Fixed-Point Maths and Libraries

Michael Hopkins

SpiNNaker Workshop, September 2015
Overview

1. Numerical calculation on SpiNNaker
2. ISO/IEC 18037 types and operations
3. A simple example
4. Some practical considerations
5. Libraries currently available
6. An example using the libraries
7. Using fixed-point to solve ODEs
8. Future directions
Numerical calculation on SpiNNaker

- No floating point hardware on SpiNNaker
- Software floating point available but too slow for most use cases (and larger binaries)
- Until recently, has needed hand-coded fixed point types and manipulations
- This approach not transparent so can be prone to maintenance issues & mysterious bugs
- More difficult than necessary for developers to translate algorithms into source code
- ISO draft 18037 for fixed point types and operations seen as a good solution
ISO 18037 types and operations

- Draft standard for native fixed point types & operations used like integer or floating point
- Currently only available on GNU toolchain >= 4.7 and ARM target architecture
- 8-, 16-, 32 and 64-bit precisions all available in (un-)saturated and (un-)signed versions
- **accum** type is 32-bit 'general purpose real'; we support io_printf() with s16.15 & u16.16
- **fract** type is 16-bit in [0,1]; we support io_printf() with s0.15 & u0.16

Operations supported are:

- prefix and postfix increment and decrement operators (++, --)
- unary arithmetic operators (+, -, !)
- binary arithmetic operators (+, -, *, /)
- binary shift operators (<<, >>)
- relational operators (<, <=, >=, >)
- equality operators (==, !=)
- assignment operators (+=, -=, *=, /=, <<=, >>=)
- conversions to and from integer, floating-point, or fixed-point types
A simple example

```c
#include <stdio.h>

#define REAL accum
#define REAL_CONST( x ) x##k

REAL a, b, c = REAL_CONST( 100.001 );
accum d = REAL_CONST( 85.08765 );

int c_main( void )
{
    for( unsigned int i = 0; i < 50; i++ ) {

        a = i * REAL_CONST( 5.7 );

        b = a - i;

        if( a > d ) c = a + b;
        else c = a - b;

        io_printf( IO_STD,
                   "\n i %u  a = %9.3k  b = %9.3k  c = %9.3k", i, a, b, c );
    }

    return 0;
}
```
Some practical considerations

- Range & precision e.g. for *accum* (s16.15) must have $0.000031 \leq |x| \leq 65536$

- Still need to avoid divides in loops as these are slow on ARM architecture

- *saturated* types safe from overflow but significantly slower

- Need to remember that numerical precision is absolute rather than relative

- Literal constants require type suffix – simplest way is via macro REAL_CONST()

- Don't forget to include `<stdfix.h>`

- Disciplined use of REAL and REAL_CONST() macros can parameterise entire code base

- Be careful to use the correct type suffix otherwise floating-point will be assumed
1) \texttt{random.h} – suite of pseudo random number generators by MWH

Provides three high quality uniform generators of \texttt{uint32_t} values; Marsaglia's KISS 32 and KISS 64 and L'Ecuver's WELL1024a.

- All three 'pass' the very stringent DIEHARD, dieharder and TestU01 test suites
- Trade-offs between speed, cycle length and equi-distributional properties
- Available in both simple-to-use form and with full user control over seeds

Have used these Uniform PRNGs as the basis for a set of Non-Uniform PRNGs including currently the following distributions:

- Gaussian
- Poisson (optimised for small rates at the moment)
- Exponential

...with more on the way. Let us know your requirements and we will try to help.
2) *stdfix-full-iso.h* & *stdfix-math.h* – ISO & transcendental functions by DRL

Fill in the gaps in the GCC implementation of the ISO draft fixed point maths standard and some extensions:

- Standardised type conversions between fixed point representations
- Utility functions for all types i.e. abs(x), min(x), max(x), round(x), countls(x)
- Mechanism for automatically inferring the right argument type (uses GNU extension)

Fixed point replacements for essential floating point *libm* functions i.e. expk(x), sqrtk(x), logk(x), sink(x), cosk(x) and others such as atank(x), powk(x,y), 1/x on the way

- Hand-optimised for speed and accuracy on ARM architecture
- 10-30x faster than *libm* calls, hence feasible for use inside loops if necessary
An example using the libraries

```c

#include <math.h>

accum a, b, c, d;
uint32_t r1;
unsigned fract uf1;

init_WELL1024a_simp(); // need to initialise WELL1024a RNG before use

for( unsigned int i = 0; i < 22; i++ ) {
    r1 = WELL1024a_simp(); // draw from Uniform RNG
    uf1 = (unsigned fract) ulrbits( r1 ); // convert to unsigned fract
    a = gaussian_dist_variate( mars_kiss64_simp, NULL );
    // draw from Std Gaussian distribution using MARS64
    b = logk( absk( a * REAL_CONST(100.0) ) );
    // do some calculations on a and then log()
    c = sqrtk( exponential_dist_variate( WELL1024a_simp, NULL ) );
    // sqrt() of value drawn from Exponential distribution using WELL1024a
    d = expk( (accum) ( i - 10 ) ); // exp() from -10 to 11

    io_printf( IO_STD, "\n i %4u
    uf1=[Uniform{*}]= %8.6R  a=[Gauss{*}]= %7.3k b=[ln(abs(100 a))]= %7.3k
    c=[sqrt(Exponential{*})]= %7.3k  d=[exp(i-10)]= %10.3k ", i, uf1, a, b, c, d );
}
```
Simulating neuron models usually means solving Ordinary Differential Equations (ODEs).

This ranges from very easy (current input LIF has simple closed-form) solution to very challenging i.e. Hodgkin-Huxley with 4 state variables, nonlinear and very 'stiff' ODE.

Numerical calculations are required with a balance between accuracy & efficiency.

With care and attention to detail, fixed-point can be used to get very close to floating-point results. However, models with more complex behaviour are a significant challenge.

A new approach called *Explicit Solver Reduction* (ESR) makes this easier in many cases and is described in an upcoming paper: Hopkins & Furber (2015), “Accuracy and Efficiency in Fixed-Point Neural ODE Solvers”, *Neural Computation* 27, 1–35.

Good results found for Izhikevich neuron at real-time simulation speed & 1 ms time step.
/*
 ESR algebraic reduction of the combination of Izhikevich neuron model and
 Runge-Kutta 2nd order midpoint method. Hand-optimised interim variables and
 arithmetic ordering for balance between speed and accuracy. See Neural Computation
 paper for more details.
*/
static inline void _rk2_kernel_midpoint(REAL h, neuron_pointer_t neuron,
 REAL input_this_timestep) {

 // to match Mathematica names
 REAL lastV1 = neuron->V;
 REAL lastU1 = neuron->U;
 REAL a = neuron->A;
 REAL b = neuron->B;

 // generate common interim variables
 REAL pre_alph = REAL_CONST(140.0) + input_this_timestep – lastU1;
 REAL alpha = pre_alph
 + (REAL_CONST(5.0) + REAL_CONST(0.0400) * lastV1) * lastV1;
 REAL eta = lastV1 + REAL_HALF(h * alpha);

 // could be represented as a long fract but need efficient mixed-arithmetic functions
 REAL beta = REAL_HALF(h * (b * lastV1 – lastU1) * a);

 // update neuron state
 neuron->V += h * (pre_alph – beta
 + (REAL_CONST(5.0) + REAL_CONST(0.0400) * eta) * eta);

 neuron->U += a * h * (-lastU1 – beta + b * eta);
}
Future directions

- Optimise operations on differing fixed point types i.e. `accum * long fract`
- Add to `stdfix-math` (e.g. new argument types and special functions)
- Add to `random` (e.g. longer cycle uniform PRNG and more non-uniform distributions)
- New libraries such as probability distributions to allow Bayesian inference tools
- `io_printf()` to be extended to more types such as `long fract, unsigned long fract`
- Linear Algebra operations such as matrix multiply, SVD and other decompositions
- SpiNNaker architecture potentially good choice for massively parallel algorithms e.g. MCMC