
Using Jupyter Notebooks to run jobs on SpiNNaker

For the current version see

This document describes how to access and use Jupyter notebooks to run PyNN scripts and
access the HBP/EBRAINS Neurorobotics Platform on SpiNNaker machines. It is based on
the presentation at:
https://docs.google.com/presentation/d/15XWZL-aAIJlN-Ixa_uJuEjxjqnn3yvarXBkWiHcWv_
E/edit#slide=id.g607786f23b_0_0

Contents
1. Getting Started
2. Running a PyNN script using a Jupyter Notebook / Lab
3 Using the Neurorobotics Platform (NRP) with Jupyter

1. Getting Started
This section describes the current state of the SpiNNaker machine and the software stack’s
limitations.

1.1 SpiNNaker Machine
Before starting to run PyNN scripts on SpiNNaker machines via Jupyter, be aware that the
total SpiNNaker machine capacity is a 10 cabinet machine, comprising 1,036,800 cores, as
shown in Figure 1.

https://spinnakermanchester.github.io/latest/jupyter.html
https://docs.google.com/presentation/d/15XWZL-aAIJlN-Ixa_uJuEjxjqnn3yvarXBkWiHcWv_E/edit#slide=id.g607786f23b_0_0
https://docs.google.com/presentation/d/15XWZL-aAIJlN-Ixa_uJuEjxjqnn3yvarXBkWiHcWv_E/edit#slide=id.g607786f23b_0_0


1.2 Software Limitations
To understand how this relates to a PyNN script, be aware that SpiNNaker stores all the data
needed to execute a PyNN model within its on-board memory (SDRAM). This SDRAM is
limited in size, as each SpiNNaker chip contains only 128MB of memory, split dynamically
between the 18 cores (including the operating system core) that reside on the chip. On
average, every core has available approximately 8MB to store the neuron parameters as
well as the synaptic matrix of the atoms it is executing. Most models, to date, are limited to1

256 atoms per core , and therefore the connectivity between these 256 atoms and the rest of2

the simulation must fit within these constraints.

Due to these limitations, the maximum possible number of atoms that can be simulated by a
PyNN script on the largest SpiNNaker machine available is 250,675,200. This sounds rather
large, but when it is factored in that each atom can only have a maximum incoming fixed
number of connections of 8000, and that any more than this will result in a smaller number of
neurons per core; therefore a smaller total neurons being simulated.

To make matters worse, currently, if a PyNN Projection between two Populations has delays
greater than 16 machine time steps then each core that simulates these neurons will have a3

delay model attached to it, which in practice reduces the maximum number of simulated
neurons by half.

Finally, if the PyNN model includes plastic connections, these require more memory than
fixed connections and therefore will further reduce the number of neurons per core. A
summary of the rest of the SpiNNaker back end limitations can be found here:
http://spinnakermanchester.github.io/spynnaker/6.0.0/SPyNNakerModelsAndLimitations.html

1.3 Script Limitations
This section describes some basic limitations that the PyNN script can experience when
running using Jupyter:

1. A PyNN script running on the SpiNNaker backend needs to adhere to the subset of
PyNN that is supported by sPyNNaker , a list of what is not implemented can be4

found here:
http://spinnakermanchester.github.io/spynnaker/6.0.0/SPyNNakerModelsAndLimitations.html

4 This is the SpiNNaker software stack’s front end for simulating PyNN neuron models. See
https://www.frontiersin.org/articles/10.3389/fnins.2018.00816/full for more details.

3 This is 16 milliseconds in a simulation that runs at 1ms time steps, or 1.6 milliseconds in a simulation
running at 0.1 ms time steps

2 This limitation may be lifted in the future, but to date, this is due the way that synaptic delays are
implemented on SpiNNaker.

1 Atoms here represents the atomic element which each core models. In the case of PyNN, these are
neurons from a given population.

http://spinnakermanchester.github.io/2015.006.AnotherFineProductFromTheNonsenseFactory/SPyNNakerLimitations.html
http://spinnakermanchester.github.io/2015.006.AnotherFineProductFromTheNonsenseFactory/SPyNNakerLimitations.html
https://www.frontiersin.org/articles/10.3389/fnins.2018.00816/full


2. Running a PyNN script using a Jupyter Notebook / Lab
This section describes how an end user starts a PyNN simulation using a Jupyter Notebook.

First of all, access the Jupyter Notebook login at https://spinn-20.cs.man.ac.uk, or
alternatively add the “SpiNNaker Jupyter” Community App to an EBRAINS collab (see
http://spinnakermanchester.github.io/common_pages/6.0.0/spinnaker_ebrains_portal_use.pd
f for more details on setting this up) and access it in a similar manner from there.

2.1 Logging in
You can either log in using your HBP or EBRAINS credentials (these can be obtained by
following the instructions at https://ebrains.eu/register). Once you have logged in, you can
choose between the Jupyter Notebook interface, and the Jupyter Lab interface. The Jupyter
Notebook interface should look something like Figure 2, and the Lab interface like Figure 3.

https://spinn-20.cs.man.ac.uk
http://spinnakermanchester.github.io/common_pages/6.0.0/spinnaker_ebrains_portal_use.pdf
http://spinnakermanchester.github.io/common_pages/6.0.0/spinnaker_ebrains_portal_use.pdf
https://ebrains.eu/register


2.2 Using a pre-prepared notebook
A pre-prepared synfire chain example is available: click on it to open it (Figure 4).

This can be run through in the usual manner for a Jupyter notebook via the control buttons at
the top of the page. Be aware that running commands out of order may cause unexpected
results; for example, performing run(...) before setup(...) will lead to an error. Running this
particular example should give you the output shown in Figure 4.



2.3 Running your own script
It is possible to create your own notebook and run PyNN scripts from within it. The simplest
way to do this is in the Notebook interface is to click the dropdown “New” menu, and under
Notebook select “sPyNNaker”. This will give you an input box as in Figure 5 into which you
can paste a PyNN script; then clicking e.g. “Run” will run this script.

You can choose from the kernels “sPyNNaker” (release version 6.0) or “sPyNNakerGit” (the
instantiation of the master branches of the GitHub libraries downloaded when your account
was created). In the Lab interface, use the “Launcher” tab that was open when you first
logged in (or, if you have closed the tab, it can be opened again using File - New Launcher)
to select a Notebook using a particular kernel.



Be aware when using sPyNNakerGit that what you will be using are the master branches at
the point at which you first logged in to the system, and that these will not change when you
next log in; if you require any changes that have subsequently been made to master or new
branches then you will need to manually get these yourself. This can be done from within
the Notebook interface by clicking on the drop down menu “New” and selecting “Terminal”, or
from the Lab interface by selecting Terminal from the Launcher tab, and then using the usual
git commands from the command line within the “sPyNNakerGit” directory. You will need to
be in the sPyNNakerGit environment when updating; to get into the environment, go into the
sPyNNakerGit directory

cd sPyNNakerGit

and then use the command

source bin/activate

There are some automatic scripts provided to help you with this inside the
sPyNNakerGit/support directory; in particular support/gitupdate.sh.

If you update master or switch branches, we also strongly recommend rebuilding the C code
that runs on the SpiNNaker machine using the script support/automatic_make.sh as it is
likely that this will have changed during a recent update. It is also possible to change the
kernel once you have started by choosing Kernel->Change kernel (in both the Notebook and
Lab interfaces) and selecting what you wish to change to.

Within a notebook/lab it is possible to perform all the usual Python commands, including the
ability to use “pip” to install anything that is not installed by default for SpiNNTools (see
http://spinnakermanchester.github.io/development/devenv6.0.html#PythonRequirements for
a non-exhaustive list of these). It is also possible to use pip etc. inside a Terminal window to
install anything you need; simply make sure you are in the correct environment for the
Kernel you wish to install something for and it should be possible to install it.

2.4 Closing notebooks and logging out
When you are finished, we request that you close any open notebooks (File->Close and
Halt), and then logout using the button in the top right of the screen (see Figure 6).

http://spinnakermanchester.github.io/development/devenv.html#PythonRequirements




3 Using the Neurorobotics Platform (NRP) with Jupyter
It is also possible to run virtual robotic experiments within the Jupyter framework. To set this
up you need to use the username and password you set earlier, and a few further steps.

3.1 Setting up
Once you are logged in to the Jupyter system, create a new terminal and type in the
command “cle-nginx”, and then “cle-start”. This will start up the NRP system in the
background (see Figure 7).

Once you have done this, you can then log into the NRP system by going to the web
address https://spinn-20.cs.man.ac.uk/user/<username>/proxy/9000/#/esv-private, where
<username> is replaced with your username. This should give you the login screen in
Figure 8.

https://spinn-20.cs.man.ac.uk/user/


On this screen, log in using the username “nrpuser” and the password “password”. This
should ask you to accept the NRP’s terms of service (Figure 9),

and then show you a list of experiment templates (Figure 10).

3.2 Running a job
From this list of experiment templates, the only SpiNNaker experiment you can clone so far
is “Holodeck Husky Braitenberg experiment on SpiNNaker”; select this, click on “Clone” and
this will add it to your “My Experiments” tab. On this screen, click on the “+ Launch” button
and this will load the experiment environment in your browser window. Once it is loaded,
click on the Play button; after a minute or so, the robot should start turning. (At this point it is



loading the relevant data onto the SpiNNaker machine - if you switch back to the terminal
window where you launched the NRP system, you should see the loading logging
information). In this particular experiment, the robot turns to the left until it sees a red
screen; you can right click on the screens and select a new colour.

For more details on how to use the Neurorobotics Platform, follow any of the help links once
you have logged in to the system.


