
SpiNNaker Human Brain Project Portal Introduction

This document describes how to use the EBRAINS portal to run PyNN scripts on SpiNNaker
machines. It replaces the previous document on how to use the HBP portal to run PyNN
scripts.

1. Getting Started
This section describes the current state of the SpiNNaker machine hosted by the HBP Portal
and the software stack’s limitations.

1.1 SpiNNaker Machine
Before starting to run PyNN scripts on SpiNNaker machines via the portal, be aware that the
total SpiNNaker machine capacity is a 10 cabinet machine, comprising 1,036,800 cores, as
shown in Figure 1.

1.2 Software Limitations
To understand how this relates to a PyNN script, be aware that SpiNNaker stores all the data
needed to execute a PyNN model within its on-board memory (SDRAM). This SDRAM is
limited in size, as each SpiNNaker chip contains only 128MB of memory, split dynamically
between the 18 cores (including the operating system core) that reside on the chip. On
average, every core has available approximately 8MB to store the neuron parameters as
well as the synaptic matrix of the atoms it is executing. Most models, to date, are limited to1

256 atoms per core , and therefore the connectivity between these 256 atoms and the rest of2

the simulation must fit within these constraints.

2 This limitation may be lifted in the future, but to date, this is due the way that synaptic delays are
implemented on SpiNNaker.

1 Atoms here represent the atomic element which each core models. In the case of PyNN, these are
neurons from a given population.

https://docs.google.com/document/u/0/d/12wdgAtX9MDWbawILdGT8wsdW7H8cmkSKnlvRte7YC38/edit

Due to these limitations, the maximum possible number of atoms that can be simulated by a
PyNN script on the largest SpiNNaker machine available on the HBP portal is 250,675,200.
This sounds rather large, but when it is factored in that each atom can only have a maximum
incoming fixed number of connections of 8000, and that any more than this will result in a
smaller number of neurons per core; therefore a smaller total neurons being simulated.

To make matters worse, currently, if a PyNN Projection between two Populations has delays
greater than 16 machine time steps then each core that simulates these neurons will have a3

delay model attached to it, which in practice reduces the maximum number of simulated
neurons by half.

Finally, if the PyNN model includes plastic connections, these require more memory than
fixed connections and therefore will further reduce the number of neurons per core. A
summary of the rest of the SpiNNaker back end limitations can be found here:
http://spinnakermanchester.github.io/spynnaker/6.0.0/SPyNNakerModelsAndLimitations.html

1.3 EBRAINS Portal Limitations

The EBRAINS portal executes its PyNN scripts in a batch mode process. This means certain
capabilities supportable by the SpiNNaker software stack (sPyNNaker) are not currently
avilable by the EBRAINS portal. These are:

1. Real time visualisation of an executing PyNN script to a standalone visualization kit.
2. Closed loop simulation with real robotics.
3. Closed loop simulation with robots via the virtual robotic environment.

1.4 Script Limitations

This section describes some basic limitations that the PyNN script can experience when
running on the EBRAINS Portal.

1. Figures generated by the script must be stored in file format, no figures will be
presented to the end user in an interactive mode.

2. A PyNN script running on the SpiNNaker backend needs to adhere to the subset of
PyNN that is supported by sPyNNaker , a list of what is not implemented can be4

found here:
http://spinnakermanchester.github.io/spynnaker/6.0.0/SPyNNakerModelsAndLimitations.html

1.5 Recommendations

4 This is the SpiNNaker software stack’s front end for simulating PyNN neuron models. See
https://www.frontiersin.org/articles/10.3389/fnins.2018.00816/full for more details.

3 This is 16 milliseconds in a simulation that runs at 1ms time steps, or 1.6 milliseconds in a simulation
running at 0.1 ms time steps

http://spinnakermanchester.github.io/2015.006.AnotherFineProductFromTheNonsenseFactory/SPyNNakerLimitations.html
http://spinnakermanchester.github.io/2015.006.AnotherFineProductFromTheNonsenseFactory/SPyNNakerLimitations.html
https://www.frontiersin.org/articles/10.3389/fnins.2018.00816/full

It is recommended that you test your simulation with the sPyNNaker front end in virtual mode
before attempting to run it through the EBRAINS portal. Instructions on how to install the
sPyNNaker front end can be found here:

http://spinnakermanchester.github.io/spynnaker/6.0.0/PyNNOnSpinnakerInstall.html

and instructions on how to operate the tool chain in virtual mode can be found here:

http://spinnakermanchester.github.io/spynnaker/6.0.0/VirtualMode.html

http://spinnakermanchester.github.io/2015.006.AnotherFineProductFromTheNonsenseFactory/PyNNOnSpinnakerInstall.html
http://spinnakermanchester.github.io/2015.006.AnotherFineProductFromTheNonsenseFactory/SPyNNakerLimitations.html
http://spinnakermanchester.github.io/2015.006.AnotherFineProductFromTheNonsenseFactory/PyNNOnSpinnakerInstall.html
http://spinnakermanchester.github.io/2015.006.AnotherFineProductFromTheNonsenseFactory/VirtualMode.html
http://spinnakermanchester.github.io/2015.006.AnotherFineProductFromTheNonsenseFactory/SPyNNakerLimitations.html
http://spinnakermanchester.github.io/2015.006.AnotherFineProductFromTheNonsenseFactory/VirtualMode.html

2. Running a PyNN script on the EBRAINS portal

This section describes how an end user can run a PyNN simulation on the EBRAINS Portal /
collaborator, both through the Neuromorphic Computing Job Manager (section 2.2) and
through the SpiNNaker Jupyter service (section 2.3). We suggest that if you are testing out
PyNN scripts / networks, then you use the Jupyter service to interact with the machine; then,
if you wish to run more jobs once you are happy with your network and wish to get some
results (e.g. to do parameter sweeps), use the NMC Job Manager to submit scripts.

2.1 Getting an EBRAINS account

To acquire an EBRAINS account, go to https://ebrains.eu/register and follow the instructions.

2.2 Creating a Job on the EBRAINS portal/collaboratory.

1. First you must log onto the EBRAINS collaboratory via the link in the top right of the
page at:

https://wiki.ebrains.eu/bin/view/Main/

and you may then also find it useful to read the “Getting Started” documentation at

https://wiki.ebrains.eu/bin/view/Collabs/the-collaboratory/Getting%20Started/

2. To run jobs, you need to have your own collab; if you don’t yet have one then to do
this click on “Collabs” in the top-right menu, and then on the subsequent page click
on the “Create a collab” button. On this page, you will be required to give your collab
a Title, a Name, a Description, and declare whether it is private or public (note:

https://ebrains.eu/register
https://wiki.ebrains.eu/bin/view/Main/
https://wiki.ebrains.eu/bin/view/Collabs/the-collaboratory/Getting%20Started/

making it public makes it easier for others to see and help with your work should you
need it).

3. Once you have created your collab you will be able to edit the associated page
appropriately. It will look something like the following image (with less menu items on
the left-hand menu to start with).

4. In this instance, “SpiNNaker testing” links to the portal submission process that we
want to use, and “SpiNNaker Jupyter testing” links directly to a Jupyterlab that can be
run using your EBRAINS account. To create a portal submission link in this menu,
click on the “+ Create” button in the top right to get the following page:

5. Give your new page a Title, then highlight “Community App” and click “Create”

6. On this Community App screen select the “Neuromorphic Computing Job Manager”
and click “Save & View”

7. You should end up with something like this (without the completed jobs). In order to
run some jobs using the NMC Job Manager, you will need to request a quota; click
on Quotas (on the right of the black bar) and then “New Request” to get to

where you should fill in the Title & Summary (& Description) accordingly. Once your
quota has been approved it will show up when you again click “Quotas”.

8. Once your quota has been approved you are now ready to start running jobs. Click
on the white plus sign inside a blue circle at the top of the list of jobs, which will take
you to the following page:

9. On this page, under “Hardware Platform” select “SpiNNaker”.
10. There are now two ways in which you can submit a PyNN script; either by writing /

pasting a script into the editor directly, or directly from a git repository or zip archive
file.

11. If you submit a job via a git repository or archive, your script that you wish to run
either needs to be called “run.py”, or you need to specify it in the “Command” box
along with any (optional) command line arguments.

12. The “Hardware Configuration” box does not need to be filled in to use the SpiNNaker
backend, but gives you some options as to which version of the software you would
like to use and whether your script requires any additional installs; for more details
see
https://electronicvisions.github.io/hbp-sp9-guidebook/using_the_platform.html#hardw
are-platform-configuration

13. You can additionally put an optional number of tags on your job.
14. Once you are happy with what you have filled in on this page, you can click “Submit”.
15. This will return you to the job list: your Job will start in the “submitted” stage, then

“running” stage, then either “finished” or “error”.

https://electronicvisions.github.io/hbp-sp9-guidebook/using_the_platform.html#hardware-platform-configuration
https://electronicvisions.github.io/hbp-sp9-guidebook/using_the_platform.html#hardware-platform-configuration

16. You are able to view more about your job at any stage by clicking on the magnifying
glass symbol to the left of the row detailing your job. In particular, while the job is in
the “running” state you can see the current state of the log at the bottom of the page.

17. Once your job has reached the finished state, you can then download various files
associated with your job:

Note that compared to a “normal” local run of a PyNN script, in order to plot anything
using matplotlib you need to use plt.savefig(filename) rather than plt.show().
Anything plotted in this manner will be saved as one of the files you can download,
along with a directory of provenance reporting on your job as well as the output log
file of your job. Congratulations, you have now run a PyNN script job via the
EBRAINS portal.

2.3 Using the SpiNNaker JupyterLab via EBRAINS

1. It is possible to also use your collab to access SpiNNaker using Jupyter. You may
find this an easier and more interactive way to test your PyNN scripts on the machine
before running them using the NMC Job Manager described in the previous section.
In order to do this, from your collab main page, click on “+ Create”, then from the
subsequent page, give what you are creating a “Title”, select “Use Community App”,
click “Create”, then on the CommunityApp screen find and highlight the “SpiNNaker
Jupyter” app. Once highlighted, click “Save & View”, and this should then log you
directly into a SpiNNaker JupyterLab instance as shown in the following image:

For more information about our Jupyter setup see:

http://spinnakermanchester.github.io/common_pages/6.0.0/How_to_use_Jupyter_note
books_on_SpiNNaker.pdf

Note that you can also use the Jupyter Notebook instance as detailed in the above
document by simply doing File - Log Out, then once you log in again from the subsequent
screen it will give you the option of using the Notebook or Lab interfaces.

http://spinnakermanchester.github.io/common_pages/6.0.0/How_to_use_Jupyter_notebooks_on_SpiNNaker.pdf
http://spinnakermanchester.github.io/common_pages/6.0.0/How_to_use_Jupyter_notebooks_on_SpiNNaker.pdf

