in
different time domains. It is not only infeasible to
set a "global breakpoint", it is meaningless. Inspect
one core at a time.

Interchip Timing Matters: Single-chip or
-core results may not reveal everything. Test
across multichip simulations to expose
asynchronous bugs.

Debug Statements Alter Timing: Debug
statements change the time events arrive and can
cause breaking code to run. Use them, but be
aware of the risks.

Events Interact: Because of different
event priorities, some events may
interrupt others in progress.

Debugging and
 (Lack of) Visibility

Fig12: A Model With
Real-World Input

Experimenting With Network
Parameters: Small simulations run fast
enough that several runs may not just tune
parameters but reveal patterns that show what
parameters mean.

Scaling Networks: Large-scale networks
can be run that simply would take too long to
simulate even on a substantial cluster.

Exploring Network Design: Beyond
parameter scaling, it is possible to alter
network structure radically or even underlying
neural models and still run in real-time.

Real-World Networks: By integrating with
external hardware or robots, it is possible
to explore real-world behaviour of
large-scale networks in live situations.

So How do You Make
 a Working Model?

What SpiNNaker Can Do

