
SpiNNaker Workshop
September 2015

Simple Data I/O and visualisation

Alan B Stokes

Contents
Summaries

● Standard PyNN support summary.
External Device Plugin

● What is it, why we need it?
● Usage caveats.

Input
● Injecting spikes into a executing PyNN script.

Output
● Live streaming of spikes from a PyNN script.

Visualisation
● Live visualisation.

2

Standard PyNN support (Summary)
● Supports post execution gathering of certain attributes:

○ aka transmitted spikes, voltages etc.

3

p1input

SpiNNaker
import pyNN.spiNNaker as p
p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp, {}, label=“pop_1”)
input = p.Population(1, p.SpikeSourceArray,
 {‘spike_times’: [0]}, label=“input”)
input_proj = p.Projection(input, p1, p.OneToOneConnector(
 weights=5.0, delays=1))
p1.record()
p1.record_v()

4

● Supports post execution gathering of certain attributes:
○ aka transmitted spikes, voltages etc.

import pyNN.spiNNaker as p
p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp, {}, label=“pop_1”)
input = p.Population(1, p.SpikeSourceArray,
 {‘spike_times’: [0]}, label=“input”)
input_proj = p.Projection(input, p1, p.OneToOneConnector(
 weights=5.0, delays=1))
p1.record()
p1.record_v()
p.run(5000)
spikes = p1.getSpikes()
v = p1.get_v()

Standard PyNN support (Summary)

p1input

SpiNNaker

PyNN Script

Memory reads

● Supports spike sources of:
○ Spike Source Array, Spike source poisson.

5

Standard PyNN support (Summary)

input p1

SpiNNaker
import pyNN.spiNNaker as p
p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp, {}, label=“pop_1”)
input = p.Population(1, p.SpikeSourceArray,
 {‘spike_times’: [0]}, label=“input”)

● Supports spike sources of:
○ Spike Source Array, Spike source poisson.

6

Standard PyNN support (Summary)

import pyNN.spiNNaker as p
p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp, {}, label=“pop_1”)
input = p.Population(1, p.SpikeSourceArray,
 {‘spike_times’: [0]}, label=“input”)
input2 = p.Population(1, p.SpikeSourcePoisson,
 {‘rate’:100, ‘duration’:50}, label=’input2’)

p1
input

input2

SpiNNaker

Restrictions
1. Recorded data is stored on SDRAM on each chip.
2. Data to be injected has to be known up-front, or rate based.
3. No support for closed loop execution with external devices.

7
http://www.conrad.com/ce/en/product/191516/Arexx-RA1-PRO-Metallic-Robot-Arm

 SPIKES SPIKES

Standard PyNN support (Summary)

during execution

Why? what?
1. Contains functionality for PyNN scripts.
2. Not official PyNN!!!

What does it Includes?

External Device Plugin

8

 SPIKES

2. Live streaming of events
 from populations.

 SPIKES

COMMANDS

1. Live injection of events and
commands into SpiNNaker

SPIKES via
spinnLink interface

3. External devices support:
Covered on Thursday at 13:00

Caveats:
● Injection and live output currently only usable only with the

ethernet connection,
● Limited bandwidth of:

○ A small number of spikes per millisecond time step, per ethernet,
○ Shared with both injection and live output,

● Best effort communication,
● Has a built in latency,
● Spinnaker commands not supported by other simulators,
● Loss of cores for injection and live output support,
● You can only feed a live population to one place.

9

Z
External Device Plugin Z

Z

Injecting spikes into PyNN scripts

10

import pyNN.spiNNaker as p

p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp, {}, label=“pop_1”)
input = p.Population(1, p.SpikeSourceArray,
 {‘spike_times’: [0]}, label=“input”)
input_proj = p.Projection(input, p1, p.OneToOneConnector(
 weights=5.0, delays=1))
loop(synfire connection)
loop_forward = list()
for i in range(0, n_neurons - 1):
 loop_forward.append((i, (i + 1) % n_neurons, weight_to_spike, 3))
Frontend.Projection(pop_forward, pop_forward, Frontend.FromListConnector(loop_forward))

PyNN script changes

p1input

SpiNNaker

Injecting spikes into PyNN scripts

11

import pyNN.spiNNaker as p
import spynnaker_external_devices_plugin.pyNN as ExternalDevices
p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp, {}, label=“pop_1”)
input_injector = p.Population(1, ExternalDevices.SpikeInjector,
 {‘port’:95768}, label=”injector)
input_proj = p.Projection(input_injector, p1, p.OneToOneConnector(
 weights=5.0, delays=1))
loop(synfire connection)
loop_forward = list()
for i in range(0, n_neurons - 1):
 loop_forward.append((i, (i + 1) % n_neurons, weight_to_spike, 3))
Frontend.Projection(pop_forward, pop_forward, Frontend.FromListConnector(loop_forward))

PyNN script changes: Declaring an injector population

p1input
injector

SpiNNaker

Injecting spikes into PyNN scripts

12

............
create python injector
def send_spike(label, sender):
 sender.send_spike(label, 0, send_full_keys=True)

PyNN script changes: Setting up python injector

p1input
injector

SpiNNaker

Python
injector

Injecting spikes into PyNN scripts

13

PyNN script changes: Setting up python injector

p1input
injector

SpiNNaker

Python
injector

............
create python injector
def send_spike(label, sender):

sender.send_spike(label, 0, send_full_keys=True)
import python injector connection
from spynnaker_external_devices_plugin.pyNN.connections.\
spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection

Injecting spikes into PyNN scripts

14

............
create python injector
def send_spike(label, sender):

sender.send_spike(label, 0, send_full_keys=True)
import python injector connection
from spynnaker_external_devices_plugin.pyNN.connections.\
spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection
set up python injector connection
live_spikes_connection = SpynnakerLiveSpikesConnection(
 receive_labels=None, local_port=19996, send_labels=[“spike_sender”])

PyNN script changes: Setting up python injector

p1input
injector

SpiNNaker

Python
injector

Connection

Injecting spikes into PyNN scripts

15

............
create python injector
def send_spike(label, sender):

sender.send_spike(label, 0, send_full_keys=True)
import python injector connection
from spynnaker_external_devices_plugin.pyNN.connections.\
spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection
set up python injector connection
live_spikes_connection = SpynnakerLiveSpikesConnection(

receive_labels=None, local_port=19996, send_labels=[“spike_sender”])
register python injector with injector connection
live_spikes_connection.add_start_callback(“spike_sender”, send_spike)
p.run(500)

PyNN script changes: Setting up python injector

p1input
injector

SpiNNaker

Connection

Python
injector

Injecting spikes into PyNN scripts

16

Behaviour with
(SpikeSourceArray)

Behaviour with Live
injection!

SAME!!!!!

BUT BORING!!!!

DEMO TIME!!! Injection

DEMO!!!!

17

Live output from PyNN scripts

import pyNN.spiNNaker as p
p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp, {}, label=“pop_1”)
input = p.Population(1, p.SpikeSourceArray,
 {‘spike_times’: [0]}, label=“input”)
input_proj = p.Projection(input, p1, p.OneToOneConnector(
 weights=5.0, delays=1))

18

PyNN script changes: declaring live output population

p1input

SpiNNaker

Live output from PyNN scripts

import pyNN.spiNNaker as p
p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp, {}, label=“pop_1”)
input = p.Population(1, p.SpikeSourceArray,
 {‘spike_times’: [0]}, label=“input”)
input_proj = p.Projection(input, p1, p.OneToOneConnector(
 weights=5.0, delays=1))
declare a live output for a given population.
import spynnaker_external_devices_plugin.pyNN as ExternalDevices
ExternalDevices.activate_live_output_for(p1)

19

PyNN script changes: declaring live output population

p1input

SpiNNaker

Live
support

Live output from PyNN scripts
...............
declare python code when received spikes for a timer tick
def receive_spikes(label, time, neuron_ids):
 for neuron_id in neuron_ids:
 print “Received spike at time {} from {}-{}”
 .format(time, label, neuron_id)

20

PyNN script changes: python receiver

p1input

SpiNNaker

Live
support

Python
receiver

Live output from PyNN scripts
...............
declare python code when received spikes for a timer tick
def receive_spikes(label, time, neuron_ids):

for neuron_id in neuron_ids:
print “Received spike at time {} from {}-{}”

 .format(time, label, neuron_id)
import python live spike connection
from spynnaker_external_devices_plugin.pyNN.connections.\
spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection

21

PyNN script changes: python receiver

p1input

SpiNNaker

Live
support

Python
receiver

Live output from PyNN scripts
...............
declare python code when received spikes for a timer tick
def receive_spikes(label, time, neuron_ids):

for neuron_id in neuron_ids:
print “Received spike at time {} from {}-{}”

 .format(time, label, neuron_id)
import python live spike connection
from spynnaker_external_devices_plugin.pyNN.connections.\
spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection
set up python live spike connection
live_spikes_connection = SpynnakerLiveSpikesConnection(
 receive_labels=[“receiver”], local_port=19995, send_labels=None)

 22

PyNN script changes: python receiver

p1input

SpiNNaker

Live
support

connection

Python
receiver

Live output from PyNN scripts
...............
declare python code when received spikes for a timer tick
def receive_spikes(label, time, neuron_ids):

for neuron_id in neuron_ids:
print “Received spike at time {} from {}-{}”

 .format(time, label, neuron_id)
import python live spike connection
from spynnaker_external_devices_plugin.pyNN.connections.\
spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection
set up python live spike connection
live_spikes_connection = SpynnakerLiveSpikesConnection(

receive_labels=[“receiver”], local_port=19995, send_labels=None)
register python receiver with live spike connection
live_spikes_connection.add_receive_callback(“receiver”, receive_spikes)
p.run(500)

23

PyNN script changes: python receiver

p1input

SpiNNaker

Live
support

connection

Python
receiver

DEMO TIME!!! receive live spikes

DEMO!!!!

24

Visualisation
How current supported visualisations work:

1. Uses the live output functionality as discussed previously.

2. Uses the c based receiver and is planned to be open
source for users to augment with their own special visuals.

3. Currently contains raster plot support.

25

Input parameters:
● -colour_map

○ Path to a file containing the population labels to receive, and their
associated colours

● -hand_shake_port
○ optional port which the visualiser will listen to for database hand shaking

● -database
○ optional file path to where the database is located, if needed for manual

configuration
● -remote_host

○ optional remote host, which will allow port triggering26

Visualisation
cspc277-visualiser-) make -f Makefile.linux
cspc277-visualiser-)
cspc277-visualiser-) ./vis -colour_map test_data/spikeio_colours
cspc277-visualiser-)
awaiting tool chain hand shake to say database is ready

27

Visualisation
Before run After run

DEMO TIME!!! visualiser and
injection of spikes

DEMO!!!!

28

Technical Detail!!!
Notification protocol under the hood!

29

● Everything so far uses the
notification protocol.

● It supplies data to translate spikes
into population ids.

● If you have more than 1 system
running to inject and/or receive,
then you need to register this with
the notification protocol.

Injecting spikes into PyNN scripts

30

............
register socket addresses for each system
p.register_database_notification_request(
 hostname=”local_host”
 notify_port=19990,
 ack_port=19992)
p.register_database_notification_request(
 hostname=”local_host”
 notify_port=19993,
 ack_port=19987)
p.register_database_notification_request(
 hostname=”local_host”
 notify_port=19760,
 ack_port=19232)

PyNN script changes:
registering a system to the notification protocol

System

System 1

System 2

Notification
Protocol

Thanks for listening

31

Any questions?!

ZZ
Z

