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SpiNNaker - a chip multiprocessor for
neural network simulation.

Datasheet.

Features
• 18 ARM968 processors, each with:

• 64 Kbytes of tightly-coupled data memory;

• 32 Kbytes of tightly-coupled instruction memory;

• DMA controller;

• communications controller;

• vectored interrupt controller;

• low-power ‘wait for interrupt’ mode.

• Multicast communications router

• 6 self-timed inter-chip bidirectional links;

• 1,024 associative routing entries.

• Interface to 128Mbyte (nominal) Mobile DDR SDRAM

• over 1 Gbyte/s sustained block transfer rate;

• optionally incorporated within the same multi-chip package.

• Ethernet interface for host connection

• Fault-tolerant architecture

• defect detection, isolation, and function migration.

• Boot, test and debug interfaces.

Introduction
SpiNNaker is a chip multiprocessor designed specifically for the real-time simulation of large-scale
spiking neural networks. Each chip (along with its associated SDRAM chip) forms one node in a
scalable parallel system, connected to the other nodes through self-timed links.

The processing power is provided through the multiple ARM cores on each chip. In the standard
model, each ARM models multiple neurons, with each neuron being a coupled pair of differential
equations modelled in continuous ‘real’ time. Neurons communicate through atomic ‘spike’ events,
and these are communicated as discrete packets through the on- and inter-chip communications
fabric. The packet contains a routing key that is defined at its source and is used to implement
multicast routing through an associative router in each chip.

One processor on each SpiNNaker chip will perform system management functions; the
communications fabric supports point-to-point packets to enable co-ordinated system management
across local regions and across the entire system, and nearest-neighbour packets are used for system
flood-fill boot operations and for chip debug. In addition, fixed-route packets carry 64 bits of debug
information back to particular nodes for transmission to the host computer.
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Background
SpiNNaker was designed at the University of Manchester within an EPSRC-funded project in
collaboration with the University of Southampton, ARM Limited and Silistix Limited. Subsequent
development took place within a second EPSRC-funded project which added the universities of
Cambridge and Sheffield to the collaboration. The work would not have been possible without
EPSRC funding, and the support of the EPSRC and the industrial partners is gratefully
acknowledged.

Intellectual Property rights
All rights to the SpiNNaker design are the property of the University of Manchester with the
exception of those rights that accrue to the project partners in accordance with the contract terms.

Disclaimer
The details in this datasheet are presented in good faith but no liability can be accepted for errors or
inaccuracies. The design of a complex chip multiprocessor is a research activity where there are
many uncertainties to be faced, and there is no guarantee that a SpiNNaker system will perform in
accordance with the specifications presented here.

The APT group in the School of Computer Science at the University of Manchester was responsible
for all of the architectural and logic design of the SpiNNaker chip, with the exception of
synthesizable components supplied by ARM Limited and interconnect components supplied by
Silistix Limited. All design verification was also carried out by the APT group. As such the
industrial project partners bear no responsibility for the correct functioning of the device.

Error notification and feedback
Please email details of any errors, omissions, or suggestions for improvement to:
steve.furber@manchester.ac.uk.

Change history

version date changes

2.00 21/4/10 Full SpiNNaker chip initial version

2.01 19/10/10 Change CPU clocks, add package details, minor corrections.

2.02 8/12/10 Detail corrections and enhancements
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1. Chip organization

1.1 Block diagram
The primary functional components of SpiNNaker are illustrated in the figure below. 

Each chip contains 18 identical processing subsystems. At start-up, following self-test, one of the
processors is nominated as the Monitor Processor and thereafter performs system management
tasks. The other processors are responsible for modelling one or more neuron fascicles - a fascicle
being a group of neurons with associated inputs and outputs (although some processors may be
reserved as spares for fault-tolerance purposes).

The Router is responsible for routing neural event packets both between the on-chip processors and
from and to other SpiNNaker chips. The Tx and Rx interface components are used to extend the on-
chip communications NoC to other SpiNNaker chips. Inputs from the various on- and off-chip
sources are assembled into a single serial stream which is then passed to the Router.

Various resources are accessible from the processor systems via the System NoC. Each of the
processors has access to the shared off-chip (but possibly in the same package) SDRAM, and
various system components also connect through the System NoC in order that, whichever
processor is Monitor Processor, it will have access to these components.

The sharing of the SDRAM is an implementation convenience rather than a functional requirement,
although it may facilitate function migration in support of fault-tolerant operation.
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1.2 System-on-Chip hierarchy  
The SpiNNaker chip is viewed as having the following structural hierarchy, which is reflected
throughout the organisation of this datasheet:

• ARM968 processor subsystem

• the ARM968, with its tightly-coupled instruction and data memories

• Timer/counter and interrupt controller

• DMA controller, including System NoC interface

• Communications controller, including Communications NoC interface

• Communications NoC

• Router, including multicast, point-to-point, nearest-neighbour, fixed-route, default and emer-
gency routing functions

• 6 bidirectional inter-chip links

• communications NoC arbiter and fabric

• System NoC

• SDRAM interface

• System Controller

• Router configuration registers

• Ethernet MII interface

• Boot ROM

• System RAM

• Boot, test and debug

• central controller for ARM968 JTAG functions

• an off-chip serial boot ROM can be used if required

1.3 Register description convention

Registers are 32-bits (1 word) and are usually displayed in this datasheet as shown below:

• The grey-shaded areas of the register are unused. They will generally read as 0, and should be
written as 0 for maximum compatibility with any future functionality extensions.

• Reset values, where defined, are shown against a red shaded background.

Certain registers in the System Controller have protection against corruption by errant code: 

• Here any attempt to write the register must include the security code 0x5EC in the top 12 bits of
the data word. If the security code is not present the write will have no effect.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E M I Pre S O

reset: 0 0 1 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

�0x5EC R A MPID

reset: 0 1 1 1 1 1 1
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2. System architecture

SpiNNaker is designed to form (with its associated SDRAM chip) a node of a massively parallel
system. The system architecture is illustrated below:

2.1 Routing
The nodes are arranged in a triangular mesh with bidirectional links to 6 neighbours. The system
supports multicast packets (to carry neural event information, routed by the associative Multicast
Router), point-to-point packets (to carry system management and control information, routed by
table look-up), nearest-neighbour packets (to support boot-time flood-fill and chip debug) and
fixed-route packets (to convey application debug data back to the host computer).

Emergency routing
In the event of a link failing or congesting, traffic that would normally use that link is redirected in
hardware around two adjacent links that form a triangle with the failed link. This “emergency
routing” is intended to be temporary, and the operating system will identify a more permanent
resolution of the problem. The local Monitor Processor is informed of uses of emergency routing.

Deadlock avoidance
The communications system has potential deadlock scenarios because of the possibility of circular
dependencies between links. The policy used here to prevent deadlocks occurring is:

• no Router can ever be prevented from issuing its output.

The mechanisms used to ensure this are:

• outputs have sufficient buffering and capacity detection so that the Router knows whether or not
an output has the capacity to accept a packet;

1,2 2,2

2,1

2,0

1,10,1

0,0 1,0

0,2
Chip

SpiNNaker

SDRAM
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• emergency routing is used, where possible, to avoid overloading a blocked output;

• where emergency routing fails (because, for example, the alternative output is also blocked) the
packet is ‘dropped’ to a Router register, and the Monitor Processor informed;

The expectation is that the communications fabric will be lightly-loaded so that blocked links are
very rare. Where the operating system detects that this is not the case it will take measures to
correct the problem by modifying routing tables or migrating functionality.

Errant packet trap
Packets that get mis-routed could continue in the system for ever, following cyclic paths. To
prevent this all (apart from nearest-neighbour) packets are time stamped and a coarse global time
phase signal is used to trap old packets. To minimize overhead the time stamp is 2 bits, cycling 00 -
> 01 -> 11 -> 10, and when the packet is two time phases old (time sent XOR time now = 0b11) it is
dropped and an error flagged to the local Monitor Processor. The length of a time phase can be
adapted dynamically to the state of the system; normally, timed-out packets should be very rare so
the time phase can be conservatively long to minimise the risk of packets being dropped due to
congestion.

2.2 Time references
A slow (nominally 32kHz) global reference clock is distributed throughout the system and is
available to each processor via its DMA controller (which performs clock edge detection) and
vectored interrupt controller. Software may use this to generate the local time phase information.

Each processor also has a timer/counter driven from the local processor clock which can be used to
support time reference signals, for example a 1ms interrupt could be used to generate the time input
to the real-time neural models.

2.3 System-level address spaces
The system incorporates different levels of component that must be enumerated:

• Each Node (where a Node is a SpiNNaker chip plus SDRAM) must have a unique, fixed address
which is used as the destination ID for a point-to-point packet, and the addresses must be organ-
ised logically for algorithmic routing to function efficiently.

• Processors will be addressed relative to their host Node address, but this mapping will not be
fixed as an individual Processor’s role can change over time. Point-to-point packets addressed to
a Node will be delivered to the local Monitor Processor, whichever Processor is serving that
function. Internal to a Node there is hard-wired addressing of each Processor for system diagno-
sis purposes, but this mapping will generally be hidden outside the Node.

• The neuron address space is purely a software issue and is discussed in ‘Application notes’ on
page 95.
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3. ARM968 processing subsystem

SpiNNaker incorporates 18 ARM968 processing subsystems which provide the computational
capability of the device. Each of these subsystems is capable of generating and processing neural
events communicated via the Communications NoC and, alternatively, of fulfilling the role of
Monitor Processor.

3.1 Features
• a synthesized ARM968 module with:

• an ARM9TDMI processor;

• 32 Kbyte tightly-coupled instruction memory;

• 64 Kbyte tightly-coupled data memory;

• JTAG debug access.

• a local AHB with:

• communications controller connected to Communications NoC;

• DMA controller & interface to the System NoC;

• timer/counter and interrupt controller.

3.2 ARM968 subsystem organisation

3.3 Memory Map
The memory map of the ARM968 spans a number of devices and buses. The tightly-coupled
memories are directly connected to the processor and accessible at the processor clock speed. All
other parts of the memory map are visible via the AHB master interface, which runs at the full
processor clock rate. This gives direct access to the registers of the DMA controller,
communications controller and the timer/interrupt controller. In addition, a path is available

32KB
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64KB
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through the DMA controller onto the System NoC which provides processor access to all memory
resources on the System NoC. The memory map is defined as follows:

// ARM968 local memories
#define ITCM_START_ADDRESS 0x00000000 // instruction memory
#define DTCM_START_ADDRESS 0x00400000 // data memory

// Local peripherals - unbuffered write
#define COMM_CTL_START_ADDRESS_U 0x10000000 // Communications Controller
#define CTR_TIM_START_ADDRESS_U 0x11000000 // Counter-Timer
#define VIC_START_ADDRESS_U 0x1f000000 // vectored interrupt controller

// Local peripherals - buffered write
#define COMM_CTL_START_ADDRESS_B 0x20000000 // Communications Controller
#define CTR_TIM_START_ADDRESS_B 0x21000000 // Counter-Timer
#define VIC_START_ADDRESS_B 0x2f000000 // vectored interrupt controller

// DMA controller
#define DMA_CTL_START_ADDRESS_U 0x30000000 // DMA controller - unbuffered
#define DMA_CTL_START_ADDRESS_B 0x40000000 // DMA controller - buffered

// Unallocated; causes bus error 0x50000000 - 0x5fffffff

// SDRAM
#define SDRAM_START_ADDRESS_U 0x60000000 // SDRAM - buffered
#define SDRAM_START_ADDRESS_B 0x70000000 // SDRAM - unbuffered

// Unallocated; causes bus error 0x80000000 - 0xdfffffff

// System NoC peripherals - buffered write
#define PL340_APB_START_ADDRESS_B 0xe0000000 // PL340 APB port
#define RTR_CONFIG_START_ADDRESS_B 0xe1000000 // Router configuration
#define SYS_CTL_START_ADDRESS_B 0xe2000000 // System Controller
#define WATCHDOG_START_ADDRESS_B 0xe3000000 // Watchdog Timer
#define ETH_CTL_START_ADDRESS_B 0xe4000000 // Ethernet Controller
#define SYS_RAM_START_ADDRESS_B 0xe5000000 // System RAM
#define SYS_ROM_START_ADDRESS_B 0xe6000000 // System ROM

// Unallocated; causes bus error 0xe7000000 - 0xefffffff

// System NoC peripherals - unbuffered write
#define PL340_APB_START_ADDRESS_U 0xf0000000 // PL340 APB port
#define RTR_CONFIG_START_ADDRESS_U 0xf1000000 // Router configuration
#define SYS_CTL_START_ADDRESS_U 0xf2000000 // System Controller
#define WATCHDOG_START_ADDRESS_U 0xf3000000 // Watchdog Timer
#define ETH_CTL_START_ADDRESS_U 0xf4000000 // Ethernet Controller
#define SYS_RAM_START_ADDRESS_U 0xf5000000 // System RAM
#define SYS_ROM_START_ADDRESS_U 0xf6000000 // System ROM

// Unallocated; causes bus error 0xf7000000 - 0xfeffffff

// Boot area and VIC
#define BOOT_START_ADDRESS 0xff000000 // Boot area
#define HI_VECTORS 0xffff0000 // high vectors (for boot)
#define VIC_START_ADDRESS_H 0xfffff000 // vectored interrupt controller

The areas shown against a yellow background are accessible only by their local ARM968
processor, not by a DMA controller nor by Nearest Neighbour packets via the Router (though of
course the DMA controller can see the ITCM and DTCM areas through its second port, as these are
the source/destination for DMA transfers). The DMA controller and Nearest Neighbour packets see
the System RAM repeated across the bottom 16Mbytes of the address space from 0x00000000 to
0x00ffffff; the remainder of the yellow areas give undefined results and should not be addressed.

The ARM968 is configured to use high vectors after reset (to use the vectors in the Boot area), but
then switched to low vectors once the ITCM is enabled and initialised.

The vectored interrupt controller (VIC) has to be at 0xfffff000 to enable efficient access to its
vector registers.

All other peripherals start at a base address that can be formed with a single MOV immediate
instruction.
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4. ARM 968

The ARM968 (with its associated tightly-coupled instruction and data memories) forms the core
processing resource in SpiNNaker.

4.1 Features
• ARM9TDMI processor supporting the ARMv5TE architecture.

• 32 Kbyte tightly-coupled instruction memory (I-RAM).

• 64 Kbyte tightly-coupled data memory (D-RAM).

• AHB interface to external system.

• JTAG-controlled debug access.

• support for Thumb and signal processing instructions.

• low-power halt and wait for interrupt function.

4.2 Organization
See ARM DDI 0311C – the ARM968E-S datasheet.

4.3 Fault-tolerance

Fault insertion
• ARM9TDMI can be disabled.

• Software can corrupt I-RAM and D-RAM to model soft errors.

Fault detection
• A chip-wide watchdog timer catches runaway software.

• Self-test routines, run at start-up and during normal operation, can detect faults.

Fault isolation
• The ARM968 unit can be disabled from the System Controller.

• Defective locations in the I-RAM and D-RAM can be mapped out of use by software.

Reconfiguration
• Software will avoid using defective I-RAM and D-RAM locations.

• Functionality will migrate to an alternative Processor in the case of permanent faults that go
beyond the failure of one or two memory locations.
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5. Vectored interrupt controller

Each processor node on an SpiNNaker chip has a vectored interrupt controller (VIC) that is used to
enable and disable interrupts from various sources, and to wake the processor from sleep mode
when required. The interrupt controller provides centralised management of IRQ and FIQ sources,
and offers an efficient indication of the active sources for IRQ vectoring purposes.

The VIC is the ARM PL190, described in ARM DDI 0181E.

5.1 Features
• manages the various interrupt sources to each local processor.

• individual interrupt enables.

• routing to FIQ and/or IRQ,

• there will normally be only one FIQ source: e.g. CC Rx ready, or a specific packet-type received.

• a central interrupt status view.

• a vector to the respective IRQ handler.

• programmable IRQ priority.

• interrupt sources:

• Communication Controller flow-control interrupts;

• DMA complete/error/timeout;

• Timer 1 & 2 interrupts;

• interrupt from another processor on the chip (usually the Monitor processor), set via a register in
the System Controller;

• packet-error interrupt from the Router;

• system fault interrupt;

• Ethernet controller;

• off-chip signals;

• 32kHz slow system clock;

• software interrupt, for downgrading FIQ to IRQ.

5.2 Register summary
Base address: 0x2f000000 (buffered write), 0x1f000000 (unbuffered write), 0xfffff000 (high).

User registers
The following registers allow normal user programming of the VIC:

Name Offset R/W Function

r0: VICirqStatus 0x00 R IRQ status register

r1: VICfiqStatus 0x04 R FIQ status register

r2: VICrawInt 0x08 R raw interrupt status register

r3: VICintSel 0x0C R/W interrupt select register

r4: VICintEnable 0x10 R/W interrupt enable register
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ID registers
In addition, there are test ID registers that will not normally be of interest to the programmer:

See the VIC Technical Reference Manual ARM DDI 0181E, for further details of the ID registers.

5.3 Register details

r0: IRQ status

This read-only register yields the set of active IRQ requests (after masking).

r1: FIQ status

This read-only register yields the set of active FIQ requests (after masking).

r5: VICintEnClear 0x14 W interrupt enable clear register

r6: VICsoftInt 0x18 R/W soft interrupt register

r7: VICsoftIntClear 0x1C W soft interrupt clear register

r8: VICprotection 0x20 R/W protection register

r9: VICvectAddr 0x30 R/W vector address register

r10: VICdefVectAddr 0x34 R/W default vector address register

VICvectAddr[15:0] 0x100-13c R/W vector address registers

VICvectCtrl[15:0] 0x200-23c R/W vector control registers

Name Offset R/W Function

VICPeriphID0-3 0xFE0-C R Timer peripheral ID byte registers

VICPCID0-3 0xFF0-C R Timer Prime Cell ID byte registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IRQ status

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FIQ status

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name Offset R/W Function
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r2: raw interrupt status

This read-only register yields the set of active input interrupt requests (before any masking).

r3: interrupt select

This register selects for each of the 32 interrupt inputs whether it gets sent to IRQ (0) or FIQ (1).
The reset state is not specified (though is probably ‘0’?); all interrupts are disabled by r4 at reset.

r4: interrupt enable register

This register disables (0) or enables (1) each of the 32 interrupt inputs. Writing a ‘1’ sets the
corresponding bit in r4; writing a ‘0’ has no effect. Interrupts are all disabled at reset.

r5: interrupt enable clear

This write-only register selectively clears interrupt enable bits in r4. A ‘1’ clears the corresponding
bit in r4; a ‘0’ has no effect.

r6: soft interrupt register

This register enables software to force interrupt inputs to appear high (before masking). A ‘1’
written to any bit location will force the corresponding interrupt input to be active; writing a ‘0’ has
no effect. The reset state for these bits is unspecified, though probably ‘0’?

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

interrupt request status

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

interrupt select

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

interrupt enables

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

interrupt enable clear

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

soft interrupt register

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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r7: soft interrupt register clear

This write-only register selectively clears soft interrupt bits in r6. A ‘1’ clears the corresponding bit
in r6; a ‘0’ has no effect.

r8: protection

If the P bit is set VIC registers can only be accessed in a privileged mode; if it is clear then User-
mode code can access the registers.

r9: vector address

This register contains the address of the currently active interrupt service routine (ISR). It must be
read at the start of the ISR, and written at the end of the ISR to signal that the priority logic should
update to the next priority interrupt. Its state following reset is undefined.

r10: default vector address

The default vector address is used by the 16 interrupts that are not vectored. Its state following reset
is undefined.

vector address [15:0]

The vector address is the address of the ISR of the selected interrupt source. Their state following
reset is undefined.

vector control [15:0]

The interrupt source is selected by bits[4:0], which choose one of the 32 interrupt inputs. The

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

soft interrupt register clear

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P

reset: 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

vector address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

default vector address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

vector address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E Source

reset: 0 0 0 0 0 0



 

16

S
p

i
N

N
a

k
e

r
version 2.02 6/1/11

interrupt can be enabled (E = 1) or disabled (E = 0). It is disabled following reset. The highest
priority interrupt uses vector address [0] at offset 0x100 and vector control [0] at offset 0x200, and
then successively reduced priority is given to vector addresses [1], [2], ... and vector controls [1],
[2], ... at successively higher offset addresses.

5.4 Interrupt sources
19 of the 32 interrupt sources are local to the processor (and are coloured yellow in the table below)
and 13 are from chip-wide sources (which will normally be enabled only in the Monitor Processor).

# Name Function

0 Watchdog Watchdog timer interrupt

1 Software int used only for local software interrupt generation

2 Comms Rx the debug communications receiver interrupt

3 Comms Tx the debug communications transmitter interrupt

4 Timer 1 Local counter/timer interrupt 1

5 Timer 2 Local counter/timer interrupt 2

6 CC Rx ready Local comms controller packet received

7 CC Rx parity error Local comms controller received packet parity error

8 CC Rx framing error Local comms controller received packet framing error

9 CC Tx full Local comms controller transmit buffer full

10 CC Tx overflow Local comms controller transmit buffer overflow

11 CC Tx empty Local comms controller transmit buffer empty

12 DMA done Local DMA controller transfer complete

13 DMA error Local DMA controller error

14 DMA timeout Local DMA controller transfer timed out

15 Router diagnostics Router diagnostic counter event has occurred

16 Router dump Router packet dumped - indicates failed delivery

17 Router error Router error - packet parity, framing, or time stamp error

18 Sys Ctl int System Controller interrupt bit set for this processor

19 Ethernet Tx Ethernet transmit frame interrupt

20 Ethernet Rx Ethernet receive frame interrupt

21 Ethernet PHY Ethernet PHY/external interrupt

22 Slow Timer System-wide slow (nominally 32 KHz) timer interrupt

23 CC Tx not full Local comms controller can accept new Tx packet

24 CC MC Rx int Local comms controller multicast packet received
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5.5 Fault-tolerance

Fault insertion
It is fairly easy to mess up vector locations, and to fake interrupt sources.

Fault detection
A failed vector location effectively causes a jump to a random location; this would be messy!

Fault isolation
Failed vector locations can be removed from service.

Reconfiguration
A failed vector location can be removed from service (provided there are enough vector locations
available without it). Alternatively, the entire vector system could be shut down and interrupts run
by software inspection of the IRQ and FIQ status registers.

25 CC P2P Rx int Local comms controller point-to-point packet received

26 CC NN Rx int Local comms controller nearest neighbour packet received

27 CC FR Rx int Local comms controller fixed route packet received

28 Int[0] External interrupt request 0

29 Int[1] External interrupt request 1

30 GPIO[8] Signal on GPIO[8]

31 GPIO[9] Signal on GPIO[9]

# Name Function
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6. Counter/timer

Each processor node on a SpiNNaker chip has a counter/timer.

The counter/timers use the standard AMBA peripheral device described on page 4-24 of the AMBA
Design Kit Technical Reference Manual ARM DDI 0243A, February 2003. The peripheral has
been modified only in that the APB interface of the original has been replaced by an AHB interface
for direct connection to the ARM968 AHB bus.

6.1 Features
• the counter/timer unit provides two independent counters, for example for:

• millisecond interrupts for real-time dynamics.

• free-running and periodic counting modes:

• automatic reload for precise periodic timing;

• one-shot and wrapping count modes.

• the counter clock (which runs at the processor clock frequency) may be pre-scaled by dividing by 1, 
16 or 256.

6.2 Register summary
Base address: 0x21000000 (buffered write), 0x11000000 (unbuffered write).

User registers
The following registers allow normal user programming of the counter/timers:

Name Offset R/W Function

r0: Timer1load 0x00 R/W Load value for Timer 1

r1: Timer1value 0x04 R Current value of Timer 1

r2: Timer1Ctl 0x08 R/W Timer 1 control

r3: Timer1IntClr 0x0C W Timer 1 interrupt clear

r4: Timer1RIS 0x10 R Timer 1 raw interrupt status

r5: Timer1MIS 0x14 R Timer 1 masked interrupt status

r6: Timer1BGload 0x18 R/W Background load value for Timer 1

r8: Timer2load 0x20 R/W Load value for Timer 2

r9: Timer2value 0x24 R Current value of Timer 2

r10: Timer2Ctl 0x28 R/W Timer 2control

r11: Timer2IntClr 0x2C W Timer 2interrupt clear

r12: Timer2RIS 0x30 R Timer 2raw interrupt status

r13: Timer2MIS 0x34 R Timer 2masked interrupt status

r14: Timer2BGload 0x38 R/W Background load value for Timer 2
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Test and ID registers
In addition, there are test and ID registers that will not normally be of interest to the programmer:

See AMBA Design Kit Technical Reference Manual ARM DDI 0243A, February 2003, for further
details of the test and ID registers.

6.3 Register details
As both timers have the same register layout they can both be described as follows (X = 1 or 2):

r0/8: Timer X load value

When written, the 32-bit value is loaded immediately into the counter, which then counts down
from the loaded value. The background load value (r6/14) is an alternative view of this register
which is loaded into the counter only when the counter next reaches zero.

r1/9: Current value of Timer X

This read-only register yields the current count value for Timer X.

r2/10: Timer X control

The shaded fields should be written as zero and are undefined on read. The functions of the
remaining fields are described in the table below:

Name Offset R/W Function

TimerITCR 0xF00 R/W Timer integration test control register

TimerITOP 0xF04 W Timer integration test output set register

TimerPeriphID0-3 0xFE0-C R Timer peripheral ID byte registers

TimerPCID0-3 0xFF0-C R Timer Prime Cell ID byte registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Load value for TimerX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerX current count

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E M I Pre S O

reset: 0 0 1 0 0 0 0

Name bits R/W Function

E: Enable 7 R/W enable counter/timer (1 = enabled)
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r3/11: Timer X interrupt clear

Any write to this address will clear the interrupt request.

r4/12: Timer X raw interrupt status

Bit zero yields the raw (unmasked) interrupt request status of this counter/timer.

r5/13: Timer X masked interrupt status

Bit zero yields the masked interrupt status of this counter/timer.

r6/14: Timer X background load value

The 32-bit value written to this register will be loaded into the counter when it next counts down to
zero. Reading this register will yield the same value as reading register 0/8.

M: Mode 6 R/W 0 = free-running; 1 = periodic

I: Int enable 5 R/W enable interrupt (1 = enabled)

Pre: TimerPre 3:2 R/W divide input clock by 1 (00), 16 (01), 256 (10)

S: Timer size 1 R/W 0 = 16 bit, 1 = 32 bit

O: One shot 0 R/W 0 = wrapping mode, 1 = one shot

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

reset: 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M

reset: 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Background load value for TimerX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function
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6.4 Fault-tolerance

Fault insertion
Disabling a counter (by clearing the E bit in its control register) will cause it to fail in its function.

Fault detection
Use the second counter/timer with a longer period to check the calibration of the first?

Fault isolation
Disable the counter/timer with the E bit in the control register; disable its interrupt output; disable
the interrupt in the interrupt controller.

Reconfiguration
If one counter fails then a system that requires only one counter can use the other one.
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7. DMA controller

Each ARM968 processing subsystem includes a DMA controller. The DMA controller is primarily
used for transferring inter-neural connection data from the SDRAM in large blocks in response to
an input event arriving at a fascicle processor, and for returning updated connection data during
learning. In addition, the DMA controller can transfer data to/from other targets on the System NoC
such as the System RAM and Boot ROM.

As a secondary function the DMA controller incorporates a ‘Bridge’ across which its host ARM968
has direct read and write access to System NoC devices, including the SDRAM. The ARM968 can
use the Bridge whether or not DMA transfers are active.

7.1 Features
• DMA engine supporting parallel operations:

• DMA transfers;

• direct pass-through requests from the ARM968;

• dual buffers supporting simultaneous direct and DMA transfers.

• Support for CRC error control in transferred blocks.

• Interrupt-driven or polled DMA completion notification:

• DMA complete interrupt signal;

• various DMA error interrupt signals;

• DMA time-out interrupt signal.

• Parameterisable buffer sizes.

• Direct and DMA request queueing.

7.2 Using the DMA controller
There are 2 types of requests for DMA controller services. DMA transfers are initiated by writing to
control registers in the controller, executed in the background, and signal an interrupt when
complete. Bridge transfers occur when the ARM initiates a request directly to the needed device or
service. The DMA controller fulfills these requests transparently, the host processor retaining full
control of the transfer. Invisible to the user, the controller may buffer the data from write requests
for more efficient bus management. If an error occurs on such a buffered write the DMA controller
can signal an error interrupt.

The controller acts as a Bridge between the AHB bus on the ARM AHB slave interface and the AXI
interface on the system NoC, performing the required address and control resequencing (stripping
addresses from non-first beats of a burst), data flow management and request arbitration. The
arbiter prioritises requests in the following order:
1. Bridge reads,

2. Bridge writes,

3. DMA burst requests.

No request can gain access to the AXI interface until any active burst transaction on the interface
has completed. Read requests while a DMA transfer is in progress require special handling. The
read must wait until any active request has completed, and therefore a Bridge read could stall the
processor and AHB slave bus for many cycles. In addition, if buffered writes exist, potential data
coherency conflicts exist. The recommended procedure is for the ARM processor to interrogate the
WB active (A) bit in the DMA Status register (STAT) before requesting a Bridge read.

To initiate a DMA transfer, the ARM must write to the following registers in the DMA controller:
System Address (ADRS), TCM Address (ADRT), and Description (DESC). The order of writing of



 version 2.02 6/1/11

23

S
p

i
N

N
a

k
e

r

the first two register operations is not important, but the Description write must be the last as it
commits the DMA transfer. The processor may also optionally write the CRC and Global Control
(GCTL) registers to set up additional parameters. The expected model, however, is that these
registers are updated infrequently, perhaps only once after power-up. The processor may read from
any register at any time. The processor may have a maximum of 2 submitted DMA requests of
which only one will be active. When the transfer queue is empty (as indicated by the Q bit in the
Status (STAT) register), the processor may queue another request.

Accesses to DMA Controller registers are restricted to programs running on the ARM968 in
privileged (i.e. non-user) modes. Attempts to access these registers in user mode will result in a bus
error.

An attempt to write register r1 to r3 when the queue is full will result in a bus error.

Any access (read or write) to a non-existent register will result in a bus error.

Non-word-aligned addresses and byte and half-word accesses will result in a bus error.

7.3 Register summary
Base address: 0x40000000 (buffered write), 0x30000000 (unbuffered write).

Name Offset R/W Function

r0: unused 0x00

r1: ADRS 0x04 R/W DMA address on the system interface

r2: ADRT 0x08 R/W DMA address on the TCM interface

r3: DESC 0x0C R/W DMA transfer description

r4: CTRL 0x10 R/W Control DMA transfer

r5: STAT 0x14 R Status of DMA and other transfers

r6: GCTL 0x18 R/W Control of the DMA device

r7: CRCC 0x1C R CRC value calculated by CRC block

r8: CRCR 0x20 R CRC value in received block

r9: TMTV 0x24 R/W Timeout value

r10: StatsCtl 0x28 R/W Statistics counters control

r16-23: Stats0-7 0x40-5C R Statistics counters

r64: unused 0x100

r65: AD2S 0x104 R Active system address

r66: AD2T 0x108 R Active TCM address

r67: DES2 0x10C R Active transfer description

r96-r127 0x180-1FC R/W CRC polynomial matrix
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7.4 Register details

r0: unused

r1: ADRS - System Address.

The 32-bit start byte address on the system interface. Note that a read is considered a data
movement from a source on the system bus to a destination on the TCM bus. DMA transfers are
word-aligned, so bits[1:0] are fixed at zero.

r2: ADRT - TCM Address.  

The 32-bit start address on the TCM interface.

r3: DESC - DMA transfer description.

The function of these fields is described in the table below:

The TCM as currently implemented has a size of 64Kbytes (for the data TCM). A DMA transfer
must of necessity either take as a source or a destination the TCM, justifying this restriction. DMA
transfers are word-aligned, so bits[1:0] are fixed at zero.

The Burst length defines the unit of transfer (in words or double-words, depending on W) across the

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

System Address 00

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TCM Address 00

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Transfer ID P W burst C D Length 00

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

Transfer ID 31:26 R/W software defined transfer ID

P: Privilege 25 R/W DMA transfer mode is user (0) or privileged (1)

W: Width 24 R/W transfer width is word (0) or double-word (1)

Burst 23:21 R/W burst length = 2B x Width, B = 0..4 (i.e max 16)

C: CRC 20 R/W check (read) or generate (write) CRC

D: Direction 19 R/W read from (0) or write to (1) system bus

Length 16:2 R/W length of the DMA transfer, in words
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System NoC. Longer bursts will in general make more efficient use of the available SDRAM
bandwidth.

Note that the Length excludes the 32-bit CRC word, if CRC is used.

Writing to this register automatically commits a transfer as defined by the values in r1-r3.

r4: CTRL - Control Register 

The functions of these fields are described in the table below:

These bits can only be set to 1 by the user, they cannot be reset. Writing a 0 has no effect. They will
clear automatically once they have taken effect, which will be at the next safe opportunity, typically
between transfer bursts.

r5: STAT - Status Register.

The functions of these fields are described in the table below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

W T D R A U

reset: 0 0 0 0 0 0

Name bits R/W Function

W: clear WB Int 5 R/W clear Write Buffer interrupt request

T: clear Timeout Int 4 R/W clear Timeout interrupt request

D: clear Done Int 3 R/W clear Done interrupt request

R: Restart 2 R/W resume transfer (clears DMA errors)

A: Abort 1 R/W end current transfer and discard data

U: Uncommit 0 R/W setting this bit uncommits a queued transfer

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

processor ID Condition Codes A F Q P T

hardwired proc ID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

processor ID 31:24 R hardwired processor ID identifies CPU on chip

Condition Codes 20:10 R DMA condition codes

A: WB active 4 R write buffer is not empty

F: WB full 3 R write buffer is full

Q: Queue full 2 R DMA transfer is queued - registers are full

P: Paused 1 R DMA transfer is PAUSED
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The condition codes are defined as follows:

When a DMA error occurs the corresponding condition code flag is set, the DMA engine is
PAUSED (bit[1]) and the current transfer is terminated. A queued transfer remains in the queue but
is not started. A new transfer can be committed if the queue is empty, but it will not start until the
DMA controller is brought out of PAUSE. AD2S, AD2T and DES2 (r65-67) contain information
about the failed transfer and can be used to diagnose the problem. A restart command (r4 bit[2]) is
required to bring the DMA controller out of PAUSE. This will clear the error codes [16:13] and
restart DMA operation. The terminated transfer must be restarted explicitly by software if this is
required.

A soft reset will set bit[17], clear the transfer queue and take the DMA controller into the IDLE
state. The DMA controller is not PAUSED, and new transfers can be committed and start
immediately. A restart command (r4 bit[2]) is required to clear the soft reset flag [17] - starting a
new transfer does NOT clear it.

Timeout [12] and Write Buffer error [20] have explicit clears in CTRL.

The two transfer done bits [11:10] count up through the sequence 00 -> 01 -> 11 as DMA transfers
complete, and count down through the reverse sequence when a 1 is written to CTRL[3]. As a result
of this coding, Transfer Done [10] can be read as indicating that at least one DMA transfer has
completed, and a second completed transfer can be handled by inspecting bit[11] in software or left
to be handled by a subsequent Transfer Done interrupt.

T: Transferring 0 R DMA transfer in progress

Name bits R/W Function

Write buff error 20 R a buffered write transfer has failed

TBD 19:18 R not yet allocated

Soft reset 17 R a soft reset of the DMA controller has happened

User abort 16 R the user has aborted the transfer (via r4)

AXI error 15 R the AXI interface has signalled a transfer error

TCM error 14 R the TCM AHB interface has signalled an error

CRC error 13 R the calculated and received CRCs differ

Timeout 12 R a burst transfer has not completed in time

2nd transfer done 11 R 2nd DMA transfer has completed without error

Transfer done 10 R a DMA transfer has completed without error

Name bits R/W Function
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r6: GCTL - Global Control

The functions of these fields are described in the table below:

The DMA controller passes four interrupt request lines to the VIC:

• dmac_done: the logical OR of GCTL[11:10] & STAT[11:10]

• dmac_timeout: GCTL[12] & STAT[12]

• dmac_error: the logical OR of GCTL[20:13] & STAT[20:13]

• system-wide slow (nominally 32 KHz) timer interrupt

Note that write buffer errors and timeout errors do NOT stop the DMA engine nor the transfer in
progress.

The system-wide slow timer is a clock signal that sets bit[31] on every rising edge, thereby raising
an interrupt request to the VIC, and is cleared by writing a 0 to bit[31]. Writing a 1 to bit[31] has no
effect.

r7: CRCC - Calculated CRC

This is the 32-bit CRC value calculated by the DMA CRC unit.

r8: CRCR - Received CRC

This is the 32-bit CRC value read in the block of data loaded by a DMA transfer.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T Interrupt enables B

0 0 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

T: Timer 31 R/W system-wide slow timer status and clear

Interrupt enables 20:10 R/W respective interrupt enables for the r5 conditions

B: Bridge buffer 0 R/W enable Bridge write buffer

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CRC_value (calculated)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CRC_value (received)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



 

28

S
p

i
N

N
a

k
e

r
version 2.02 6/1/11

r9: TMTV - Timeout value

This is a 10-bit counter value used to determine when the DMA controller should timeout on an
attempted transfer burst. The count units are clock cycles. When TMTV = 0 the timeout counter is
disabled. Note that a timeout will not stop the transfer.

r10: StatsCtl - Statistics counters control

E, bit[0], enables the statistics counters (r16-23).

Writing ‘1’ to C, bit[1], zeroes the statistics counters. Writing a ‘0’ has no effect. Bit[1] always
reads ‘0’.

r16-23: Stats0-7 - Statistics counters

These eight 16-bit counter registers record statistics relating to the latency of DMA transations
across the System NoC. Count0 records the number of transactions that complete in 0-127 clock
cycles, Count1 128-255 clock cycles, and so on up to Count7 which counts transactions that
complete in 896+ clock cycles.

The counters are enabled and cleared via r10.

r65-67: Active DMA transfer registers
These registers are not directly written. They reflect the state of the active DMA transfer, with
AD2S and AD2T holding the respective System and TCM addresses to be used in the next burst of
the transfer, and DES2 holding the description of the transfer in progress (the remaining length, ID,
burst size, and direction).

r96-127: CRC polynomial matrix

The CRC hardware is highly programmable and can be used in a number of ways to detect, and
possibly correct, errors in blocks of data transferred by the DMA controller between the ARM968
DTCM and the off-chip SDRAM.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

V 00000

reset: 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C E

reset: 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Count0-7

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CRC_polynomial row[31:0]
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For example, to use the Ethernet 32-bit CRC with polynomial 0x04C11DB7, the following 32
hexadecimal values should be programmed into r96-127:

FB808B20, 7DC04590, BEE022C8, 5F701164, 2FB808B2, 97DC0459, B06E890C, 58374486,
AC1BA243, AD8D5A01, AD462620, 56A31310, 2B518988, 95A8C4C4, CAD46262, 656A3131,
493593B8, 249AC9DC, 924D64EE, C926B277, 9F13D21B, B409622D, 21843A36, 90C21D1B,
33E185AD, 627049F6, 313824FB, E31C995D, 8A0EC78E, C50763C7, 19033AC3, F7011641.

The CRC unit is configurable to use a different 32-bit polynomial, a different polynomial length,
and a different data word length. For example, it can be configured to compute CRC16 separately
for each half-word of the data stream. A Matlab program can be used to determine the appropriate
polynomial matrix values.

7.5 Fault-tolerance

Fault insertion
Software can introduce errors in data blocks in SDRAM which should be trapped by the CRC
hardware.

Fault detection
The CRC unit can detect errors in the data transferred by the DMA controller.

The DMA controller will time-out if a transaction takes too long.

Fault isolation
The DMA Controller is mission-critical to the local processing subsystem, so if it fails the
subsystem should be disabled and isolated.

Reconfiguration
The local processing subsystem is shut down and its functions migrated to another subsystem on
this or another chip. It should be possible to recover all of the subsystem state and to migrate it, via
the SDRAM, to a functional alternative.



 

30

S
p

i
N

N
a

k
e

r
version 2.02 6/1/11

8. Communications controller

Each processor node on SpiNNaker includes a communications controller which is responsible for
generating and receiving packets to and from the communications network.

8.1 Features
• Support for 4 packet types:

• multicast (MC) neural event packets routed by a key provided at the source;

• point-to-point (P2P) packets routed by destination address;

• nearest-neighbour (NN) packets routed by arrival port;

• fixed-route (FR) packets routed by the contents of a register.

• Packets are either 40 or 72 bits long. The longer packets carry a 32-bit payload.

• 2-bit time stamp (used by Routers to trap errant packets).

• Parity (to detect some corrupt packets).

8.2 Packet formats

Neural event multicast (MC) packets (type 0)
Neural event packets include a control byte and a 32-bit routing key inserted by the source. In
addition they may include an optional 32-bit payload:

The 8-bit control field includes packet type (bits[7:6] = 00 for multicast packets), emergency
routing and time stamp information, a payload indicator, and error detection (parity) information:

Point-to-point (P2P) packets (type 1)
Point-to-point packets include 16-bit source and destination chip IDs, plus a control byte and an
optional 32-bit payload:

Here the 8-bit control field includes packet type (bits[7:6] = 01 for P2P packets), a sequence code,
time stamp, a payload indicator and error detection (parity) information:

8 bits 32 bits 32 bits

control routing key optional payload

7 6 5 4 3 2 1 0

0 0 emergency routing time stamp payload parity

8 bits 16 bits 16 bits 32 bits

control source ID destination ID optional payload

7 6 5 4 3 2 1 0

0 1 seq code time stamp payload parity
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Nearest-neighbour (NN) packets (type 2)
Nearest-neighbour packets include a 32-bit address or operation field, plus a control byte and an
optional 32-bit payload:

Here the 8-bit control field includes packet type (bits[7:6] = 10 for NN packets), a ‘peek/poke’ or
‘normal’ type indicator (T), routing information, a payload indicator and error detection (parity)
information:

Fixed-Route (FR) packets (type 3)
Fixed-route packets include a 32-bit payload field, plus a control byte and an optional 32-bit
payload extension:

Here the 8-bit control field includes packet type (bits[7:6] = 11 for FR packets), emergency routing
and time stamp information, a payload indicator, and error detection (parity) information:

8.3 Control byte summary
The various fields in the control bytes of the different packet types are summarised below:

8 bits 32 bits 32 bits

control address/operation optional payload

7 6 5 4 3 2 1 0

1 0 T route payload parity

8 bits 32 bits 32 bits

control payload optional payload extension

7 6 5 4 3 2 1 0

1 1 emergency routing time stamp payload parity

Field Name bits Function

parity 0 parity of complete packet (including payload when used)

payload 1 data payload (1) or no data payload (0)

time stamp 3:2 phase marker indicating time packet was launched

seq code 5:4 P2P only: sequence code, software defined

emergency routing 5:4 MC & FR: used to control routing around a failed link

route 4:2 NN only: information for the Router

T: NN packet type 5 NN only: packet type - normal (0) or peek/poke (1)

packet type 7:6 = 00 for MC; = 01 for P2P; = 10 for NN; = 11 for FR
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parity
The complete packet (including the data payload where used) will have odd parity.

data
Indicates whether the packet has a 32-bit data payload (= 1) or not (= 0).

time stamp
The system has a global time phase that cycles through 00 -> 01 -> 11 -> 10 -> 00. Global
synchronisation must be accurate to within one time phase (the duration of which is programmable
and may be dynamically variable). A packet is launched with a time stamp equal to the current time
phase, and if a Router finds a packet that is two time phases old (time now XOR time launched =
11) it will drop it to the local Monitor Processor. The time stamp is inserted by the local Router if
the route field in SAR (see ‘Register details’ on page 33) is 111, which is the normal case, so the
Communication Controller need do nothing here. If SAR holds a different value in the route field
the time stamp from TCR is used.

seq code
P2P packets may use these bits (under software control) to indicate the sequence of data payloads,
or for other purposes.

emergency routing
MC & FR packets use these bits to control emergency routing around a failed or congested link:

• 00 -> normal packet;

• 01 -> the packet has been redirected by the previous Router through an emergency route along
with a normal copy of the packet. The receiving Router should treat this as a combined normal
plus emergency packet.

• 10 -> the packet has been redirected by the previous Router through an emergency route which
would not be used for a normal packet.

• 11 -> this emergency packet is reverting to its normal route.

route
These bits are set at packet launch to the values defined in the control register. They enable a packet
to be directed to a particular neighbour (0 - 5), broadcast to all or a subset (as defined in the Router
r33 ‘NN broadcast’ bits - see ‘r33: fixed-route packet routing’ on page 49) of neighbours (6), or to
the local Monitor Processor (7).

T (NN packet type)
This bit specifies whether an NN packet is ‘normal’, so that it is delivered to the Monitor Processor
on the neighbouring chip(s), or ‘peek/poke’, so that performs a read or write access to the
neighbouring chip’s System NoC resource.

packet type
These bits indicate whether the packet is a multicast (00), point-to-point (01), nearest-neighbour
(10) or fixed-route (11) packet.

8.4 Debug access to neighbouring devices
The ‘peek’ and ‘poke’ mechanism gives access to the System NoC address space on any
neighbouring device without processor intervention on that chip. To read a word, include its
address in a ‘peek/poke’ nearest neighbour packet output (i.e. with the T bit set). Only word
addresses are permitted. The absence of a payload indicates that a read (‘peek’) is required. This
would normally be done by a Monitor Processor although, in principle, any processor can output
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this packet.

The target device performs the appropriate access and returns a response on the corresponding link
input. This is delivered to the processor designated as Monitor Processor in the local router.  The
response is a ‘normal’ NN packet which carries the requested word as payload. The address field is
also returned for identification purposes with the least significant bit set to indicate a response.  Bit
1 of the address will also be set if the access caused a bus error.

Writing (‘poke’) is similar; including a payload in the outgoing packet causes that word to be
written. A payload-less response packet is returned which will indicate the error status.

8.5 Register summary
Base address: 0x20000000 (buffered write), 0x10000000 (unbuffered write).

A packet will contain a data payload if r1 is written before r2; this can be performed using an ARM
STM instruction.

8.6 Register details

r0: TCR - transmit control

The functions of these fields are described in the table below:

Name Offset R/W Function

r0: TCR (Tx control) 0x00 R/W Controls packet transmission

r1: TDR (Tx data) 0x04 W 32-bit data for transmission

r2: TKR (Tx key) 0x08 W Send MC key/P2P dest ID & seq code

r3: RSR (Rx status) 0x0C R/W Indicates packet reception status

r4: RDR (Rx data) 0x10 R 32-bit received data

r5: RKR (Rx key) 0x14 R Received MC key/P2P source ID & seq code

r6: SAR (Source addr) 0x18 R/W P2P source address

r7: TSTR (test) 0x1C R/W Used for test purposes

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E F O N control byte

1 0 0 1 0 0 0 0 0 0 0 0

Name bits R/W Function

E: empty 31 R Tx buffer empty

F: full 30 R/W Tx buffer full (sticky)

O: overrun 29 R/W Tx buffer overrun (sticky)

N: not full 28 R Tx buffer not full, so it is safe to send a packet
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The parity field in the control byte will be replaced by an automatically-generated value when the
packet is launched, and the sequence field will be replaced by the value in TKR. The time stamp
(where applicable) will be inserted by the local Router if the route field in SAR is 111, otherwise
the value here will be used.

The transmit buffer full and not full controls are expected to be used, by polling or interrupt, to
prevent buffer overrun. Tx buffer full is sticky and, once set, will remain set until 0 is written to bit
30. Transmit buffer overrun indicates packet loss and will remain set until explicitly cleared by
writing 0 to bit 29.

E, F, O and N reflect the levels on the Tx interrupt signals sent to the interrupt controller.

r1: TDR - transmit data payload

If data is written into TDR before a send key or dest ID is written into TKR, the packet initiated by
writing to TKR will include the contents of TDR as its data payload. If no data is written into TDR
before a send key or dest ID is written into TKR the packet will carry no data payload.

r2: TKR - send MC key or P2P dest ID & sequence code
Writing to TKR causes a packet to be issued (with a data payload if TDR was written previously).

If bits[23:22] of the control register in TCR are 00 the Communication Controller is set to send
multicast packets and a 32-bit routing key should be written into TKR. The 32-bit routing key is
used by the associative multicast Routers to deliver the packet to the appropriate destination(s).

If bits[23:22] of the control register are 01 the Communication Controller is set to send point-to-
point packets and the value written into TKR should include the 16-bit address of the destination
chip in bits[15:0] and a sequence code in bits[17:16]. (See ‘seq code’ on page 32.)

If bits[23:22] of the control register are 10 the Communication Controller is set to send nearest
neighbour packets and the 32-bit NN address/operation field should be written in TKR.

If bits[23:22] of the control register are 11 the Communications Controller is set to send fixed-route
packets and the value written into TKR is a 32-bit payload, possibly augmented by a further 32 bits
in TDR if this was written previously.

control byte 23:16 W control byte of next sent packet

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit data payload for sending with next packet

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit multicast routing key

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sq 16-bit destination ID

Name bits R/W Function
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r3: RSR - receive status

The functions of these fields are described in the table below:

Any packet that is received will set R, which will remain set until RKR has been read. A packet that
is received with a parity and/or framing error also sets T and/or A. These bits remain set until
explicitly reset by writing 0 to bit 30 or bit 29 respectively.

R, T, A, M, P, N & F reflect the levels on the Rx interrupt signals sent to the interrupt controller.

Note that these status bits will have a one-cycle latency before becoming valid so, for example,
checking R one cycle after reading RKR will return 1, the old value.

r4: RDR - received data

If a received packet carries a data payload the payload will be delivered here and will remain valid
until r5 is read.

r5: RKR - received MC key or P2P source ID & sequence code
A received packet will deliver its MC routing key, NN address or P2P source ID and sequence code
to RKR. For an MC or NN packet this will be the exact value that the sender placed into its TKR for
transmission; for a P2P packet the sequence number will be that placed by the sender into its TKR,
and the 16-bit source ID will be that in the sender’s SAR.

The register is read sensitive - once read it will change as soon as the next packet arrives.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R T A E Route control byte F N P M

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

R: received 31 R Rx packet received

T: parity 30 R/W Rx packet parity error (sticky)

A: framing error 29 R/W Rx packet framing error (sticky)

E: error-free 28 R Rx packet received without error

Route 26:24 R Rx route field from packet

Control byte 23:16 R Control byte of last Rx packet

F: FR packet 3 R error-free fixed-route packet received

N: NN packet 2 R error-free nearest-neighbour packet received

P: P2P packet 1 R error-free point-to-point packet received

M: MC packet 0 R error-free multicast packet received

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit received data payload
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r6: SAR - source address and route

The functions of these fields are described in the table below:

The P2P source ID is expected to be configured once at start-up.

The route field allows a packet to be sent by a processor to the router which appears to have come
from one of the external links. Normally this field will be set to 7 (0b111) but can be set to a link
number in the range 0 to 5 to achieve this.

r7: TSTR - test
Setting bit 0 of this register makes all registers read/write for test purposes. Clearing bit 0 restricts
write access to those register bits marked as read-only in this datasheet. All register bits may be read
at any time. Bit 0 is cleared by reset.

8.7 Fault-tolerance

Fault insertion
Software can cause the Communications Controller to misbehave in several ways including
inserting dodgy routing keys, source IDs, destination IDs.

Fault detection
Parity of received packet; received packet framing error; transmit buffer overrun.

Fault isolation
The Communications Controller is mission-critical to the local processing subsystem, so if it fails
the subsystem should be disabled and isolated.

Reconfiguration
The local processing subsystem is shut down and its functions migrated to another subsystem on
this or another chip. It should be possible to recover all of the subsystem state and to migrate it, via
the SDRAM, to a functional alternative.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Route p2p source ID

reset: 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

Route 26:24 W Set ‘fake’ route in packet

P2P source ID 15:0 W 16-bit chip source ID for P2P packets
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9. Communications NoC

The Communications NoC carries packets between the processors on the same or different chips. It
plays a central role in the system architecture. Its connectivity to the other components is shown the
the chip block diagram in ‘Chip organization’ on page 5.

9.1 Features
• On- and inter-chip links

• Router which handles multicast, point-to-point, nearest neighbour and fixed-route packets.

• Arbiter to merge all sources into a sequential packet stream into the Router.

• Individual links can be reset to clear blockages and deadlocks.

9.2 Input structure
The input structure is a tree Arbiter which merges the various sources of packets into a single
stream. Its structure is illustrated below. The numbers indicate source tagging of the packets.

9.3 Output structure
The Router produces separate outputs to all on-chip processor nodes and to the off-chip links, so the
output connectivity is a set of individual self-timed links.
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10. Router

The Router is responsible for routing all packets that arrive at its input to one or more of its outputs.
It is responsible for routing multicast neural event packets, which it does through an associative
multicast router subsystem, point-to-point packets (for which it uses a look-up table), nearest-
neighbour packets (using a simple algorithmic process), fixed-route packet routing (defined in a
register), default routing (when a multicast packet does not match any entry in the multicast router)
and emergency routing (when an output link is blocked due to congestion or hardware failure).

Various error conditions are identified and handled by the Router, for example packet parity errors,
time-out, and output link failure.

10.1 Features
• 1,024 programmable associative multicast (MC) routing entries.

• associative routing based on source ‘key’;

• with flexible ‘don’t care’ masking;

• look-up table routing of point-to-point (P2P) packets.

• routing of nearest-neighbour (NN) and fixed-route (FR) packets.

• support for 40- and 72-bit packets.

• default routing of unmatched multicast packets.

• automatic ‘emergency’ re-routing around failed links.

• programmable wait time before emergency routing and before dropping packet.

• pipelined implementation to route 1 packet per cycle (peak).

• back-pressure flow control;

• power-saving pipeline control.

• failure detection and handling:

• packet parity error;

• time-expired packet;

• output link failure;

• packet framing (wrong length) error.

10.2 Description
Packets arrive from other nodes via the link receiver interfaces and from internal processor nodes
and are presented to the router one-at-a-time. The Arbiter is responsible for determining the order of
presentation of the packets, but as each packet is handled independently the order is unimportant
(though it is desirable for packets following the same route to stay in order).

Each multicast packet contains an identifier that is used by the Router to determine which of the
outputs the packet is sent to. These outputs may include any subset of the output links, where the
packet may be sent via the respective link transmitter interface, and/or any subset of the internal
processor nodes, where the packet is sent to the respective Communications Controller.

For the neural network application the identifier can be simply a number that uniquely identifies the
source of the packet – the neuron that generated the packet by firing. This is ‘source address
routing’. In this case the packet need contain only this identifier, as a neural spike is an ‘event’
where the only information is that the neuron has fired. The Router then functions simply as a look-
up table where for each identifier it looks up a routing word, where each routing word contains 1 bit
for each destination (each link transmitter interface and each local processor) to indicate whether or
not the packet should be passed to that destination.
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10.3 Internal organization
The internal organization of the Router is illustrated in the figure below.

Packets are passed as complete 40- or 72-bit units from the Arbiter, together with the identity of the
Rx interface that the packet arrived through (for nearest-neighbour, emergency and default routing).
The first stage of processing here is to identify errors. The second stage passes the packet to the
appropriate routing engines – the multicast (MC) router is activated only if the packet is error-free
and of multicast or fixed-route type, the point-to-point (P2P) handles point-to-point packets while
the NN router handles nearest-neighbour packets and also deals with default and error routing. The
output of the router stage is a vector of destinations to which the packet should be relayed. The third
stage is the emergency routing mechanism for handling failed or congested links, which it detects
using ‘full’ signals fed back from the individual destination output buffers.

10.4 Multicast (MC) router
The MC router uses the routing key in the MC packet to determine how to route the packet. The
router has 1,024 look-up entries, each of which has a mask, a key value, and an output vector. The
packet’s routing key is compared with each entry in the MC router. For each entry it is first ANDed
with the mask, then compared with the entry’s key. If it matches, the entry’s output vector is used to
determine where the packet is sent; it can be sent to any subset (including all) of the local
processors and the output links.

Thus, to programme an MC entry three writes are required: to the key, its mask and the
corresponding vector.  A mask of FFFFFFFF ensures all the key bits are used; if any mask bits are
'0' the corresponding key bits should also be '0', otherwise the entry will not match. This can be

NN Router

CHAIN wrapper CHAIN wrapper CHAIN wrapper

Dest buffer Dest buffer Dest buffer

Emergency Router

Mux

enable

hit

full

full

full

from Arbiter

P2P Router
MC/FR

Error check

enable

Router
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exploited to ensure that unused entries are invalid. The effect of the various combinations of bit
values in the mask[] and key[] regions is summarized in the table below:

Thus a particular entry [i] will match only if:

• wherever a bit in the mask[i] word is 1, the corresponding bit in the MC packet routing word is
the same as the corresponding bit in the key[i] word, AND

• wherever a bit in the mask[i] word is 0, the corresponding bit in the key[i] word is also 0.

Note that the MC Router CAM is not initialised at reset. Before the Router is enabled all CAM
entries must be initialised by software. Unused mask[] entries should be initialised to 0000000, and
unused key[] entries should be initialised to FFFFFFFF. This invalidates every bit in the word,
ensuring that the word will miss even in the presence of minor component failures.

The matching is perfomed in a parallel ternary associative memory, with a RAM used to store the
output vectors. The associative memory can be set up so that more than one entry matches an
incoming routing key; in this case the matching entry at the lowest address determines the output
vector to be used. Multiple simultaneous matches can also be used to improve test efficiency.

If no entry matches an MC packet’s routing key then default routing is employed - the packet is sent
to the output link opposite the input link through which it arrived. Packets from local processors
cannot be default-routed; the router table must have a valid entry for every locally-sourced packet.

The MC output vector assignment is detailed in the table below:  

If any of the multicast packet's output links are blocked the packet is stalled for a time ‘wait1’ (see
‘r0: Router control register’ on page 44). When that time expires any blocked external outputs (i.e.
links 0-5) will attempt to divert to the next lower number link, modulo 6 (see section 10.9 on
page 42) and retry for a further period, ‘wait2’. If two potential outputs become unblocked at the

key[] mask[] Function

0 0 don’t care - bit matches

1 0 bit misses - entry invalidated

0 1 match 0

1 1 match 1

MC vector entry Output port Direction

bit[0] Tx0 East

bit[1] Tx1 North-East

bit[2] Tx2 North

bit[3] Tx3 West

bit[4] Tx4 South-West

bit[5] Tx5 South

bit[6] Processor 0 Local

bit[7] Processor 1 Local

... ... ...

bit[23] Processor 17 Local

   

12

3

4 5

0

Link directions
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same time the original choice is preferred.

A packet which is diverted is typed as specified in ‘emergency routing’ on page 32. If a packet of
such a type is received the router will attempt to output it as a ‘reverting’ packet to the output with
the next lower number to the input on which it was received. If this should also be a normal packet
then conventional multicast routing also takes place.

The routing tables should not be set up so that a packet paths cross each other. If the packet is
programmed to do this then it is not possible to differentiate between an intended and a reverting
packet; the ‘reverting’ designation takes priority.

A received reverting packet is routed normally if it is recognised by the router, otherwise it is
‘default’ routed to the link numbered two greater (mod 6) than the input link.

fixed-route (FR) packets
The FR router uses the same mechanism as the MC router although the packets do not have a key
field.  Instead, all packets of this type are routed to the same output vector, as specified in r33.
Emergency routing is handled identically to MC packets.

This mechanism is intended to facilitate monitoring and debugging by routing data towards a point
which connects with a host system.

10.5 The point-to-point (P2P) router
The P2P router uses the 16-bit destination ID in a point-to-point packet to determine which output
the packet should be routed to. There is a 3-bit entry for each of the 64K destination IDs. Each 3-bit
entry is decoded to determine whether the packet is delivered to the local Monitor Processor or one
of the six output links, or dropped, as detailed in the table below:

The 3-bit entries are packed into an 8K entry x 24-bit SRAM lookup table. The 24-bit words hold
entries 0, 8, 16, ... in bits [2:0], 1, 9, 17, ... in bits [5:3], etc.

10.6 The nearest-neighbour (NN) router
Nearest-neighbour packets are used to initialise the system and to perform run-time flood-fill and
debug functions. The routing function here is to send ‘normal’ NN packets that arrive from outside
the node (i.e. via an Rx link) to the monitor processor and to send NN packets that are generated
internally to the appropriate output (Tx) link(s). This is to support a flood-fill load process.

In addition, the ‘peek/poke’ form of NN packet can be used by neighbouring systems to access
System NoC resources. Here an NN poke ‘write’ packet (which is a peek/poke type with a 32-bit
payload) is used to write the 32-bit data defined in the payload to a 32-bit address defined in the
address/operation field. An NN peek ‘read’ packet (which is a peek/poke type without a 32-bit

P2P table entry Output port Direction

000 Tx0 East

001 Tx1 North-East

010 Tx2 North

011 Tx3 West

100 Tx4 South-West

101 Tx5 South

110 none (drop packet) none

111 Monitor Processor Local
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payload) uses the 32-bit address defined in the address/operation field to read from the System NoC
and returns the result (as a ‘normal’ NN packet) to the neighbour that issued the original packet
using the Rx link ID to identify that source. This ‘peek/poke’ access to a neighbouring chip’s
principal resources can be used to investigate a non-functional chip, to re-assign the Monitor
Processor from outside, and generally to get good visibility into a chip for test and debug purposes.

As the peek/poke NN packets convey only 32-bit data payloads the bottom 2 bits of the address
should always be zero. All peek/poke NN packets return a response to the sender, with bit 0 of the
address set to 1. Bit 1 will also be set to 1 if there was a bus error at the target. Peeks return a 32-bit
data payload; pokes return without a payload.

default and error routing
In addition, the NN router performs default and error routing functions.

10.7 Time phase handling
The Router maintains a 2-bit time phase signal that is used to delete packets that are out-of date.
The time phase logic operates as follows:

• locally-generated packets will have the current time phase inserted (where appropriate);

• a packet arriving from off-chip will have its time phase checked, and if it is two phases old it will
be deleted (dropped, and copied to the Error registers).

10.8 Packet error handler
The packet error handler is a routing engine that simply flags the packet for dropping to the Error
registers if it detects any of the following:

• a packet parity error;

• a packet that is two time phases old;

• a packet that is the wrong length.

The Monitor Processor can be interrupted to deal with packets dropped with errors.

10.9 Emergency routing
If a link fails (temporarily, due to congestion, or permanently, due to component failure) action will
be taken at two levels:

• The blocked link will be detected in hardware and subsequent packets rerouted via the other two
sides of a triangle of which the suspect link was an edge, being initially re-routed via the link which
is rotated one link clockwise from the blocked link (so if link Tx0 fails, link Tx5 is used, etc).

• The Monitor Processor will be informed. It can track the problem using a diagnostic counter:

• if the problem was due to transient congestion, it will note the congestion but do nothing further;

• if the problem was due to recurring congestion, it will negotiate and establish a new route for
some of the traffic using this link;

• if the problem appears permanent, it will establish new routes for all of the traffic using this link.

The hardware support for these processes include:

• default routing processes in adjacent nodes that are invoked by flagging the packet as an emer-
gency type;

• mechanisms to inform the Monitor Processor of the problem;

• means of inducing the various types of fault for testing purposes.

Emergency rerouting around the triangle requires additional emergency packet types for MC and
FR packets. P2P packets will find their own way to their destination following emergency routing.
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10.10 Register summary
Base address: 0xe1000000 (buffered write), 0xf1000000 (unbuffered write).

Name Offset R/W Function

r0: control 0x00 R/W Router control register

r1: status 0x04 R Router status

r2: error header 0x08 R error packet control byte and flags

r3: error routing 0x0C R error packet routing word

r4: error payload 0x10 R error packet data payload

r5: error status 0x14 R error packet status

r6: dump header 0x18 R dumped packet control byte and flags

r7: dump routing 0x1C R dumped packet routing word

r8: dump payload 0x20 R dumped packet data payload

r9: dump outputs 0x24 R dumped packet intended destinations

r10: dump status 0x28 R dumped packet status

r11: diag enables 0x2C R/W diagnostic counter enables

r12: timing ctr ctl 0x30 R/W timing counter controls

r13: cycle ctr 0x34 R counts Router clock cycles

r14: busy cyc ctr 0x38 R counts emergency router active cycles

r15: no wt pkt ctr 0x3C R counts packets that do not wait to be issued

r16-31: dly hist 0x40-7C R packet delay histogram counters

r32: diversion 0x80 R/W divert default packets

r33: FR route 0x84 R/W fixed-route packet routing vector

rFN: diag filter 0x200-23C R/W diagnostic count filters (N = 0-15)

rCN: diag count 0x300-33C R/W diagnostic counters (N = 0-15)

rT1: test register 0xF00 R hardware test register 1

rT2: test key 0xF04 R/W hardware test register 2 - CAM input test key

route[1023:0] 0x4000 R/W MC Router routing word values

key[1023:0] 0x8000 W MC Router key values

mask[1023:0] 0xC000 W MC Router mask values

P2P[8191:0] 0x10000 R/W P2P Router routing entries (8 3-bit entries/word)
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10.11 Register details

r0: Router control register

The functions of these fields are described in the table below:

The wait times (defined by wait1[] and wait2[]) are stored in a floating point format to give a wide
range of values with high accuracy at low values combined with simple implementation using a
binary pre-scaler and a loadable counter. Each 8-bit field is divided into a 4-bit mantissa M[3:0] =
wait[3:0] and a 4-bit exponent E[3:0] = wait[7:4]. The wait time in clock cycles is then given by:

wait = (M + 16 - 24-E).2E for ;

wait = (M + 16).2E for ;

Note that wait[7:0] = 0x00 gives a wait time of zero, and the wait time increases monotonically
with wait[7:0]; wait[7:0] = 0xFF is a special case and gives an infinite wait time - wait forever.

There is a small semantic difference between wait1[7:0] and wait2[7:0]:

• wait1[7:0] defines the number of cycles the Router will re-try after the first failed cycle before
attempting emergency routing; wait1[] = 0 will attempt normal routing once and then try emer-
gency routing.

• wait2[7:0] is the number of cycles during which emergency routing will be attempted before the
packet is dumped; wait2[] = 0 therefore effectively disables emergency routing.

If r0 is written when one of the wait counters is running, writing a 1 to W (bit[15]) will cause the
active counter to restart from the new value written to it. This enables the Monitor Processor to
clear a deadlocked ‘wait forever’ condition. If 0 is written to W the active counter will not restart

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

wait2[7:0] wait1[7:0] W MP[4:0] TP P F T D E R

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Name bits R/W Function

wait2[7:0] 31:24 R/W wait time before dropping packet

wait1[7:0] 23:16 R/W wait time before emergency routing

W 15 W re-initialise wait counters

MP[4:0] 12:8 R/W Monitor Processor ID number

TP 7:6 R/W time phase (c.f. packet time stamps)

P 5 R/W enable count of packet parity errors

F 4 R/W enable count of packet framing errors

T 3 R/W enable count of packet time stamp errors

D 2 R/W enable dump packet interrupt

E 1 R/W enable error packet interrupt

R 0 R/W enable packet routing

E 4≤

E 4>
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but will use the new wait time value the next time it is invoked.

Note that the Router is enabled after reset. This is so that a neighbouring chip can peek and poke a
chip that fails after reset using NN packets, to diagnose and possibly fix the cause of failure.

r1: Router status
All Router interrupt request sources are visible here, as is the current status of the emergency
routing system.

The functions of these fields are described in the table below:

The Router generates three interrupt request outputs that are handled by the VIC on each processor:
diagnostic counter event interrupt, dump interrupt and error interrupt. These correspond to the OR
of ctr[15:0], D and E respectively.

The interrupt requests are cleared by reading their respective status registers: r5, r10 and r2N.

r2: error header
A packet which contains an error is copied to r2-5. Once a packet has been copied (indicated by
bit[31] of r5 being set) any further error packet is ignored, except that it can update the sticky bits in
r5 (and errors of the types specified in r0 are counted in r5).

The functions of these fields are described in the table below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I E D ER B ctr[15:0]

Name bits R/W Function

I: interrupt active 31 R combined Router interrupt request

E: error int 30 R error packet interrupt active

D: dump int 29 R dump packet interrupt active

ER[1:0] 25:24 R Router output stage status (empty, full but 
unblocked, blocked in wait1, blocked in wait2)

B 16 R busy - active packet(s) in Router pipeline

ctr[15:0] 15:0 R diagnostic counter interrupt active

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P F T Route control byte TP

0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

P: parity 29 R packet parity error

F: framing error 28 R packet framing error

T: TP error 27 R packet time stamp error
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r3:  error routing word

r4: error data payload

r5: error status
This register counts error packets, including time stamp, framing and parity errors as enabled by
r0[5:3]. The Monitor Processor resets r5[31:27] and the error count by reading its contents.

The functions of these fields are described in the table below:

r6: dump header
A packet which is dumped because it cannot be routed to its destinations is copied to r6-10. Once a
packet has been dumped (indicated by bit[31] of r10 being set) any further packet that is dumped is
ignored, except that it can update the sticky bits in r10 (and can be counted by a diagnostic counter).

Route 26:24 R Rx route field of error packet

Control byte 23:16 R control byte of error packet

TP: time phase 7:6 R time phase when packet received

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit routing word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit data payload

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E V P F T error count

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

E: error 31 R error packet detected

V: overflow 30 R more than one error packet detected

P: parity 29 R packet parity error (sticky)

F: framing error 28 R packet framing error (sticky)

T: TP error 27 R packet time stamp error (sticky)

error count 15:0 R 16-bit saturating error count

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Route control byte TP

reset: 1 1 1 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function
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The functions of these fields are described in the table below:

r7:  dump routing word

r8: dump data payload

r9: dump outputs

The functions of these fields are described in the table below:

r10: dump status
The Monitor Processor resets r10 by reading its contents.

The functions of these fields are described in the table below:

Name bits R/W Function

Route 26:24 R Rx route field of dumped packet

Control byte 23:16 R control byte of dumped packet

TP: time phase 7:6 R time phase when packet dumped

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit routing word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit data payload

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FPE[17:0] LE[5:0]

Name bits R/W Function

FPE[17:0] 23:6 R Fascicle Processor link error caused dump

LE[5:0] 5:0 R Tx link transmit error caused packet dump

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D V FPE[17:0] LE[5:0]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

D: dumped 31 R packet dumped

V: overflow 30 R more than one packet dumped

FPE[17:0] 23:6 R Fascicle Proc link error caused dump (sticky)

LE[5:0] 5:0 R Tx link error caused dump (sticky)
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r11: diagnostic counter enable/reset
This register provides a single control point for the 16 diagnostic counters, enabling them to count
events over a precisely controlled time period.

The functions of these fields are described in the table below:

Writing a 0 to reset[15:0] has no effect. Writing a 1 clears the respective counter.

r12: timing counter controls
This register controls the cycle counters in registers r13, r14 & r15, and in the delay histogram
registers r16-r31.

The functions of these fields are described in the table below:

Writing a 0 to R, S or T has no effect. Writing a 1 clears the respective counter.

r13: cycle count

r13, when enabled by r12, simply counts the number of Router clock cycles.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reset[15:0] enable[15:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

reset[15:0] 31:16 W write a 1 to reset diagnostic counter 15..0

enable[15:0] 15:0 R/W enable diagnostic counter15..0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T S R H E C

reset: 0 0 0

Name bits R/W Function

T 18 W reset histogram

S 17 W reset emergency router active cycle counter

R 16 W reset cycle counter

H 2 R/W enable histogram

E 1 R/W enable emergency router active cycle counter

C 0 R/W enable cycle counter

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit non-saturating cycle counter

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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r14: emergency router active cycle count

r14, when enabled by r12, counts the number of cycles for which the emergency router is actively
seeking a route for a packet. This equals the number of packets plus the number of stall cycles.

r15: unblocked packet count

r15, when enabled by r12, counts the number of packets which pass through undelayed by
congested output links.

r16-31: packet delay histogram

r16-r31, when enabled by r12, count the number of times a packet is delayed due to link congestion,
each register counting delays within a range of clock cycles. r15 counts the zero delay component
of the histogram. These counters use the same pre-scaling as wait1 in r0, so the histogram
effectively records the value in the wait mantissa at the time the congestion resolves.

r32: diversion
This register allows default-routed MC packets to be redirected in the case when their default path
is unavailable, for example as a result of a complete node failure.

The 2-bit L0 field can be set to 00 for normal behaviour of packets default routed from link 0, to x1
to divert those packets to the local Monitor Processor, or to 10 to destroy the packets. L1 likewise
controls default routed packets that arrive through link 1, etc.

r33: fixed-route packet routing

r33 routes fixed-route (type 3) packets to off-chip links and local processors in exactly the same

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit non-saturating emergency router active cycle counter

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit non-saturating unblocked packet counter

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit non-saturating packet delay counter

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

L5 L4 L3 L2 L1 L0

reset: 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NN broadcast FR output vector

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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way, with the same bit allocation, as an MC output vector as described in section 10.4 on page 39.

In addition, the ‘NN broadcast’ bits[31:26] define which links an NN broadcast packet is sent
through. A 1 indicates an active link, and bit[26] is for link 0, bit[27] link 1, etc.

rFN: diagnostic filter control
The Router has 16 diagnostic counters (N = 0..F) each of which counts packets passing through the
Router filtered on packet characteristics defined here. A packet is counted if it has characteristics
that match with a ‘1’ in each of the 6 fields. Setting all bits [24:10, 7:0] to ‘1’ will count all packets.

A diagnostic counter may (optionally) generate an interrupt on each count. The C bit[29] is a sticky
bit set when a counter event occurs and is cleared whenever this register is read.

The functions of these fields are described in the table below:

If M (bit[8]) = 0 the Emergency Routing field matches that of the incoming packet, before any local
Emergency Routing, so this can be used to count packets that have been Emergency Routed by a
previous Router but not those that are Emergency Routed here.

If M = 1 the Emergency Routing field is matched against outgoing packets to destinations selected
in the Dest field. If any outgoing packet to a selected destination matches the ER field the
diagnostic count will be incremented. (Note that packets to internal destinations cannot be
emergency routed and so have ER = 0.)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I E C Dest Loc PL Def M ER Type

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

I 31 R counter interrupt active: I = E AND C

E 30 R/W enable interrupt on counter event

C 29 R counter event has occurred (sticky)

Dest 24:16 R/W packet dest (Tx link[5:0], MP, local ¬MP, dump)

Loc 15:14 R/W local [x1]/non-local[1x] packet source

PL 13:12 R/W packets with [x1]/without [1x] payload

Def 11:10 R/W default [x1]/non-default [1x] routed packets

M 8 R/W Emergency Routing mode

ER 7:4 R/W Emergency Routing field = 3, 2, 1 or 0

Type 3:0 R/W packet type: fr, nn, p2p, mc
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rCN: diagnostic counters

Each of these counters can be used to count selected types of packets under the control of the
corresponding rFN. The counter can have any value written to it, and will increment from that value
when respective events occur.

If an event occurs as the counter is being written it will not be counted. To avoid missing an event it
is better to avoid writing the counter; instead, read it at the start of a time period and subtract this
value from the value read at the end of the period to get a count of the number of events during the
period.

rT1: hardware test register 1
This register is used only for hardware test purposes, and has no useful functions for the application
programmer. 

The functions of these fields are described in the table below:

The input key used for the associative look-up whenever this register is read is in register T2.

rT2: hardware test register 2

This register holds the key presented to the association input of the multicast router when register
T1 is read.

10.12 Fault-tolerance
The Communications Router has some internal fault-tolerance capacity, in particular it is possible
to map out a failed multicast router entry. This is a useful mechanism as the multicast router
dominates the silicon area of the Communications Router.

There is also capacity to cope with external failures. Emergency routing will attempt to bypass a
faulty or blocked link. In the event of a node (or larger) failure this will not be sufficient. In order to
tolerate a chip failure several expedients can be employed on a local basis:

• P2P packets can be routed around the obstruction;

• MC packets with a router entry can be redirected appropriately.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit count value

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

entry M

Name bits R/W Function

M 0 R MC router associative look-up ‘miss’ output

entry 10:1 R MC router associative look-up entry address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit key

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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In most cases, default MC packets cannot sensibly be trapped by adding table entries due to their
(almost) infinite variety. To allow rerouting, these packets can be dropped to the Monitor Processor
on a link-by-link basis using the diversion register. In principle they can then be routed around the
obstruction as P2P payloads before being resurrected at the opposite side.

Should the Monitor Processor become overwhelmed, it is also possible to use the diversion register
to eliminate these packets in the Router; this prevents them blocking the Router pipeline whilst
waiting for a timeout and thus delaying viable traffic.

Fault detection
• packet parity errors.

• packet time-phase errors.

• packet unroutable errors (e.g. a locally-sourced multicast packet which doesn’t match any entry
in the multicast router).

• wrong packet length.

Fault isolation
• a multicast router entry can be disabled if it fails - see initialisation guidance above.

Reconfiguration
• since all multicast router entries are identical the function of any entry can be relocated to a spare

entry.

• if a router becomes full a global reallocation of resources can move functionality to a different
router.

10.13 Test

Production test
The ternary CAM used in the multicast router has access for parallel testing, so a processor can
write a value to all locations and see if an input with 1 bit flipped results in a hit or a miss. The
CAM is not directly readable - attempts to read this space will result in bus errors - and must be
tested by association. To do this a key must first be written into register rT2. A subsequent read of
register rT1 will then indicate if that key has associated with any CAM entries.  If it has not then
rT1<0> will be set and the other bits of this register will be undefined; if one or more of the entries
are matched then the one at the lowest address in the CAM will be indicated in the 'entry' field.

All RAMs have read-write access for test purposes.
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11. Inter-chip transmit and receive interfaces

Inter-chip communication is implemented by extending the Communications NoC from chip to
chip. In order to sustain throughput, there is a protocol conversion at each chip boundary from
standard CHAIN 3-of-6 return-to-zero to 2-of-7 non-return-to-zero. The interfaces include logic to
minimise the risk of a protocol deadlock caused by glitches on the inter-chip wires.

11.1 Features
• transmit (Tx) interface:

• converts on-chip 3-of-6 RTZ symbol into off-chip 2-of-7 NRZ symbol;

• disable control input;

• reset input.

• receive (Rx) interface:

• converts off-chip 2-of-7 NRZ symbol into on-chip 3-of-6 RTZ symbol;

• disable control input;

• reset input.

11.2 Programmer view
The only programmer-accessible features implemented in these interfaces are software reset and a
disable control, both accessed via the System Controller. In normal operation these interfaces
provide transparent connectivity between the routing network on one chip and those on its
neighbours.

11.3 Fault-tolerance
The fault inducing, detecting and resetting functions are controlled from the System Controller (see
‘System Controller’ on page 66). The interfaces are ‘glitch hardened’ to greatly reduce the
probability of a link deadlock arising as a result of a glitch on one of the inter-chip wires. Such a
glitch may introduce packet errors, which will be detected and handled elsewhere, but it is very
unlikely to cause deadlock. It is expected that the link reset function will not be required often.

Fault insertion
• an input controlled by the System Controller causes the interface to deadlock (by disabling it).

Fault detection
• Monitor Processors should regularly test link functionality.

Fault isolation
• the interface can be disabled to isolate the chip-to-chip link. This input from the System Control-

ler is also used to create a fault.

Reconfiguration
• the link interface can be reset by the System Controller to attempt recovery from a fault.

• the link interface can be isolated and an alternative route used.
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12. System NoC

The System NoC has a primary function of connecting the ARM968 processors to the SDRAM
interface. It is also used to connect the processors to system control and test functions, and for a
variety of other purposes.

12.1 Features
• supports full bandwidth block transfers between the SDRAM and the ARM968 processors.

• the Router is an additional initiator for system debug purposes.

• can be reset (in subsections) to clear deadlocks.

• multiple targets:

• SDRAM interface - ARM PL340

• System RAM

• System ROM

• Ethernet interface

• System Controller

• Watchdog Timer.

• Router configuration registers

12.2 Organisation

CPU0 CPU1

AXI M AXI M

AXI S APB3 S AHB S

AHB S−>M

AHB M

AHB

SysCtl Watchdog

AXI M

APB3AXI 64

32

SM

Router

PL340

SS

AHB S

EthernetSysROMSysRAM

AHB

AHB
CPU2−17

router_clkproc_node_clk_A proc_node_clk_B

memory_clk

AHB 32

32

32

32

64AXIAXI 64 AXI 64

system_clk

Silistix clockless interconnect

proc_node_clk_Bproc_node_clk_A
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13. SDRAM interface

The SDRAM interface connects the System NoC to an off-chip SDRAM device. It is the ARM
PL340, described in ARM document DDI 0331D.

13.1 Features
• control for external Mobile DDR SDRAM memory device

• memory request queue

• out of order request sequencing to maximise memory throughput

• AXI interface to System NoC

• delay-locked loop (DLL) to realign SDRAM data strobes with the input data streams

13.2 Register summary
Base address: 0xe0000000 (buffered write), 0xf0000000 (unbuffered write).

User registers
The following registers allow normal user programming of the PL340 SDRAM interface:

Name Offset R/W Function

r0: status 0x00 R memory controller status

r1: command 0x04 W PL340 command

r2: direct 0x08 W direct command

r3: mem_cfg 0x0C R/W memory configuration

r4: refresh_prd 0x10 R/W refresh period

r5: CAS_latency 0x14 R/W CAS latency

r6: t_dqss 0x18 R/W write to DQS time

r7: t_mrd 0x1C R/W mode register command time

r8: t_ras 0x20 R/W RAS to precharge delay

r9: t_rc 0x24 R/W active bank x to active bank x delay

r10: t_rcd 0x28 R/W RAS to CAS minimum delay

r11: t_rfc 0x2C R/W auto-refresh command time

r12: t_rp 0x30 R/W precharge to RAS delay

r13: t_rrd 0x34 R/W active bank x to active bank y delay

r14: t_wr 0x38 R/W write to precharge delay

r15: t_wtr 0x3C R/W write to read delay

r16: t_xp 0x40 R/W exit power-down command time

r17: t_xsr 0x44 R/W exit self-refresh command time
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Test and ID registers
In addition, there are test and ID registers that will not normally be of interest to the programmer:

See ARM document DDI 0331D for further details of the test registers.

Restrictions on when registers may be modified
Normally the PL340 registers will be initialised during system start-up and then left alone.
Restrictions on when the registers may be safely modified are detailed in the PL340 datasheet,
ARM doccument DDI 0331D.

The DLL test and control outputs and the DLL fine-tune control registers should only be written to
when the PL340 is quiescent and no processor is issuing an SDRAM access or has one pending.

13.3 Register details

r0: memory controller status

The functions of these fields are described in the table below:

r18: t_esr 0x48 R/W self-refresh command time

id_n_cfg 0x100 R/W QoS settings

chip_n_cfg 0x200 R/W external memory device configuration

user_status 0x300 R DLL test and status inputs

user_config0 0x304 W DLL test and control outputs

user_config1 0x308 W DLL fine-tune control

Name Offset R/W Function

int_cfg 0xE00 R/W integration configuration register

int_inputs 0xE04 R integration inputs register

int_outputs 0xE08 W integration outputs register

periph_id_n 0xFE0-C R PL340 peripheral ID byte registers

pcell_id_n 0xFF0-C R PL340 Prime Cell ID byte registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M B C D W S

Name bits R/W Function

M: monitors 11:10 R Number of exclusive access monitors (0, 1, 2, 4)

B: banks 9 R Fixed at 1’b01 = 4 banks on a chip

C: chips 8:7 R Number of different chip selects (1, 2, 3, 4)

Name Offset R/W Function
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r1: memory controller command

The function of this field is described in the table below:

r2: direct command

This register is used to pass a command directly to a memory device attached to the PL340. The
functions of these fields are described in the table below:

r3: memory configuration

This register is used to describe the configuration of the memory device(s) attached to the PL340.
The functions of these fields are described in the table below:

D: DDR 6:4 R DDR type: 3b’011 = Mobile DDR

W: width 3:2 R Width of external memory: 2’b01 = 32 bits

S: status 1:0 R Config, ready, paused, low-power

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cmd

Name bits R/W Function

cmd: command 2:0 W Go, sleep, wake-up, pause, config, active_pause

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

chip cmd bank addr

Name bits R/W Function

chip 21:20 W chip number

cmd 19:18 W command passed to memory device

bank 17:16 W bank passed to memory device

addr[13:0] 13:0 W address passed to memory device

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

act QoS burst C P pwr_down A row col

reset: 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Name bits R/W Function

act 22:21 R/W active chips: number for refresh generation

QoS 20:18 R/W selects the 4-bit QoS field from the AXI ARID

Name bits R/W Function



 

58

S
p

i
N

N
a

k
e

r
version 2.02 6/1/11

r4: refresh period

The function of this field is described in the table below:

r5: CAS latency

The functions of these fields are described in the table below:

r6: t_dqss

burst 17:15 R/W burst length (1, 2, 4, 8, 16)

C 14 R/W stop memory clock when no access

P 13 R/W auto-power-down memory when inactive

pwr_down 12:7 R/W # memory cycles before auto-power-down

A 6 R/W position of auto-pre-charge bit (10/8)

row 5:3 R/W number of row address bits (11-16)

col 2:0 R/W number of column address bits (8-12)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

refresh period

reset: 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0

Name bits R/W Function

refresh period 14:0 R/W memory refresh period in memory clock cycles

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cas_lat H

reset: 0 1 1 0

Name bits R/W Function

cas_lat 3:1 R/W CAS latency in memory clock cycles

H 0 R/W CAS half cycle - must be set to 1’b0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

tdqss

reset: 0 1

Name bits R/W Function
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The function of this field is described in the table below:

r7: t_mrd

The function of this field is described in the table below:

r8: t_ras

The function of this field is described in the table below:

r9: t_rc

The function of this field is described in the table below:

Name bits R/W Function

tdqss 1:0 R/W write to DQS in memory clock cycles

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

t_mrd

reset: 0 0 0 0 0 1 0

Name bits R/W Function

t_mrd 6:0 R/W mode reg cmnd time in memory clock cycles

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

t_ras

reset: 0 1 1 1

Name bits R/W Function

t_ras 3:0 R/W RAS to precharge time in memory clock cycles

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

t_rc

reset: 1 0 1 1

Name bits R/W Function

t_rc 3:0 R/W Bank x to bank x delay in memory clock cycles
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r10: t_rcd

The functions of these fields are described in the table below:

r11: t_rfc

The functions of these fields are described in the table below:

r12: t_rp

The functions of these fields are described in the table below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sched t_rcd

reset: 0 1 1 1 0 1

Name bits R/W Function

t_rcd 2:0 R/W RAS to CAS min delay in memory clock cycles

sched 5:3 R/W RAS to CAS min delay in aclk cycles -3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sched t_rfc

reset: 1 0 0 0 0 1 0 0 1 0

Name bits R/W Function

sched 9:5 R/W Auto-refresh cmnd time in aclk cycles -3

t_rfc 4:0 R/W Auto-refresh cmnd time in memory clock cycles

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sched t_rp

reset: 0 1 1 1 0 1

Name bits R/W Function

sched 5:3 R/W Precharge to RAS delay in aclk cycles -3

t_rp 2:0 R/W Precharge to RAS delay in memory clock cycles
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r13: t_rrd

The function of this field is described in the table below:

r14: t_wr

The function of this field is described in the table below:

r15: t_wtr

The function of this field is described in the table below:

r16: t_xp

The function of this field is described in the table below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

t_rrd

reset: 0 0 1 0

Name bits R/W Function

t_rrd 3:0 R/W Bank x to bank y delay in memory clock cycles

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

t_wr

reset: 0 1 1

Name bits R/W Function

t_wr 2:0 R/W Write to precharge dly in memory clock cycles

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

t_wtr

reset: 0 1 0

Name bits R/W Function

t_wtr 2:0 R/W Write to read delay in memory clock cycles

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

t_xp

reset: 0 0 0 0 0 0 0 1

Name bits R/W Function

t_xp 7:0 R/W Exit pwr-dn cmnd time in memory clock cycles
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r17: t_xsr

The function of this field is described in the table below:

r18: t_esr

The function of this field is described in the table below:

id_n_cfg

The functions of these fields are described in the table below:

chip_n_cfg

There is one of these registers for each external chip that is supported. The functions of these fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

t_xsr

reset: 0 0 0 0 1 0 1 0

Name bits R/W Function

t_xsr 7:0 R/W Exit self-rfsh cmnd time in mem clock cycles

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

t_esr

reset: 0 0 0 1 0 1 0 0

Name bits R/W Function

t_esr 7:0 R/W Self-refresh cmnd time in memory clock cycles

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

QoS_max N E

reset: 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

QoS_max 9:2 R/W maximum QoS

N 1 R/W minimum QoS

E 0 R/W QoS enable

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B match mask

reset: 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
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are described in the table below:

13.4 The delay-locked loop (DLL)
The SDRAM interface incorporates a delay-locked loop which, though outside the PL340, is
controlled via the PL340 user status and configuration registers.

The general organisation of the DLL is shown below:

The basic operation is that a reference clock, CK, running at twice the SDRAM clock (i.e.
nominally 333 MHz for a 166 MHz SDRAM), is passed through a master delay line and the output,
DCK, inverted and compared with the original clock. A phase comparator drives an asynchronous
finite state machine (AFSM) that in turn drives an up/down bar code counter to line these two
signals up. The SDRAM data strobes, DQS0-3, are passed through matched delay lines to line up
with the middle of the data valid period. Software can fine-tune the individual strobe timings.

There is a 6th, spare, delay line, that can be used if any of the five primary delay lines fails.

Name bits R/W Function

B 16 R/W bank-rol-column/row-bank-column

match 15:8 R/W address match

mask 7:0 R/W address mask

digital delay line (master)

digital delay line (slave)

digital delay line (slave)

digital delay line (slave)

digital delay line (slave)

up/down bar code counterphase comparator

fine adjust

fine adjust

fine adjust

fine adjust

fine adjust

AFSM

DQS0

DQS1

DQS2

DQS3

DQS0’

DQS1’

DQS2’

DQS3’

Locked Incing,
Decing

L, M, R Meter

CK

DCK

Tune_2

Tune_0

Tune_1

Tune_3

Tune_4
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user_status: DLL test and status inputs

The function of these fields is described in the table below:

user_config0: DLL test and control outputs

The function of these fields is described in the table below:

The default inputs for the 6 delay lines selected by S0-S5 are Tune_2 (master); Tune_0 (DQS0);
Tune_1 (DQS1); Tune_3 (DQS2); Tune_4 (DQS3) as shown in the figure above.

The alternative inputs for the 6 delay lines are: Tune_3 (master); Tune_1 (DQS0); Tune_2 (DQS1);
Tune_4 (DQS2); Tune_5 (DQS3).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

L M R K I D C3 S3 C2 S2 C1 S1 C0 S0 Meter

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

L, M, R 22:20 R 3-phase bar-code control output

K: locKed 18 R Phase comparator is locked

I: Incing 17 R Phase comparator is increasing delay

D: Decing 16 R Phase comparator is reducing delay

C0, C1, C2, C3 9,11,13,15 R Clock faster than strobe 0-3

S0, S1, S2, S3 8,10,12,14 R Strobe 0-3 faster than Clock

Meter 6:0 R Current position of bar-code output

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E TL L M R T5 ID I D S5 S4 S3 S2 S1 S0

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

E: Enable 24 W Enable DLL (0 = reset DLL)

TL: Test_LMR 23 W Enable forcing of L, M, R

L, M, R 22:20 W Force 3-phase bar-code control inputs

T5: Test_5 19 W Substitute delay line 5 for 4 for testing

ID: Test_ID 18 W Enable forcing of Incing and Decing

I: Test_Incing 17 W Force Incing (if ID = 1)

D: Test_Decing 16 W Force Decing (if ID = 1)

S0-S5 11:0 W Input selects for the 6 delay lines{def, alt, 0, 1}
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user_config1: DLL fine-tune control

The function of these fields is described in the table below:

13.5 Fault-tolerance

Fault insertion
The DLL can be driven by software into pretty much any defective state.

Fault detection
The DLL delay lines can be tested for stuck-at faults and relative timing accuracy.

Fault isolation
A defective or out-or-spec delay line can be isolated.

Reconfiguration
A defective or out-or-spec delay line can be isolated and replaced by using the spare delay line.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Tune_5 Tune_4 Tune_3 Tune_2 Tune_1 Tune_0

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

Tune0..5 23:0 W Fine tuning control on delay lines 0..5
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14. System Controller

The System Controller incorporates a number of functions for system start-up, fault-tolerance
testing (invoking, detecting and resetting faults), general performance monitoring, etc.

14.1 Features
• ‘Arbiter’ read-sensitive register bit to determine Monitor Processor ID at start-up.

• 32 test-and-set registers for general software use, e.g. to enforce mutually exclusive access to critical 
data structures.

• individual interrupt, reset and enable controls and ‘processor OK’ status bits for each processor.

• sundry parallel IO and test and control registers.

• PLL and clock management registers.

14.2 Register summary
Base address: 0xe2000000 (buffered write), 0xf2000000 (unbuffered write).

These registers may only be accessed by a processor executing in a privileged mode; any attempt to
access the System Controller from user-mode code will return a bus error. Only aligned word
accesses are supported - misaligned word or byte or half-word accesses will return a bus error.

Name Offset R/W Function

r0: Chip ID 0x00 R Chip ID register (hardwired)

r1: CPU disable 0x04 R/W Each bit disables a processor

r2: Set CPU IRQ 0x08 R/W Writing a 1 sets a processor’s interrupt line

r3: Clr CPU IRQ 0x0C R/W Writing a 1 clears a processor’s interrupt line

r4: Set CPU OK 0x10 R/W Writing a 1 sets a CPU OK bit

r5: Clr CPU OK 0x14 R/W Writing a 1 clears a CPU OK bit

r6: CPU Rst Lv 0x18 R/W Level control of CPU resets

r7: Node Rst Lv 0x1C R/W Level control of CPU node resets

r8: Sbsys Rst Lv 0x20 R/W Level control of subsystem resets

r9: CPU Rst Pu 0x24 R/W Pulse control of CPU resets

r10: Node Rst Pu 0x28 R/W Pulse control of CPU node resets

r11: Sbsys Rst Pu 0x2C R/W Pulse control of subsystem resets

r12: Reset Code 0x30 R Indicates cause of last chip reset

r13: Monitor ID 0x34 R/W ID of Monitor Processor

r14: Misc control 0x38 R/W Miscellaneous control bits

r15: GPIO pull u/d 0x3C R/W General-purpose IO pull up/down enable

r16: I/O port 0x40 R/W I/O pin output register
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14.3 Register details

r0: Chip ID

This register is configured at chip design time to hold a unique ID for the chip type. The device
code is 591 in BCD. The version will increment with each design variant. Year holds the last two
digits of the year of first fabrication, in BCD. The bottom byte holds the number of CPUs on the
chip.

The test chip ID is 0x59100902. The full chip ID is 0x59111012.

r1: CPU disable

Writing a 1 to bit[n] (n = 0..17) will disable processor[n], stalling any attempted access to its local
AHB and thereby preventing it from accessing any external resource. Writing a 0 will enable it. For
a write to be effective it must include a security code in bits [31:20]: 0x5ECXXXXX.

To ensure the processor is disabled in a low-power state it should be disabled and then reset via r9.

r17: I/O direction 0x44 R/W External I/O pin is input (1) or output (0)

r18: Set IO 0x48 R/W Writing a 1 sets IO register bit

r19: Clear IO 0x4C R/W Writing a 1 clears IO register bit

r20: PLL1 0x50 R/W PLL1 frequency control

r21: PLL2 0x54 R/W PLL2 frequency control

r22: Set flags 0x58 R/W Set flags register

r23: Reset flags 0x5C R/W Reset flags register

r24: Clk Mux Ctl 0x60 R/W Clock multiplexer controls

r25: CPU sleep 0x64 R CPU sleep (awaiting interrupt) status

r26-28 0x68-70 R/W Temperature sensor registers [2:0]

r32-63: Arbiter 0x80-FC R Read sensitive semaphores to determine MP

r64-95: Test&Set 0x100-17C R Test & Set registers for general software use

r96-127: Test&Clr 0x180-1FC R Test & Clear registers for general software use

r128: Link disable 0x200 R/W Disables for Tx and Rx link interfaces

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

device version Year #CPUs

0 1 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

�0x5EC ProcDis[17:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name Offset R/W Function
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Reading from this register returns the current status of all of the processor disable lines.

r2: Set CPU interrupt request

Writing a 1 to bit[n] (n = 0..17) will set an interrupt request to processor[n], which can be enabled/
disabled and routed to IRQ or FIQ by that processor’s local Vectored Interrupt Controller (VIC -
see page 12). Writing a 0 has no effect. For a write to be effective it must include a security code in
bits [31:20]: 0x5ECXXXXX. Reading from this register returns the current status of all of the
processor interrupt lines.

r3: Clear CPU interrupt request

Writing a 1 to bit[n] (n = 0..17) will clear an interrupt request to processor[n]. Writing a 0 has no
effect. For a write to be effective it must include a security code in bits [31:20]: 0x5ECXXXXX.
Reading from this register returns the current status of all of the processor interrupt lines.

r4: Set CPU OK

Writing a 1 to bit[n] (n = 0..31) will set that bit, indicating that processor[n] is believed to be
functional. Writing a 0 has no effect. Reading from this register returns the current status of all of
the processor OK bits. Any bits that do not correspond to a processor number can be used for any
purpose - the functions of this register are entirely defined by software.

In normal use a processor will set its own bit after performing some functional self-testing. The
Monitor Processor will read the register after the start-up phase to establish which processors are
functional, and assign them tasks accordingly. The MP may attempt to restart faulty processors by
resetting them via r6-11, or it may take them off-line by disabling their clocks via r1.

r5: Clear CPU OK

Writing a 1 to bit[n] (n = 0..31) will clear that bit, indicating that processor[n] is not confirmed as
functional or has detected a fault. Writing a 0 has no effect. Reading from this register returns the
current status of all of the processor OK bits.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

�0x5EC SetInt[17:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

�0x5EC ClrInt[17:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SetOK[31:0]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ClrOK[31:0]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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r6: CPU node soft reset - level

Writing to bit[n] (n = 0..17) will set a level on the reset input of processor[n] which is ORed with
the corresponding output of the pulse reset generator, r9. For a write to be effective it must include
a security code in bits [31:20]: 0x5ECXXXXX. Reading from this register returns the current status
of this register, that is the level before the OR with the pulse reset output.

This is a soft reset which resets the ARM9 processor core, thereby restarting its execution at the
reset vector, and resets the Communication and DMA Controllers once active transactions have
completed.

r7: CPU node hard reset - level

Writing to bit[n] (n = 0..17) will set a level on the reset input of processor node[n] which is ORed
with the corresponding output of the pulse reset generator, r10. For a write to be effective it must
include a security code in bits [31:20]: 0x5ECXXXXX. Reading from this register returns the
current status of this register, that is the level before the OR with the pulse reset output.

This is a hard reset which resets the entire ARM968 processor node, including the peripheral
hardware components in that node.

r8: Subsystem reset - level

Writing a 1 to bit[n] (n = 0..17) will set a level on the reset input of a subsystem. For a write to be
effective it must include a security code in bits [31:20]: 0x5ECXXXXX. Reading from this register
returns the current status of this register, that is the level before the OR with the pulse reset output.

The assignment of these bits to subsystems is given in the following table:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

�0x5EC LSreset[17:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

�0x5EC LHreset[17:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

�0x5EC LSSreset[17:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LSSreset Reset target

0 Router

1 PL340 SDRAM controller

2 System NoC

3 Communications NoC

4-9 Tx link 0-5
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r9: CPU node soft reset - pulse

Writing a 1 to bit[n] (n = 0..17) will generate a pulse (of 256 System Controller clock cycles) on the
reset input of processor[n], which is ORed with the corresponding output of the reset level register
r6. For a write to be effective it must include a security code in bits [31:20]: 0x5ECXXXXX.
Reading from this register returns the current status of the reset lines after the OR with the level
reset output.

The reset function is as described for r6.

r10: CPU node hard reset - pulse

Writing a 1 to bit[n] (n = 0..17) will generate a pulse (256 clock cycles long) on the reset input of
processor node[n], which is ORed with the corresponding output of the reset level register r7. For a
write to be effective it must include a security code in bits [31:20]: 0x5ECXXXXX. Reading from
this register returns the current status of the reset lines after the OR with the level reset output.

The reset function is as described for r7.

r11: Subsystem reset - pulse

Writing a 1 to bit[n] (n = 0..17) will generate a pulse (256 clock cycles long) on the reset input of a
subsystem. For a write to be effective it must include a security code in bits [31:20]:
0x5ECXXXXX. Reading from this register returns the current status of the reset lines after the OR
with the level reset output.

The assignment of these bits to subsystems is the same as that described for r8.

r12: Reset code

These bits return a code indicating the last active reset source. The reset sources are given in the

10-15 Rx link 0-5

16 System AHB & Clock Gen (pulse reset only)

17 Entire chip (pulse reset only)

18-19 unassigned

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

�0x5EC PSreset[17:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

�0x5EC PHreset[17:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

�0x5EC PSSreset[17:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RC

LSSreset Reset target
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following table:

The Power-on reset RC[2:0] = 000 hard resets everything, including setting MPID[4:0] = 11111 in
r13 and B = 0 in r14.

WDR, UR and REC (RC[2:0] = 001, 010 or 011) do not reset MPID[4:0] in r13, which retains its
value through the reset, thereby preventing the old Monitor Processor from competing to be
Monitor Processor after the reset.

UR and REC (RC[2:0] = 010 or 011) do not reset B in r14, which will retain its value through the
reset, thereby allowing booting from RAM.

The Watchdog interrupt RC[2:0] = 100 only soft resets the Monitor Processor (with a 256 cycle
pulse), and then only if this is enabled in r13.

r13: Monitor ID
This register holds the ID of the processor which has been chosen as the Monitor Processor,
together with associated control bits.

Software must set the MPID value in the Router Control Register, which the Router uses to route
P2P and NN packets to the Monitor Processor, to match MPID[4:0].

MPID[4:0] is initialised by power-on reset to an invalid value which does not refer to any
processor. Other forms of reset do not change MPID[4:0]. It is set to the ID of the processor that
wins the competition at start-up by reading its respective register r32 to r63 first.

The functions of these fields are described in the table below:

The ‘R’ bit causes the Watchdog interrupt signal to cause a soft reset of processor[MPID], which
will override any interrupt masking by the Monitor Processor. In any case, this interrupt is available
at all processor VICs and can therefore be enabled locally as an IRQ or FIQ source.

Reading bit[8] returns the current value of the MP arbitration bit (see r32-63).

RC[2:0] Reset source Hard/soft reset action

000 POR - Power-on reset hard, everything

001 WDR - Watchdog reset hard, all but MPID[4:0] in r13

010 UR - User reset hard, all but MPID[4:0] in r13 & B in r14

011 REC - Reset entire chip (r11 bit 17) hard, all but MPID[4:0] in r13 & B in r14

100 WDI - Watchdog interrupt soft, only Monitor Processor if R=1 in r13

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

�0x5EC R A MPID

reset: 0 1 1 1 1 1 1

Name bits R/W Function

R 16 R/W Reset Monitor Processor on Watchdog interrupt

A 8 R/W Write 1 to set MP arbitration bit (see r32-63)

MPID[4:0] 4:0 R/W Monitor Processor ID
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For a write to r13 to be effective it must include a security code in bits [31:20]: 0x5ECXXXXX.

r14: Misc control

This register supports general chip control.

The function of these fields is described in the table below:

The JTAG port is controllable by software using r14 and r16. Bit[15] of r14 selects this option
when high. When selected, the GPIO bits in r16 control the JTAG inputs: GPIO[27:24] drive
JTAG_NTRST, JTAG_TMS, JTAG_TDI and JTAG_TCK respectively, and the JTAG outputs
JTAG_TDO and JTAG_RTCK are readable via r14 as above.

When JTAG is being driven externally, reading the r14 bits[20:19] and r16 bits[27:24] returns the
state of the JTAG pins.

B is reset by power-on reset (POR) and watchdog reset (WDR).

r15: GPIO pull up/down control

The functions of these bit fields are described in the table below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R D C E T J B

reset: 0 0 0 0 0 0 0

Name bits R/W Function

R 20 R read value on JTAG_RTCK pin

D 19 R read value on JTAG_TDO pin

C 18 R read value on Clk32 pin

E 17 R read value on Ethermux pin

T 16 R read value on Test pin

J 15 R/W select on-chip (1) or off-chip (0) control of JTAG pins

B 0 R/W map System ROM (0) or RAM (1) to Boot area

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IO port pull up/down enable

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

bits R/W Function

31:29 R/W GPIO[31:29] - on-package SDRAM control - pull-down

28:24 R/W Unused

23:20 R/W GPIO[23:20] & MII TxD port pull-down

19:16 R/W GPIO[19:16] & MII RxD port pull-up

15:0 R/W GPIO[15:0] pull-down
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r16: IO port

This register holds a 32-bit value, most bits of which may be driven out through pins when the
corresponding bit in r17 is 0. When read, the values in this register are returned. The number of
physical IO pins available depends on whether or not the Ethernet interface is in use. The external
EtherMux input, if driven high, enables the Ethernet Tx_D[3:0] and Rx_D[3:0] onto the pins used
for IO[23:16]. If EtherMux is low these pins are available for general-purpose IO use.

The functions of these bit fields are described in the table below:

Note: GPIO[15:14] can be configured to access the spare delay line in the DLL under the control of
the external Test pin. If Test = 1 then spare_DLL_input = GPIO[14] and GPIO[15] =
spare_DLL_output; if Test = 0 GPIO[15:14] connect to the System Controller GPIO pins.

r17: IO direction

This register determines whether each IO port bit is an input (1) or an output (0). Setting a bit to an
input does not invalidate the corresponding bit in r16 - that value will be held in r16 until explicitly
changed by a write to r16. When read, this register returns the value last written.

r18: Set IO

Writing a 1 sets the corresponding bit in r16. Writing a 0 has no effect.

Reading this register returns the values on the IO pins (if present).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IO port data

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bits R/W Function

31:29 R/W On-package SDRAM control

28 R/W Unused

27:24 R/W Can drive the JTAG interface

23:20 R/W IO pins or MII TxD

19:16 R/W IO pins or MII RxD

15:0 R/W IO pins

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IO port direction

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SetIO

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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r19: Clear IO

Writing a 1 clears the corresponding bit in r16. Writing a 0 has no effect.

Reading this register returns the values on the IO pins (if present).

r20: PLL1 control, and register 21: PLL2 control

The functions of these fields are described in the table below:

The PLL output clock frequency, with a 10 MHz input clock, is given by 10*NS/MS. Thus setting
NS[5:0] = 010100 [=20] and MS[5:0] = 000001 [=1] will give 200 MHz.

r22: Set flags

Writing a 1 to any bit position sets the corresponding bit in the flags register. Writing a 0 has no
effect. Reading returns the value of the flags register.

r23: Reset flags

Writing a 1 to any bit position clears the corresponding bit in the flags register. Writing a 0 has no
effect. Reading returns the value of the flags register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ClearIO

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T P FR MS[5:0] NS[5:0]

reset: 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0

Name bits R/W Function

T 24 R/W test (=0 for normal operation)

P 18 R/W Power UP

FR[1:0] 17:16 R/W frequency range (25-50, 50-100, 100-200, 200-400 MHz)

MS[5:0] 13:8 R/W output clock divider

NS[5:0] 5:0 R/W input clock multiplier

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit flags register

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit flags register

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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r24: Clock multiplexer control
The clock generator circuits are organised as shown below:

The clock circuits are reset by r8 & r11 bit[16] and are controlled by r24:

The functions of these fields are described in the table below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

V Sdiv Sys Rdiv Rtr Mdiv Mem Bdiv Pb Adiv Pa

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

V 31 R/W invert CPU clock B

Sdiv[1:0] 23:22 R/W divide System AHB clock by Sdiv+1 (= 1-4)

Sys[1:0] 21:20 R/W clock selector for System AHB components

Rdiv[1:0] 18:17 R/W divide Router clock by Rdiv+1 (= 1-4)

Rtr[1:0] 16:15 R/W clock selector for Router

Mdiv[1:0] 13:12 R/W divide SDRAM clock by Mdiv+1 (= 1-4)

Mem[1:0] 11:10 R/W clock selector for SDRAM

Bdiv[1:0] 8:7 R/W divide CPU clock B by Bdiv+1 (= 1-4)

Pb[1:0] 6:5 R/W clock selector for B CPUs (0 3 5 6 9 10 12 15 17)

Adiv[1:0] 3:2 R/W divide CPU clock A by Adiv+1 (= 1-4)

Pa[1:0] 1:0 R/W clock selector for A CPUs (1 2 4 7 8 11 13 14 16)

/1/2/3/4

clk_in

Fref

Fref

(eg 10MHz)

Inv

system_clk

memory_clk

router_clk

/1/2/3/4

/1/2/3/4

/1/2/3/4

/1/2/3/4
CkOut

Tcko

PLL1_xxx[]

PLL2_xxx[]

Div by 4

PLL2

PLL1

Cin

Cin

proc_node_clk_A

proc_node_clk_B

proc_node_clk_B_sel

memory_clk_sel

router_clk_sel

proc_node_clk_A_sel

pll2_clk

pll1_clk

clk_in_4

clk_in

SpiNNaker2 Clock Module

Tcki

CkOut

Tcko

Tcki

2

3

proc_node_clk_A_div

memory_clk_div

proc_node_clk_B_inv proc_node_clk_B_div

router_clk_div

system_clk_div

0

1

system_clk_sel
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All clock selectors choose from the same clock sources:

Clock switching is safe at any time once the PLLs have locked, which takes a defined time
(maximum 80µs for the PLLs) after they have been configured.

r25: CPU sleep status

Each bit in this register indicates the state of the respective ARM968 STANDBYWFI (stand-by
wait for interrupt) signal, which is active when the CPU is in its low-power sleep mode.

r26-28: Temperature sensor registers
There are three independent temperature sensors on the chip, each with its own control and sensor
read-out register. The three sensors use different sensor mechanisms to enable the temperature to be
corrected for process and voltage variations.

The functions of these fields are described in the table below:

Setting S to 1 starts the temperature measurement process. When F reads as 1 the sensor reading is
complete, and bits[23:0] may be read. Clearing S stops the sensing and clears F.

r32-63: Monitor Processor arbitration

The same single-bit value ‘A’ appears in all registers r32 to r63.

Sel[1:0] Clock source

00 external 10MHz clock input

01 PLL1

10 PLL2

11 external 10MHz clock divided by 4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CPUwfi[17:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S F temperature

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

S 31 R/W start temperature measurement

F 24 R temperature measurement finished

temperature 23:0 R temperature sensor reading

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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‘A’ is set by a reset event (with RC[1:0] = 000, 001, 010 or 011 in r12) and can also be set by
software via r13 bit[8]. A processor which has passed its self-test may read this register at address
offset 0x80 + 4*N, where N is the processor’s number. If A is set when the read takes place and N
is not equal to the current value in r13 (the Monitor Processor ID register), 0x80000000 is returned,
N is placed in r13, and A is cleared.

If A is clear when the read takes place, or N equals the current value in r13, then the value
0x00000000 is returned and A and r13 are unchanged.

r64-95: Test and Set

A unique single-bit value ‘X’ appears in each register r64 to r95. Reading each register returns
0x00000000 or 0x80000000 depending on whether its respective bit was clear or set prior to the
read, and as a side-effect the bit is set by the read.

Together with r96 to r127, these registers provide support for mutual exclusion primitives for inter-
processor communication and shared data structures, compensating for the lack of support for
locked ARM ‘swap’ instructions into the System RAM.

r96-127: Test and Clear

The same unique single-bit value ‘X’ appears in each register r96 to r127 as appears in r64 to r95
respectively. Reading each register returns 0x00000000 or 0x80000000 depending on whether its
respective bit was clear or set prior to the read, and as a side-effect the bit is cleared by the read.

r128: Tx and Rx link disable

For a write to be effective it must include a security code in bits [31:20]: 0x5ECXXXXX.

The functions of these fields are described in the table below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

�0x5EC R TxDisable RxDisable

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

R 16 R/W Router parity control

TxDisable[5:0] 13:8 R/W disables the corresponding link transmitter

RxDisable[5:0] 5:0 R/W disables the corresponding link receiver
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15. Ethernet MII interface

The SpiNNaker system connects to a host machine via Ethernet links. Each SpiNNaker chip
includes an Ethernet MII interface, although only a few of the chips are expected to use this
interface. These chips will require an external PHY.

The interface hardware operates at the frame level. All higher-level protocols will be implemented
in software running on the local monitor processor.

15.1 Features
• support for full-duplex 10 and 100 Mbit/s Ethernet via off-chip PHY

• outgoing 1.5Kbyte frame buffer, for one maximum-size frame

• outgoing frame control, CRC generation and inter-frame gap insertion

• incoming 3Kbyte frame buffer, for two maximum-size frames

• incoming frame descriptor buffer, for up to 48 frame descriptors

• incoming frame control with length and CRC check

• support for unicast (with programmable MAC address), multicast, broadcast and promiscuous
frame capture

• receive error filter

• internal loop-back for test purposes

• general-purpose IO for PHY management (SMI) and PHY reset

• interrupt sources for frame-received, frame-transmitted and PHY (external) interrupt

[The implementation does not provide support for half-duplex operation (as required by a CSMA/
CD MAC algorithm), jumbo or VLAN frames.]

15.2 Using the Ethernet MII interface
The Ethernet driver software must observe a number of sequence dependencies in initialising the
PHY and setting-up the MAC address before the Ethernet interface is ready for use.

Details of these issues are documented in “SpiNNaker AHB-MII module” by Brendan Lynskey.
The latest version of this is v003, February 2008.

15.3 Register summary
Base address: 0xe4000000 (buffered write), 0xf4000000 (unbuffered write).

User registers
The following registers allow normal user programming of the Ethernet interface:

Name Offset R/W Function

Tx frame buffer 0x0000 W Transmit frame RAM area

Rx frame buffer 0x4000 R Receive frame RAM area

Rx desc RAM 0x8000 R Receive descriptor RAM area

r0: Gen command 0xC000 R/W General command

r1: Gen status 0xC004 R General status
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Test registers
In addition, there are test registers that will not normally be of interest to the programmer:

See “SpiNNaker AHB-MII module” by Brendan Lynskey version 003, February 2008 for further
details of the test registers.

15.4 Register details

r0: General command register

The functions of these fields are described in the table below:

r2: Tx length 0xC008 R/W Transmit frame length

r3: Tx command 0xC00C W Transmit command

r4: Rx command 0xC010 W Receive command

r5: MAC addr ls 0xC014 R/W MAC address low bytes

r6: MAC addr hs 0xC018 R/W MAC address high bytes

r7: PHY control 0xC01C R/W PHY control

r8: Interrupt clear 0xC020 W Interrupt clear

r9: Rx buf rd ptr 0xC024 R Receive frame buffer read pointer

r10: Rx buf wr ptr 0xC028 R Receive frame buffer write pointer

r11: Rx dsc rd ptr 0xC02C R Receive descriptor read pointer

r12: Rx dsc wr ptr 0xC030 R Receive descriptor write pointer

Name Offset R/W Function

r13: Rx Sys state 0xC034 R Receive system FSM state (debug & test use)

r14: Tx MII state 0xC038 R Transmit MII FSM state (debug & test use)

r15: PeriphID 0xC03C R Peripheral ID (debug & test use)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

H D V P B M U F L R T

reset: 0 0 0 0 1 1 1 1 0 0 0

Name bits R/W Function

H 10 R/W Disable hardware byte reordering

D 9 R/W Reset receive dropped frame count (in r1)

V 8 R/W Receive VLAN enable

Name Offset R/W Function
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r1: General status register

The functions of these fields are described in the table below:

r2: Transmit frame length

The functions of these fields are described in the table below:

r3: Transmit command register

Any write to register 3 causes the transmission of a frame.

P 7 R/W Receive promiscuous packets enable

B 6 R/W Receive broadcast packets enable

M 5 R/W Receive multicast packets enable

U 4 R/W Receive unicast packets enable

F 3 R/W Receive error filter enable

L 2 R/W Loopback enable

R 1 R/W Receive system enable

T 0 R/W Transmit system enable

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RxDFC[15:0] RxUC[6:0] T

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

RxDFC[15:0] 31:16 R Receive dropped frame count

RxUC[5:0] 7:1 R Received unread frame count

T 0 R Transmit MII interface active

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TxL[10:0]

reset: 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

TxL[10:0] 10:0 R/W Length of transmit frame (60 - 1514 bytes)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name bits R/W Function
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r4: Receive command register

Any write to register 4 indicates that the current receive frame has been processed and decrements
the received unread frame count in register 1.

r5: MAC address low bytes

The functions of these fields are described in the table below:

r6: MAC address high bytes

The functions of these fields are described in the table below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MAC3[7:0] MAC2[7:0] MAC1[7:0] MAC0[7:0]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

MAC3[7:0] 31:24 R/W MAC address byte 3

MAC2[7:0] 23:16 R/W MAC address byte 2

MAC1[7:0] 15:8 R/W MAC address byte 1

MAC0[7:0] 7:0 R/W MAC address byte 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MAC5[7:0] MAC4[7:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

MAC5[7:0] 15:8 R/W MAC address byte 5

MAC4[7:0] 7:0 R/W MAC address byte 4
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r7: PHY control

The functions of these fields are described in the table below:

r8: Interrupt clear

The functions of these fields are described in the table below:

Writing a 1 to bit [0] if this register clears a pending transmit frame interrupts. Writing a 1 to bit [4]
clears a pending receive frame interrupt. There is no requirement to write a 0 to these bits other than
in order to prevent unintentional interrupt clearance.

r9: Receive frame buffer read pointer

The functions of these fields are described in the table below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Q C E O I R

reset: 0 0 0 0 0

Name bits R/W Function

Q 5 R/W PHY IRQn invert disable

C 4 R/W SMI clock (active rising)

E 3 R/W SMI data output enable

O 2 R/W SMI data output

I 1 R SMI data input

R 0 R/W PHY reset (active low)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R T

Name bits R/W Function

R 4 W Clear receive interrupt request

T 0 W Clear transmit interrupt request

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

V RFBRP[11:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

V 12 R Rollover bit - toggles on address wrap-around

RFBRP[11:0] 11:0 R Receive frame buffer read pointer
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r10: Receive frame buffer write pointer

The functions of these fields are described in the table below:

r11: Receive descriptor read pointer

The functions of these fields are described in the table below:

r12: Receive descriptor write pointer

The functions of these fields are described in the table below:

15.5 Fault-tolerance
The Ethernet interface will only be used on a small number of nodes; most nodes are insensitive to
faults in its functionality as they will not attempt to use it.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

V RFBWP[11:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

V 12 R Rollover bit - toggles on address wrap-around

RFBWP[11:0] 11:0 R Receive frame buffer write pointer

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

V RDRP[5:0]

reset 0 0 0 0 0 0 0

Name bits R/W Function

V 6 R Rollover bit - toggles on address wrap-around

RDRP[5:0] 5:0 R Receive descriptor read pointer

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

V RDWP[5:0]

reset 0 0 0 0 0 0 0

Name bits R/W Function

V 6 R Rollover bit - toggles on address wrap-around

RDWP[5:0] 5:0 R Receive descriptor write pointer
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16. Watchdog timer

The watchdog timer is an ARM PrimeCell component (ARM part SP805, documented in ARM
DDI 0270B) that is responsible for applying a system reset when a failure condition is detected.
Normally, the Monitor Processor will be responsible for resetting the watchdog periodically to
indicate that all is well. If the Monitor Processor should crash, or fail to reset the watchdog during a
pre-determined period of time, the watchdog will trigger.

16.1 Features
• generates an interrupt request after a programmable time period;

• causes a chip-level reset if the Monitor Processor does not respond to an interrupt request within
a subsequent time period of the same length.

16.2 Register summary
Base address: 0xe3000000 (buffered write), 0xf3000000 (unbuffered write).

User registers
The following registers allow normal user programming of the Watchdog timer:

Test and ID registers
In addition, there are test and ID registers that will not normally be of interest to the programmer:

See AMBA Design Kit Technical Reference Manual ARM DDI 0243A, February 2003, for further
details of the test and ID registers.

Name Offset R/W Function

r0: WdogLoad 0x00 R/W Count load register

r1: WdogValue 0x04 R Current count value

r2: WdogControl 0x08 R/W Control register

r3: WdogIntClr 0x0C W Interrupt clear register

r4: WdogRIS 0x10 R Raw interrupt status register

r5: WdogMIS 0x14 R Masked interrupt status register

r6: WdogLock 0xC00 R/W Lock register

Name Offset R/W Function

WdogITCR 0xF00 R/W Watchdog integration test control register

WdogITOP 0xF04 W Watchdog integration test output set register

WdogPeriphID0-3 0xFE0-C R Watchdog peripheral ID byte registers

WdogPCID0-3 0xFF0-C R Watchdog Prime Cell ID byte registers
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16.3 Register details

r0: Load

This read-write register contains the value the from which the counter is to decrement. When this
register is written to, the count immediately restarts from the new value. The minimum value is 1.

r1: Count

This read-only register contains the current value of the decrementing counter. The first time the
counter decrements to zero the Watchdog raises an interrupt. If the interrupt is still active the
second time the counter decrements to zero the reset output is activated.

r2: Control

The functions of these fields are described in the table below:

Once the Watchdog has been initialised both enables should be set to ‘1’ for normal watchdog
operation.

r3: Interrupt clear

A write of any value to this register clears the watchdog interrupt and reloads the counter from r1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Wdog load

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Wdog count

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E I

reset: 0 0

Name bits R/W Function

E 1 R/W Enable the Watchdog reset output (1)

I 0 R/W Enable Watchdog counter and interrupt (1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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r4: Raw interrupt status

The function of this field is described in the table below:

r5: Masked interrupt status

The function of this field is described in the table below:

r6: Lock

The functions of these fields are described in the table below:

A read from this register returns only the bottom bit, indicating whether writes to other registers are
enabled (0) or disabled (1). A write of 0x1ACCE551 enables write access to the other registers; a
write of any other value disables write access to the other registers. Note that the ‘Key’ field is 32
bits and includes bit 0.

The lock function is available to ensure that the watchdog will not be reset by errant programs.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

reset: 0

Name bits R/W Function

R 0 R Raw (unmasked) watchdog interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

W

reset: 0

Name bits R/W Function

W 0 R Watchdog interrupt output

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Key L

reset: 0

Name bits R/W Function

Key 31:0 W Write 0x1ACCE551 to enable writes

L 0 R Write access enabled (0) or disabled (1)
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17. System RAM

The System RAM is an additional 32 Kbyte block of on-chip RAM used primarily by the Monitor
Processor to enhance its program and data memory resources as it will be running more complex
(though less time-critical) algorithms than the fascicle processors.

As the choice of Monitor Processor is made at start-up (and may change during run-time for fault-
tolerance purposes) the System RAM is made available to whichever processor is Monitor
Processor via the System NoC. Accesses by the Monitor Processor to the System RAM are non-
blocking as far as SDRAM accesses by the fascicle processors are concerned.

The System RAM may also be used by the fascicle processors to communicate with the Monitor
Processor and with each other, should the need arise.

17.1 Features
• 32 Kbytes of SRAM, available via the System NoC.

• can be used as source of boot code.

17.2 Address location
Base address: 0xe5000000 (buffered write), 0xf5000000 (unbuffered write). Can also appear
at the Boot area at 0xff000000 if the ‘Boot area switch’ is set in the System Controller.

17.3 Fault-tolerance

Fault insertion
• It is straightforward to corrupt the contents of the System RAM to model a soft error – any proc-

essor can do this. It is not clear how this would be detected.

Fault detection
• The Monitor Processor may perform a System RAM test at start-up, and periodically thereafter.

• It is not clear how soft errors can be detected without some sort of parity or ECC system.

Fault isolation
• Faulty words in the System SRAM can be mapped out of use.

Reconfiguration
• For hard failure of a single bit, avoid using the word containing the failed bit.

• If the System RAM fails completely the only option is to use the SDRAM instead, which will
probably result in compromised performance for the fascicle processors due to loss of SDRAM
bandwidth. An option then would be to relocate some of the fascicle processors’ workload to
another chip.

17.4 Test

Production test
• run standard memory test patterns from one of the processing subsystems.
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18. Boot ROM

18.1 Features
• a small (32Kbyte) on-chip ROM to provide minimal support for:

• initial self-test, and Monitor Processor selection

• Router initialisation for bootstrapping

• system boot.

The Test chip Boot ROM also supports the loading of code from an external SPI ROM using the
GPIO[5:2] pins as an SPI interface.

18.2 Address location
Base address: 0xf6000000 and, after a hard reset and unless the ‘Boot area switch’ is set in the
Sytem Controller, in the Boot area at 0xff000000.

18.3 Fault-tolerance

Fault insertion
Switch the ‘Boot area switch’ to remove the Boot ROM from the reset location.

Fault detection
If the Boot ROM fails the boot process will also fail, which will be detected at start-up.

Fault isolation
Switching the Boot ROM out of the boot area should render it harmless.

Reconfiguration
When the Boot ROM is switched out of the boot area the System RAM is switched into the boot
area. A neighbour ‘nurse’ chip can initialise the System RAM with the boot code and retry
initialisation.
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19. JTAG

The JTAG IEEE 1149.1 system on the SpiNNaker chip provides access only to the ARM968
processors for software debug purposes. There is no provision for scan access to the SpiNNaker
pins or other on-chip features.

19.1 Features
• standard ARM debug access to all 18 ARM968 processors

• device ID codes of 0x05968477

19.2 Organisation
The organisation of the ARM968 JTAG access is as shown below:

The ARM968 CPUs synchronize TCK to their respective local clocks, which may be different, so
the ARM interface has an addition clock return signal, RTCK, which indicates when a transition on
TCK has been recognised. TCK may then make a further transition. The RTCK signal allows TCK
to be operated at the maximum safe frequency.

TCK and RTCK should obey a standard handshake protocol, so TCK may only rise when RTCK is
low, and TCK may only fall when RTCK is high.

All of the processors are in series on the data scan path (TDI to TDO), with CPU0 coming before
CPU1, etc. All processor TAP controllers have JTAG-standard bypass registers to support more
efficient access to the other processor.

19.3 Operation
The JTAG interface supports direct connection of the ARM software development tools to the
SpiNNaker test chip, giving those tools standard access to the ARM processors, their local
memories, and all system functions visible from those processors.

It is expected that the JTAG interface will be used only with suitable JTAG-aware tools, for
hardware debugging (if necessary) and software debugging as required.

TDI

TDO

TCK

RTCK

TMS
nTRST

CPU 0
TDI TDO

TCK RTCK

CPU 17
TDI TDO

TCK RTCK

sync

CPU 1
TDI TDO

TCK RTCK
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20. Input and Output signals

The SpiNNaker chip has the following IO, power and ground pins. All IO is assumed to operate at
1.8V with CMOS logic levels; the SDRAM interface is 1.8V LVCMOS. All other IOs are non-
critical, though output delay affects link throughput.

20.1 Key
The ‘Drive’ column in the tables uses the following notation:

20.2 SDRAM interface

When the package incorporates an internal SDRAM die, all of the above signal pins apart from
CS#[1] will be connected to it. They may or may not also be connected to package balls. CS#[1]
connects only to a package ball.

Direction Drive Meaning

output NmA maximum drive current N mA

output A/B slow/fast slew rate

input S Schmitt trigger input

input D/U pull down/up resistor incorporated

Signal Type Drive Function #

DQ[31:0] IO 8mA B Data 1-32

A[13:0] O 4mA B Address 33-46

CK, CK# O 8mA B True and inverse clock 47, 48

CKE O 4mA B Clock enable 49

CS#[1:0] O 4mA B Chip selects 50, 51

RAS# O 4mA B Row address strobe 52

CAS# O 4mA B Column address strobe 53

WE# O 4mA B Write enable 54

DM[3:0] O 8mA B Data mask 55-58

BA[1:0] O 4mA B Bank address 59, 60

DQS[3:0] IO 8mA DB Data strobe 61-64

Vdd_18[23, 13:0] 1.8V Power for SDRAM pins 65-79

Vss_18[23, 13:0] Gnd Ground for SDRAM pins 80-94
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20.3 JTAG

20.4 Ethernet MII 

Signal Type Drive Function #

nTRST I SU Test reset (active low) 95

TCK I SD Test clock 96

RTCK O 4mA A Return test clock 97

TMS I SU Test mode select 98

TDI I SU Test data in 99

TDO O 4mA A Test data out 100

Signal Type Drive Function #

EtherMux I SD select Ethernet or GPIO[23:16] 101

RX_CLK I SD Receive clock 102

RX_D[3:0] IO 4mA A SU Receive data/GPIO[19:16] 103-106

RX_DV I SD Receive data valid 107

RX_ERR I SD Receive data error 108

TX_CLK O 4mA A Transmit clock 109

TX_D[3:0] IO 4mA A SD Transmit data/GPIO[23:20] 110-113

TX_EN O 4mA A Transmit data valid 114

TX_ERR O 4mA A Force transmit data error 115

MDC O 4mA A Management interface clock 116

MDIO IO 4mA A Management interface data 117

PHY_RSTn O 4mA A PHY reset (optional) 118

PHY_IRQn I SD PHY interrupt (optional) 119

Vdd_18[15] 1.8V Power for Ethernet MII pins 120

Vss_18[15] Gnd Ground for Ethernet MII pins 121
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20.5 Communication links

Signal Type Drive Function #

L0in[6:0] I SD link 0 2-of-7 input code 122-128

L0inA O 12mA B link 0 input acknowledge 129

L0out[6:0] O 12mA B link 0 2-of-7 output code 130-136

L0outA I SD link 0 output acknowledge 137

L1in[6:0] I SD link 1 2-of-7 input code 138-144

L1inA O 12mA B link 1 input acknowledge 145

L1out[6:0] O 12mA B link 1 2-of-7 output code 146-152

L1outA I SD link 1 output acknowledge 153

L2in[6:0] I SD link 2 2-of-7 input code 154-160

L2inA O 12mA B link 2 input acknowledge 161

L2out[6:0] O 12mA B link 2 2-of-7 output code 162-168

L2outA I SD link 2 output acknowledge 169

L3in[6:0] I SD link 3 2-of-7 input code 170-176

L3inA O 12mA B link 3 input acknowledge 177

L3out[6:0] O 12mA B link 3 2-of-7 output code 178-184

L3outA I SD link 3 output acknowledge 185

L4in[6:0] I SD link 4 2-of-7 input code 186-192

L4inA O 12mA B link 4 input acknowledge 193

L4out[6:0] O 12mA B link 4 2-of-7 output code 194-200

L4outA I SD link 4 output acknowledge 201

L5in[6:0] I SD link 5 2-of-7 input code 202-208

L5inA O 12mA B link 5 input acknowledge 209

L5out[6:0] O 12mA B link 5 2-of-7 output code 210-216

L5outA I SD link 5 output acknowledge 217

Vdd_18[22:21, 17:14] 1.8V Power for link pins 218-223

Vss_18[22:21, 17:14] Gnd Ground for link pins 224-229
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20.6 Miscellaneous

20.7 Internal SDRAM interface

20.8 Internal SDRAM power & ground
In addition to the signal pins that connect the internal SDRAM to the SpiNNaker chip, the SDRAM
also requires 1.8V Vdd and ground connections - 30 in total.

Signal Type Drive Function #

GPIO[15:0] IO 4mA A SD General-purpose IO 230-245

PORIn I SD Power-on reset 246

ResetIn I SD Chip reset 247

Test I SD Chip test mode 248

Clk10MIn I S Main input clock - 10MHz 249

nClk10MOut O 4mA A Daisy-chain 10MHz clock out 250

Clk32kIn I S Slow (global) 32kHz clock 251

Vdd_18[18:17] 1.8V Power for miscellaneous pins 252-253

Vss_18[18:17] Gnd Ground for misc. pins 254-255

Vdd_12[13:0] 1.2V Power for core logic 256-269

Vss_12[13:0] Gnd Ground for core logic 270-283

Vdd_PLL[3:0] 1.2V Power for PLLs 284-287

Vss_PLL[3:0] Gnd Ground for PLLs 288-291

Tres I analogue Temp. sensor analogue input 292

Int[1:0] I SD Exteernal interrupt requests 293-294

Signal Type Drive Function #

GPIO[31] IO 4mA A SD Connects to SDRAM TQ 293

GPIO[30] IO 4mA A SD SDRAM DPD input 294

GPIO[29] IO 4mA A SD Bond to Vdd 295
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21. Packaging

The SpiNNaker chip is packaged in a 300LBGA package with 1mm ball pitch. The allocation of
signals to balls is as shown below:

It is expected that a 128Mbyte Mobile DDR SDRAM will normally be incorporated into the
package with the SpiNNaker chip, using wire-bonded Multi-Chip Package (MCP) assembly.

Link 4

GPIO

PLL Power

Link 1Link 0Link 5

SDRAM

Link 3

Misc

GPIO

PLL Power

Link 2

MII

JTAG

Top view

V

U

T

S

P

N

M

L

K

J

H

G

F

E

D

C

B

A

54321 6 7 8 9 10 11 12 13 14 15 16 17 18

DQ14 VSS[31] GPIO[10]

A2 VSS[27]

A10 VSS[0] VDD18[25] VDD18[26] VDD18[27] POR Reset VSS_PLL[3]

CK# CK CS1# VDD12[0] VDD12[1] VDD12[2] NC TRES VDD_PLL[2]VDD_PLL[3]

A13 A0 A11 A9 VSS[3] VSS[4] VDD12[5] VDD12[6] GPIO[7] GPIO[6]

A7 A5 A3 VDD18[11] VDD18[12] VSS[19] VSS[20] VSS[21] GPIO[3] GPIO[2] VSS_PLL[1]

CAS# WE# CKE VSS[6] VSS[7] VSS[8] VDD18[22] VDD18[24] GPIO[1] VDD_PLL[1]

DQ16 DQ17 VSS[10] VSS[11] VSS[12] VSS[18] VDD18[18] VDD18[19] VDD18[20] VDD18[21] L2in[0] L2in[1] L2in[2]

DQ18 DQ19 DQ20 DQ21 VSS[13] VSS[14] VSS[15] VSS[16] VDD12[4] VDD18[14] VDD18[15] VDD18[16] VDD18[17] NC L2in[4] L2in[5]

DM3 DQS3 L5outA L5in[3] L0outA L1out[3] L1outA L1in[3] NC L2out[0] L2out[1]

DQ24 L5out[3] L5out[6] L5in[2] L0out[6] L0in[2] L1out[2] L1in[2] L1in[6] L2out[3] L2out[4]

DQ29 L5out[2] L5out[5] L5in[1] L5in[5] L0out[1] L0out[5] L0in[1] L0in[5] L1in[1] L2out[5]

DQ30 DQ31 L5out[0] L5out[1] L5out[4] L5in[0] L5in[4] L0out[0] L0out[4] L0in[0] L0in[4] L1in[0] L1in[4] Int[1] L2outA

DQ0 DQ1 L4in[0] L4in[1] L4in[4] L4out[0] L4out[4] L3in[0] L3out[0] L3out[4] MDIO

DQ2 DQ3 DQ4 L4in[2] L4in[5] L4out[1] L4out[5] L3in[1] L3in[5] L3out[1]

L3in[4] TX_D[3] TX_CLK RX_D[3] RX_D[1] RX_D[0] RX_CLK

TDORTCKRX_D[2]RX_DVTX_D[0]TX_ENPHY_RSTL3out[5]

TCKTMSTDIRX_ERRTX_D[1]TX_ERRPHY_IRQL3out[6]L3out[2]L3in[6]L3in[2]L4out[6]L4out[2]L4in[6]L4in[3]DQ7DQ6DQ5

DQS0 DM0 DQ8 DQ9 L4inA L4out[3] L4outA L3in[3] L3inA L3out[3] L3outA EtherMux MDC TX_D[2] NC nTRST GPIO[15] GPIO[14]

GPIO[11]GPIO[12]GPIO[13]NCVSS[35]VSS[34]VSS[33]VSS[32]VDD12[8]VSS[36]VDD18[3]VDD18[2]

VDD18[6] VDD18[7] VSS[37] VDD12[9] VSS[28] VSS[29] VSS[30] NC GPIO[9] GPIO[8]

TestClk10MInnClk10MOutClk32kInVSS[26]VSS[25]

VSS_PLL[2]

VSS[22] VSS[23] VSS[24]

GPIO[4]GPIO[5]VDD12[7]

VSS_PLL[0]

VDD_PLL[0]GPIO[0]VDD18[23]

VDD18[9]VDD18[8]A4BA0

A8 A12 VSS[1]

CS#

VSS[5]

VDD18[13]A1

RAS#

DM2 DQS2 VSS[9] VDD12[3]

L5inA

L5in[6]DQ26DQ25

DQ23DQ22

VSS[17]

L0in[3]

L0out[2] L0in[6]

L0inAL0out[3] L2inA

L1out[6] L2out[2]

Int[0]L1in[5]

L1inA

L1out[5]

L1out[4]L1out[0]

L1out[1]DQ27 DQ28

VSS[2]

VDD18[10]

DQ11DQ10

DQ15 DQS1

DQ12 DQ13

DM1

VDD18[1]

VDD18[5]VDD18[4]

VDD18[0]

BA1

L2in[3]

L2in[6]

A6

L2out[6]
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22. Application notes

22.1 Firefly synchronization
The local time phase, used for errant packet trapping, can be maintained across the system by a
combination of local slightly randomized timers and local phase-locking using nearest-neighbour
communication.

Time phase accuracy
If the system time phase is F and the skew is K (that is, all parts of the system transition from one
phase to its successor within a time K), then a packet has at least F-K to reach its destination and
will be killed after at most 2F+K. Thus, if we want to allow for a maximum packet transit time of F-
K = T and can achieve a minimum phase skew of K, then T and K are both system constants and we
should choose F = T+K. The longest packet life is then 2T+3K.

22.2 Neuron address space
Neurons ocuppy an address space that identifies each Neuron uniquely within the domain of its
multicast routing path (where this domain must include alternative links that may be taken during
emergency routing). Where these domains do not overlap it is possible to reuse the same address,
though this must be done with considerable care. Neuron addresses can be assigned arbitrarily; this
can be exploited to optimize Router utilization (e.g. by giving Neurons with the same routing
requirements related addresses so that they can be routed by the same Router entries).
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