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Standard PyNN support (Summary)
● Supports post execution gathering of certain attributes:

○ aka transmitted spikes, voltages etc.
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p1input

SpiNNaker
import pyNN.spiNNaker as p
p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp, {}, label=“pop_1”)
input = p.Population(1, p.SpikeSourceArray,
                    {‘spike_times’: [0]}, label=“input”)
input_proj = p.Projection(input, p1, p.OneToOneConnector(
   weights=5.0, delays=1))
p1.record()
p1.record_v()
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● Supports post execution gathering of certain attributes:
○ aka transmitted spikes, voltages etc.

import pyNN.spiNNaker as p
p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp, {}, label=“pop_1”)
input = p.Population(1, p.SpikeSourceArray,
                    {‘spike_times’: [0]}, label=“input”)
input_proj = p.Projection(input, p1, p.OneToOneConnector(
   weights=5.0, delays=1))
p1.record()
p1.record_v()
p.run(5000)
spikes = p1.getSpikes()
v = p1.get_v()

Standard PyNN support (Summary)

p1input

SpiNNaker

PyNN Script

Memory reads



● Supports spike sources of:
○ Spike Source Array, Spike source poisson.
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Standard PyNN support (Summary)

input p1

SpiNNaker
import pyNN.spiNNaker as p
p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp, {}, label=“pop_1”)
input = p.Population(1, p.SpikeSourceArray,
                    {‘spike_times’: [0]}, label=“input”)



● Supports spike sources of:
○ Spike Source Array, Spike source poisson.
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Standard PyNN support (Summary)

import pyNN.spiNNaker as p
p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp, {}, label=“pop_1”)
input = p.Population(1, p.SpikeSourceArray,
                    {‘spike_times’: [0]}, label=“input”)
input2 = p.Population(1, p.SpikeSourcePoisson, 
                   {‘rate’:100, ‘duration’:50}, label=’input2’)

p1
input

input2

SpiNNaker



Restrictions
1. Recorded data is stored on SDRAM on each chip.
2. Data to be injected has to be known up-front, or rate based.
3. No support for closed loop execution with external devices.
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http://www.conrad.com/ce/en/product/191516/Arexx-RA1-PRO-Metallic-Robot-Arm

       SPIKES                  SPIKES

Standard PyNN support (Summary)

during execution



Why? what?
1. Contains functionality for PyNN scripts.
2. Not official PyNN!!!

What does it Includes?

External Device Plugin
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  SPIKES

2. Live streaming of events 
    from populations.

  SPIKES

COMMANDS

1. Live injection of events and 
commands into SpiNNaker

SPIKES via 
spinnLink interface

3. External devices support: 
Covered on Thursday at 13:00



Caveats:
● Injection and live output currently only usable only with the 

ethernet connection,
● Limited bandwidth of:

○ A small number of spikes per millisecond time step, per ethernet,
○ Shared with both injection and live output,

● Best effort communication,
● Has a built in latency,
● Spinnaker commands not supported by other simulators,
● Loss of cores for injection and live output support,
● You can only feed a live population to one place.
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Z
External Device Plugin Z

Z



Injecting spikes into PyNN scripts
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import pyNN.spiNNaker as p

p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp, {}, label=“pop_1”)
input = p.Population(1, p.SpikeSourceArray,
                                 {‘spike_times’: [0]}, label=“input”)
input_proj = p.Projection(input, p1, p.OneToOneConnector(
   weights=5.0, delays=1))
# loop(synfire connection)
loop_forward = list()
for i in range(0, n_neurons - 1):
          loop_forward.append((i, (i + 1) % n_neurons, weight_to_spike, 3))
Frontend.Projection(pop_forward, pop_forward, Frontend.FromListConnector(loop_forward))

PyNN script changes

p1input

SpiNNaker



Injecting spikes into PyNN scripts
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import pyNN.spiNNaker as p
import spynnaker_external_devices_plugin.pyNN as ExternalDevices
p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp, {}, label=“pop_1”)
input_injector = p.Population(1, ExternalDevices.SpikeInjector, 
                              {‘port’:95768}, label=”injector)
input_proj = p.Projection(input_injector, p1, p.OneToOneConnector(
   weights=5.0, delays=1))
# loop(synfire connection)
loop_forward = list()
for i in range(0, n_neurons - 1):
          loop_forward.append((i, (i + 1) % n_neurons, weight_to_spike, 3))
Frontend.Projection(pop_forward, pop_forward, Frontend.FromListConnector(loop_forward))

PyNN script changes: Declaring an injector population

p1input
injector

SpiNNaker



Injecting spikes into PyNN scripts
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............
# create python injector
def send_spike(label, sender):
          sender.send_spike(label, 0, send_full_keys=True)

      

PyNN script changes: Setting up python injector

p1input
injector

SpiNNaker

Python 
injector



Injecting spikes into PyNN scripts
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PyNN script changes: Setting up python injector

p1input
injector

SpiNNaker

Python 
injector

............
# create python injector
def send_spike(label, sender):

sender.send_spike(label, 0, send_full_keys=True)
# import python injector connection
from spynnaker_external_devices_plugin.pyNN.connections.\
spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection

      



Injecting spikes into PyNN scripts
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............
# create python injector
def send_spike(label, sender):

sender.send_spike(label, 0, send_full_keys=True)
# import python injector connection
from spynnaker_external_devices_plugin.pyNN.connections.\
spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection
# set up python injector connection
live_spikes_connection = SpynnakerLiveSpikesConnection(
    receive_labels=None, local_port=19996, send_labels=[“spike_sender”])

      

PyNN script changes: Setting up python injector

p1input
injector

SpiNNaker

Python 
injector

Connection



Injecting spikes into PyNN scripts
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............
# create python injector
def send_spike(label, sender):

sender.send_spike(label, 0, send_full_keys=True)
# import python injector connection
from spynnaker_external_devices_plugin.pyNN.connections.\
spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection
# set up python injector connection
live_spikes_connection = SpynnakerLiveSpikesConnection(

receive_labels=None, local_port=19996, send_labels=[“spike_sender”])
# register python injector with injector connection
live_spikes_connection.add_start_callback(“spike_sender”,  send_spike)
p.run(500)

      

PyNN script changes: Setting up python injector

p1input
injector

SpiNNaker

Connection

Python 
injector



Injecting spikes into PyNN scripts
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Behaviour with 
(SpikeSourceArray) 

Behaviour with Live 
injection! 

SAME!!!!!

BUT BORING!!!!



DEMO TIME!!! Injection

DEMO!!!!
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Live output from PyNN scripts

import pyNN.spiNNaker as p
p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp, {}, label=“pop_1”)
input = p.Population(1, p.SpikeSourceArray,
                    {‘spike_times’: [0]}, label=“input”)
input_proj = p.Projection(input, p1, p.OneToOneConnector(
   weights=5.0, delays=1))
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PyNN script changes: declaring live output population

p1input

SpiNNaker



Live output from PyNN scripts

import pyNN.spiNNaker as p
p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp, {}, label=“pop_1”)
input = p.Population(1, p.SpikeSourceArray,
                    {‘spike_times’: [0]}, label=“input”)
input_proj = p.Projection(input, p1, p.OneToOneConnector(
   weights=5.0, delays=1))
# declare a live output for a given population.
import spynnaker_external_devices_plugin.pyNN as ExternalDevices
ExternalDevices.activate_live_output_for(p1)
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PyNN script changes: declaring live output population

p1input

SpiNNaker

Live 
support



Live output from PyNN scripts
...............
# declare python code when received spikes for a timer tick
def receive_spikes(label, time, neuron_ids):
         for neuron_id in neuron_ids:
                 print “Received spike at time {} from {}-{}”
                          .format(time, label, neuron_id)
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PyNN script changes: python receiver

p1input

SpiNNaker

Live 
support

Python 
receiver



Live output from PyNN scripts
...............
# declare python code when received spikes for a timer tick
def receive_spikes(label, time, neuron_ids):

for neuron_id in neuron_ids:
print “Received spike at time {} from {}-{}”

                           .format(time, label, neuron_id)
# import python live spike connection
from spynnaker_external_devices_plugin.pyNN.connections.\
spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection
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PyNN script changes: python receiver

p1input

SpiNNaker

Live 
support

Python 
receiver



Live output from PyNN scripts
...............
# declare python code when received spikes for a timer tick
def receive_spikes(label, time, neuron_ids):

for neuron_id in neuron_ids:
print “Received spike at time {} from {}-{}”

                           .format(time, label, neuron_id)
# import python live spike connection
from spynnaker_external_devices_plugin.pyNN.connections.\
spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection
# set up python live spike connection
live_spikes_connection = SpynnakerLiveSpikesConnection(
    receive_labels=[“receiver”], local_port=19995, send_labels=None)
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PyNN script changes: python receiver

p1input

SpiNNaker

Live 
support

connection

Python 
receiver



Live output from PyNN scripts
...............
# declare python code when received spikes for a timer tick
def receive_spikes(label, time, neuron_ids):

for neuron_id in neuron_ids:
print “Received spike at time {} from {}-{}”

                           .format(time, label, neuron_id)
# import python live spike connection
from spynnaker_external_devices_plugin.pyNN.connections.\
spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection
# set up python live spike connection
live_spikes_connection = SpynnakerLiveSpikesConnection(

receive_labels=[“receiver”], local_port=19995, send_labels=None)
# register python receiver with live spike connection
live_spikes_connection.add_receive_callback(“receiver”, receive_spikes)
p.run(500)
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PyNN script changes: python receiver

p1input

SpiNNaker

Live 
support

connection

Python 
receiver



DEMO TIME!!! receive live spikes

DEMO!!!!
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Visualisation
How current supported visualisations work:

1. Uses the live output functionality as discussed previously.

2. Uses the c based receiver and is planned to be open 
source for users to augment with their own special visuals.

3. Currently contains raster plot support.
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Input parameters:
●  -colour_map 

○ Path to a file containing the population labels to receive, and their 
associated colours

● -hand_shake_port
○ optional port which the visualiser will listen to for database hand shaking

● -database 
○ optional file path to where the database is located, if needed for manual 

configuration
● -remote_host 

○ optional remote host, which will allow port triggering26

Visualisation
cspc277-visualiser-) make -f Makefile.linux
cspc277-visualiser-) ..............
cspc277-visualiser-) ./vis -colour_map test_data/spikeio_colours
cspc277-visualiser-) 
awaiting tool chain hand shake to say database is ready
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Visualisation
Before run After run



DEMO TIME!!! visualiser and 
injection of spikes

DEMO!!!!
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Technical Detail!!!
Notification protocol under the hood!
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● Everything so far uses the 
notification protocol.

● It supplies data to translate spikes 
into population ids.

● If you have more than 1 system 
running to inject and/or receive, 
then you need to register this with 
the notification protocol.



Injecting spikes into PyNN scripts
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............
# register socket addresses for each system 
p.register_database_notification_request(
    hostname=”local_host”
    notify_port=19990,
    ack_port=19992)
p.register_database_notification_request(
    hostname=”local_host”
    notify_port=19993,
    ack_port=19987)
p.register_database_notification_request(
    hostname=”local_host”
    notify_port=19760,
    ack_port=19232)

      

PyNN script changes: 
registering a system to the notification protocol

System ....

System 1

System 2

Notification 
Protocol



Thanks for listening
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Any questions?!

ZZ
Z


