
This presentation is to provide a quick overview of the hardware and software of 

SpiNNaker. It introduces some key concepts of the topology of a SpiNNaker machine, 

the unique message passing and routing functionality and the chip architecture with 

its restrictions and limitations.

The other function of this talk is to introduce some terminology that will be used 

through the workshop. 

Much of the information herein will be expanded upon in later talks, so don’t be too 

concerned with remembering everything!









SpiNNaker chips have six links: North, South, East, West, North-East and South-

West. Links are bi-directional and work independently. 

Topologically, an array of SpiNNaker chips forms a hexagonal grid, which can wrap 

around to form a cylinder or toroid. Machines can be constructed from an arbitrary 

sized array of chips, up to 256 x 256 in size.



The only way for cores on two different chips to communicate is via simple messages 

that are passed from one chip to the other until they reach their destination. These 

messages are called packets. The optional dataword with each packet is called its 

payload and is always 32-bits. When the host reads or writes data to/from SpiNNaker

the data is broken down into many of these packets (thought the user does not need 

to know this!) 

The multicast routing type is the most flexible and is the one most likely to be used in 

applications. We can provide information about the other routing types if you are 

interested. They are mainly used for system functions and (in the case of the nearest 

neighbour type) for flood-filling the machine with common code during the initialisation 

phase.



When a packet is generated by a core, it has a 32-bit routing key that identifies its 

source. The packet is given to the hardware router on its chip which decides what to 

do with it: to give it to one (or more!) cores on this chip or send it down one (or more!) 

of the six links to other chips. At each step on its journey the receiving router performs 

a look-up of the routing key in its 1024 entry table. The first match it finds is a ‘hit’ and 

it reads the associated data word in the table to see what action to take. If no match is 

found, the default behaviour is to send the packet out from the opposite link by which 

it entered.



The SpiNNaker chip has 18 cores, a hardware router and an interface to 128MB of 

external SDRAM.  All cores are identical. At boot time the first core to complete the 

boot process becomes the ‘monitor core’ and the next 16 become ‘application’ cores. 

The remaining 18th core may be non-functional as we used chips in which at least 17 

cores are working (to improve the yield of useful chips!)



Each SpiNN-5 board (shown on the left) has 48 SpiNNaker chips and three FPGAs, 

which are used for board-to-board communications. The SpiNNaker links from each 

chip on the edge go via the FPGAS where they are translated into high-speed serial 

traffic, sent to the next board via SATA cables and then translated back into 

SpiNNaker link protocol. This is invisible to the packets themselves. When many 

bards are put together they form a subrack shown on the right.



Each subrack (on the right) can hold up to 24 boards (1152 chips or 20K cores). Five 

subracks can be stacked to form a cabinet (on the right), containing 100K cores.



Connecting ten cabinets together into a single toroid gives us 1 million cores.

Back of the envelope calculations are that a 1 million core machine can simulation 

between 100 million and 1 billion simple leaky-integrate-and-fire neurons in real time.







As discussed earlier, the 18 cores each share the hardware router (through which 

they can send packets through the links) and the shared 128MB memory. Each board 

can connect to a host via an Ethernet adapter.



The local 64K data space can be accessed in a single cycle, whereas the shared 

128MB memory takes dozens of cycles. Although the typical method of accessing this 

SDRAM is via DMA, the memory is mapped in the same address space as the DTCM 

and so it can, in principle be accessed using simple load and store instructions. There 

is a small, shared on-chip SRAM that has not been mentioned here. It is mostly used 

by the system for housekeeping functions and so is not generally available for 

applications.





Host-side the software is written in Python (pink boxes). On the machine, software is 

compile ‘c’ code (green boxes). 

In our software stack, the user species their model in a domain-specific language 

(such as PyNN) which is translated into a graph like format in which computational 

elements are vertices and communication between these elements is represented by 

directed edges. The problem is mapped to the machine (see next slide) and the 

various files required for each chip and core are generated. This is loaded to 

SpiNNaker. A SpiNNaker application, running on many cores sits above an (optional) 

API and a system software layer (SARK). SARK provides essential resource 

management and comms functions. The API provides a framework for event-driven 

applications.



This slides zooms in on the mapping part of the host’s activities. The user problem is 

translated into a graph, as described earlier. Each vertex represents some 

computation (e.g. a group of neurons) and this must be broken down into chunks that 

can be handled by a single core. This is partitioning. Each chunk of work is allocated 

to one of the cores on the target machine, in the placement phase. The edges of the 

graph, representing communication between these blocks of computation are 

translated into the routing of messages from one core to another. The output of this 

routing phase is a set of routing tables, one per chip, to be loaded to the machine. In 

the data generation phase the routing tables and any data required for each 

computation node are written.





This describes the batch mode of operation, typical for running computational 

neuroscience models such as netorks written in PyNN. If SpiNNaker is used in a 

robotics environment, it may be set up to running continuously (i.e. without stopping),. 

It is possible to compile a network once, save all of the files and then re-load them 

whenever required, which is useful for robotics applications where the network does 

not change, but the data does.






