
This presentation is to provide a quick overview of the hardware and software of

SpiNNaker. It introduces some key concepts of the topology of a SpiNNaker machine,

the unique message passing and routing functionality and the chip architecture with

its restrictions and limitations.

The other function of this talk is to introduce some terminology that will be used

through the workshop.

Much of the information herein will be expanded upon in later talks, so don’t be too

concerned with remembering everything!

SpiNNaker chips have six links: North, South, East, West, North-East and South-

West. Links are bi-directional and work independently.

Topologically, an array of SpiNNaker chips forms a hexagonal grid, which can wrap

around to form a cylinder or toroid. Machines can be constructed from an arbitrary

sized array of chips, up to 256 x 256 in size.

The only way for cores on two different chips to communicate is via simple messages

that are passed from one chip to the other until they reach their destination. These

messages are called packets. The optional dataword with each packet is called its

payload and is always 32-bits. When the host reads or writes data to/from SpiNNaker

the data is broken down into many of these packets (thought the user does not need

to know this!)

The multicast routing type is the most flexible and is the one most likely to be used in

applications. We can provide information about the other routing types if you are

interested. They are mainly used for system functions and (in the case of the nearest

neighbour type) for flood-filling the machine with common code during the initialisation

phase.

When a packet is generated by a core, it has a 32-bit routing key that identifies its

source. The packet is given to the hardware router on its chip which decides what to

do with it: to give it to one (or more!) cores on this chip or send it down one (or more!)

of the six links to other chips. At each step on its journey the receiving router performs

a look-up of the routing key in its 1024 entry table. The first match it finds is a ‘hit’ and

it reads the associated data word in the table to see what action to take. If no match is

found, the default behaviour is to send the packet out from the opposite link by which

it entered.

The SpiNNaker chip has 18 cores, a hardware router and an interface to 128MB of

external SDRAM. All cores are identical. At boot time the first core to complete the

boot process becomes the ‘monitor core’ and the next 16 become ‘application’ cores.

The remaining 18th core may be non-functional as we used chips in which at least 17

cores are working (to improve the yield of useful chips!)

Each SpiNN-5 board (shown on the left) has 48 SpiNNaker chips and three FPGAs,

which are used for board-to-board communications. The SpiNNaker links from each

chip on the edge go via the FPGAS where they are translated into high-speed serial

traffic, sent to the next board via SATA cables and then translated back into

SpiNNaker link protocol. This is invisible to the packets themselves. When many

bards are put together they form a subrack shown on the right.

Each subrack (on the right) can hold up to 24 boards (1152 chips or 20K cores). Five

subracks can be stacked to form a cabinet (on the right), containing 100K cores.

Connecting ten cabinets together into a single toroid gives us 1 million cores.

Back of the envelope calculations are that a 1 million core machine can simulation

between 100 million and 1 billion simple leaky-integrate-and-fire neurons in real time.

As discussed earlier, the 18 cores each share the hardware router (through which

they can send packets through the links) and the shared 128MB memory. Each board

can connect to a host via an Ethernet adapter.

The local 64K data space can be accessed in a single cycle, whereas the shared

128MB memory takes dozens of cycles. Although the typical method of accessing this

SDRAM is via DMA, the memory is mapped in the same address space as the DTCM

and so it can, in principle be accessed using simple load and store instructions. There

is a small, shared on-chip SRAM that has not been mentioned here. It is mostly used

by the system for housekeeping functions and so is not generally available for

applications.

Host-side the software is written in Python (pink boxes). On the machine, software is

compile ‘c’ code (green boxes).

In our software stack, the user species their model in a domain-specific language

(such as PyNN) which is translated into a graph like format in which computational

elements are vertices and communication between these elements is represented by

directed edges. The problem is mapped to the machine (see next slide) and the

various files required for each chip and core are generated. This is loaded to

SpiNNaker. A SpiNNaker application, running on many cores sits above an (optional)

API and a system software layer (SARK). SARK provides essential resource

management and comms functions. The API provides a framework for event-driven

applications.

This slides zooms in on the mapping part of the host’s activities. The user problem is

translated into a graph, as described earlier. Each vertex represents some

computation (e.g. a group of neurons) and this must be broken down into chunks that

can be handled by a single core. This is partitioning. Each chunk of work is allocated

to one of the cores on the target machine, in the placement phase. The edges of the

graph, representing communication between these blocks of computation are

translated into the routing of messages from one core to another. The output of this

routing phase is a set of routing tables, one per chip, to be loaded to the machine. In

the data generation phase the routing tables and any data required for each

computation node are written.

This describes the batch mode of operation, typical for running computational

neuroscience models such as netorks written in PyNN. If SpiNNaker is used in a

robotics environment, it may be set up to running continuously (i.e. without stopping),.

It is possible to compile a network once, save all of the files and then re-load them

whenever required, which is useful for robotics applications where the network does

not change, but the data does.

