

SpiNNaker System Software

Steve Temple
SpiNNaker Workshop – Manchester – Sep 2015

Overview

● SpiNNaker applications and their environment
● SC&MP, ybug and application loading
● SARK (SpiNNaker Application Runtime Kernel)

– Application start-up

– SARK function library

– Examples

– Documentation

Please interrupt if you have a question!

Building Applications
● Languages – mostly C with bits of assembler
● Toolchain choice

– ARM tools – RVDS 4 and DS-5 (free for academics)

– GCC – Mentor Graphics Code Sourcery Lite (free)

● Library support
– Toolchain libraries – C library functions, maths, etc

– SARK – low-level SpiNNaker support library

– Spin1 API – event-based application library

● Linking – support libs + application code
– Creates application to be loaded

– Application file format is APLX

Execution Environment (1)

Execution Environment (2)
● One application per core
● Executable code (instructions) in ITCM (32 KB)
● Data (variables, stacks, heap) in DTCM (64 KB)
● Bulk and/or shared data in SDRAM (128 MB)
● Code/data access from ITCM/DTCM is fast (5 ns)
● Data access to SDRAM is slow (> 100 ns) and

subject to contention
● DMA controller in each core can move bulk data

between I/DTCM and SDRAM faster
(~ 15 ns/word) without requiring CPU

Mapping Program to Memory

SC&MP
● “SpiNNaker Control & Monitor Program”
● Loaded onto all Monitor Processors during

bootstrap
● Communicates with host computer using SCP

(SpiNNaker Command Protocol) over SDP
● Supervises operation of a single chip
● Allows program loading to Application Cores
● Acts as router for SDP packets between any pair

of cores or with external Internet endpoints
● Flashes the LED!

SC&MP, SCP and ybug
● SC&MP provides command interface via SCP

– Ver – give S/W version, etc

– Read (addr, length) – read SpiNNaker memory

– Write (addr, length, data)– write SpiNNaker memory

– Reset (core_mask) – reset Application Cores

● Host (workstation) embeds SCP/SDP in UDP/IP
to talk to SpiNNaker Monitor Processor on the
Root Chip

● ybug is a simple command-line tool which runs
on a workstation and provides an interface to
SC&MP for application loading and debug

Application Loading (1)
● ybug sends the application APLX to the relevant

SpiNNaker chips.
● The APLX image is copied to a known place in

shared memory
● ybug requests that the relevant Application cores

are reset.
● The reset code is an APLX loader which loads

the image according to instructions in the APLX
header

● This usually results in the application being
copied into ITCM and entered at address
zero (the ARM reset vector)

Application Loading (2)

SARK

● SpiNNaker Application Runtime Kernel
● Three main functions

1) Application start-up

2) Library of useful functions

3) Communication via SDP with Monitor Processor (and
hence rest of system)

● SARK is automatically linked with applications
when they are built

● Occupies around 2 KB in the image

Application Start-Up

● Start-up code at start of ITCM is SARK
– Configures stacks for 4 ARM execution modes

– Initialises Heap and SDP message buffers in DTCM

– Initialises shared-memory data structure (VCPU)

– Calls a function to do pre-application set-up

– Calls the function c_main, the application entry point

– Calls a function to do post-application clean-up

– Goes to sleep!

● Some applications will never terminate
● SARK provides SDP communications with the

application

SARK Library (1)
● CPU control

● Interrupt disabling and enabling
● Entering low power (sleep) mode

● Memory manipulation
● Memory copy and fill (small footprint)
● SDP message copying

● Pseudo-Random number generation (32-bit)
● SDP messaging

● Message allocation in DTCM and shared
memory

● SDP message transmission

SARK Library (2)
● Text output via “printf”

– Text sent to a host system using SDP packets

– Text buffered in SDRAM

● Hardware locks and semaphores
● Memory management

– malloc/free for DTCM heap

– malloc/free for shared memories (eg SDRAM)
with locking

– malloc/free for router MC routing table

● Environment queries
– What is my core ID, chipID, etc

SARK Library (3)
● Hardware interfaces

– LED control

– Router control – setting MC and P2P table entries

– VIC control – allocating interrupt handlers to specific
hardware interrupts

● Timer management
– Routines to schedule/cancel events at some time in

the future

● Event management
– Routines to associate events with interrupts

– Management of priority event queues

SARK – Example 1
#include <sark.h>

void c_main (void)
{
 io_printf (IO_STD, "Hello world (via SDP)!\n");
 io_printf (IO_BUF, "Hello world (via SDRAM)!\n");
}

SARK - Example 2
#include <sark.h>

INT_HANDLER timer_int_han (void)
{
 tc[T1_INT_CLR] = (uint) tc; // Clear interrupt in timer
 sark_led_set (LED_FLIP (1)); // Flip a LED
 vic[VIC_VADDR] = (uint) vic; // Tell VIC we're done
}

void timer_setup (uint period)
{
 tc[T1_CONTROL] = 0xe2; // Set up countdown mode
 tc[T1_LOAD] = sark.cpu_clk * period; // Load time (us)
 sark_vic_set (SLOT_0, TIMER1_INT, 1, timer_int_han);
}

void c_main ()
{
 io_printf (IO_STD, "Timer interrupt example\n");
 timer_setup (500000); // (0.5 secs)
 cpu_sleep (); // Send core to sleep
}

Documentation & Help

● SARK – notes in 1.30 Software release -
sark.pdf

● ybug – user guide in 1.30 Software release -
ybug.pdf

● “spinnaker.h” - describes the SpiNNaker
hardware – memory maps, peripheral registers...

● “sark.h” describes all SARK data structures
and functions. Commented in Doxygen style.

● All source code is provided...
● If desperate, talk to us!

