MANCHESTER

1824

SpiNNaker System Software

‘e L -
»

L TR []
L] " P % g5 " .'-l- - .
- -l.&.'l‘ & 8 “":F'- -
- = .- & - 5 -
- ;-4 - - -

Steve Temple
SpiNNaker Workshop — Manchester — Sep 2015

erc ¢ H“} £PSRC SpiNNaker

\ Brain Projec >

Established by the European Commission

Overview

 SpiINNaker applications and their environment
« SC&MP, ybug and application loading

 SARK (SpiNNaker Application Runtime Kernel)

— Application start-up

- SARK function library
- Examples

- Documentation

Please interrupt if you have a question!

MANCHESIER Building Applications

* Languages — mostly C with bits of assembler

* Toolchain choice
- ARM tools — RVDS 4 and DS-5 (free for academics)
- GCC — Mentor Graphics Code Sourcery Lite (free)
 Library support

- Toolchain libraries — C library functions, maths, etc
- SARK — low-level SpiNNaker support library
- Spinl API — event-based application library

* Linking — support libs + application code

— Creates application to be loaded
- Application file format is APLX

RS e Execution Environment (1)

e EE 6
SO
] () () (1) ()
56 E
Eth] [Monitor Processor |
!
HEEOE
) @ (&) (&) (n]
(1) (12) (18] (1e] (oe)
(18] (17] [(soram) (mur
Eth | Monitor Processor |

@ &)¢

Uaee
&) (&) &) (=)
!

A
—

Monitor Processor

10100
E@ﬂ@H
81010
@) G E)

!

Network

Interface
N

Monitor Processor

20| (60 EE

e
—

MRS Execution Environment (2)

* One application per core

» Executable code (instructions) in ITCM (32 KB)

» Data (variables, stacks, heap) in DTCM (64 KB)

* Bulk and/or shared data in SDRAM (128 MB)

» Code/data access from ITCM/DTCM is fast (5 ns)

» Data access to SDRAM is slow (> 100 ns) and
subject to contention

« DMA controller in each core can move bulk data
between I/DTCM and SDRAM faster
(~ 15 ns/word) without requiring CPU

Mapping Program to Memory

#include <sark.h>
uint a = 5;]
uint b = 6;

uint c[30];
uint *d; -

void ¢ _main (wvoid)
{
uint e = 7;
uint £ = 8;
uint g[30];

uint *h; -

h = malloc (128);

/

Va

DTCM (64 KB)
Stack(s)
'/ APLX File
/f RW vars
/ Heap
RO Code
Zivars ,) /
* RWvars * |
ITCM (32 KB)
/ - EXEC @0
FILL ZI
(Unused) . COPY RW
COPY RO

™ RO Code fﬁ

0x0000

MANCHIGIES SC&MP

* “SpiNNaker Control & Monitor Program”

» Loaded onto all Monitor Processors during
bootstrap

 Communicates with host computer using SCP
(SpiNNaker Command Protocol) over SDP

» Supervises operation of a single chip

» Allows program loading to Application Cores

» Acts as router for SDP packets between any pair
of cores or with external Internet endpoints

 Flashes the LED!

Sk 2 SC&MP, SCP and ybug

« SC&MP provides command interface via SCP

- Ver — give S/W version, etc
- Read (addr, length) —read SpiNNaker memory
- Write (addr, length, data)— write SpiINNaker memory

- Reset (core mask) —reset Application Cores

* Host (workstation) embeds SCP/SDP in UDP/IP
to talk to SpiINNaker Monitor Processor on the
Root Chip

* ybug is a simple command-line tool which runs
on a workstation and provides an interface to
SC&MP for application loading and debug

VIANLHIZER Application Loading (1)

* ybug sends the application APLX to the relevant
SpiNNaker chips.

 The APLX image Is copied to a known place In
shared memory

* ybug requests that the relevant Application cores
are reset.

e The reset code i1s an APLX loader which loads
the image according to instructions in the APLX
header

* This usually results in the application being
copied into ITCM and entered at address
zero (the ARM reset vector)

VIANLHIGER Application Loading (2)

spin3:0,1 spind:1,1

DO U006
0| @ E)) () (o
(12) (13) (18] (18] jo= (1] (2] (12) (1a) is)
(17) (soram) (ru) | | (1] (7] (D)

Monitor Processor J

Workstation

m — —
B o -

» ybug spini

s5pin3:0,0,0 > sp 1 1

I

spin3:1,1,0 > app_lecad t.aplx . 3- I

(2) (o) (&) (=)
(7) (2] (&) (1o)
a@@@w
(16 (17 (soram] (@D
.--.

(2) (a) (4) (&)
) (&) (o] (1)
(12) (13) (14 [1s)
s) (17) [Lsoram] (m

[Monitor Processor }

.B@@

EEEE &

spin3:0,0 spin3:1,0

SARK

» SpiNNaker Application Runtime Kernel

* Three main functions
1) Application start-up
2) Library of useful functions

3) Communication via SDP with Monitor Processor (and
hence rest of system)

 SARK Is automatically linked with applications
when they are built

e Occupies around 2 KB In the image

MANCHESTER

1824 Application Start-Up

o Start-up code at start of ITCM Is SARK
Configures stacks for 4 ARM execution modes

Initialises Heap and SDP message buffers in DTCM

Initialises shared-memory data structure (VCPU)

Calls a function to do pre-app

Calls the function ¢_main, t

ication set-up
ne application entry point

Calls a function to do post-ap
Goes to sleep!

nlication clean-up

» Some applications will never terminate

 SARK provides SDP communications with the
application

MANCHESTER SARK Library (1)

e CPU control

e Interrupt disabling and enabling

* Entering low power (sleep) mode
 Memory manipulation

 Memory copy and fill (small footprint)

 SDP message copying

* Pseudo-Random number generation (32-bit)

« SDP messaging

 Message allocation in DTCM and shared
memory

 SDP message transmission

MANCHESTER SARK Library (2)

» Text output via “printf”

- Text sent to a host system using SDP packets
- Text buffered in SDRAM

 Hardware locks and semaphores

« Memory management
- malloc/free for DTCM heap

- malloc/free for shared memories (eg SDRAM)
with locking

- malloc/free for router MC routing table

* Environment queries
- What is my core ID, chipID, etc

MANCHESTER SARK Library (3)

e Hardware interfaces

- LED control
- Router control — setting MC and P2P table entries

- VIC control — allocating interrupt handlers to specific
hardware interrupts

* Timer management

- Routines to schedule/cancel events at some time In
the future

 Event management

- Routines to associate events with interrupts
- Management of priority event queues

MANCHESIER SARK — Example 1
#include <sark.h>

void ¢ _main (void)
{
io printf (IO STD, "Hello world (via SDP)!\n");
io printf (IO BUF, "Hello world (via SDRAM)!\n");
}

Tubotron 1.20 (Port 17692)

Clear | Save | Open | Close [1 window (1 open, 0 closed) Quit ‘
O x|

20266281 .in-addrarpa:0,0.2

Hello world (via SDP)!
Hello world [vwia SDP) !
Hello world (via SDP)!
Hello world (via SDP) |
Helle world [(via SDP) !
Helle world (via SDP) !
Hello world (via SDP)!
Hello world (via SDP) |

MANCHESTER SARK - Example 2

#include <sark.h>

INT HANDLER timer int han (void)

{
tc[T1 _INT CLR] = (uint) tc; // Clear interrupt in timer
sark led set (LED FLIP (1)); // Flip a LED
vic[VIC VADDR] = (uint) vic; // Tell VIC we're done
}
void timer setup (uint period)
{
tc[T1 _CONTROL] = 0xe2; // Set up count-down mode
tc[T1l LOAD] = sark.cpu clk * period; // Load time (us)
sark vic_set (SLOT 0, TIMER1 INT, 1, timer int han);
}
void c_main ()
{
io printf (IO _STD, "Timer interrupt example\n");
timer setup (500000); // (0.5 secs)
cpu _sleep (); // Send core to sleep

}

Documentation & Help

e SARK — notes In 1.30 Software release -
sark.pdf

* ybug — user guide in 1.30 Software release -
ybug.pdf

« “spinnaker.h” - describes the SpiINNaker
hardware — memory maps, peripheral registers...

e “sark.h” describes all SARK data structures
and functions. Commented in Doxygen style.

» All source code is provided...
* If desperate, talk to us!

