

version 0.7 - DRAFT

11 February 2008

0

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

SpiNNaker - a chip multiprocessor for

neural network simulation

Features

• 20 ARM968 processors, each with:

• 64 Kbytes of tightly-coupled data memory;

• 32 Kbytes of tightly-coupled instruction memory;

• DMA controller;

• communications controller;

• vectored interrupt controller;

• low-power ‘wait for interrupt’ mode.

• Multicast communications router

• 6 serial inter-chip receive interfaces;

• 6 serial inter-chip transmit interfaces;

• 1024 associative routing entries.

• Interface to external SDRAM

• over 1 Gbyte/s sustained block transfer rate.

• Ethernet interface for host connection

• Fault-tolerant architecture

• defect detection, isolation, and function migration.

• Boot, test and debug interfaces (to be determined).

Introduction

SpiNNaker is a chip multiprocessor designed specifically for the real-time simulation of large-scale
spiking neural networks. Each chip (along with its associated SDRAM chip) forms one node in a
scalable parallel system, interconnected to the other nodes through self-timed links.

The processing power is provided through the multiple ARM cores on each chip. In the standard
model, each ARM models multiple (up to 1,000) neurons, with each neuron being a coupled pair of
differential equations modelled in continuous ‘real’ time. Neurons communicate through atomic
‘spike’ events, and these are communicated as discrete packets through the on- and inter-chip
communications fabric. The packet contains a routing key that is defined at its source and is used to
implement multicast routing through an associative router in each chip.

One processor on each SpiNNaker chip will perform system management functions; the
communications fabric supports point-to-point packets to enable co-ordinated system management
across local regions and across the entire system, and nearest-neighbour packets are used for system
flood-fill boot operations and for chip debug.

 version 0.7 - DRAFT 11/2/08

1

S
p

i
N

N
a

k
e

r

Background

SpiNNaker was designed at the University of Manchester within an EPSRC-funded project in
collaboration with the University of Southampton, ARM Limited and Silistix Limited. The work
would not have been possible without EPSRC funding, and the support of the EPSRC and the
industrial partners is gratefully acknowledged.

Intellectual Property rights

All rights to the SpiNNaker design are the property of the University of Manchester with the
exception of those rights that accrue to the project partners in accordance with the contract terms.

Disclaimer

The details in this datasheet are presented in good faith but no liability can be accepted for errors or
inaccuracies. The design of a complex chip multiprocessor is a research activity where there are
many uncertainties to be faced, and there is no guarantee that a SpiNNaker system will perform in
accordance with the specifications presented here.

The APT group in the School of Computer Science at the University of Manchester was responsible
for all of the architectural and logic design of the SpiNNaker chip, with the exception of
synthesizable components supplied by ARM Limited. All design verification was also carried out
by the APT group. As such the industrial project partners bear no responsibility for the correct
functioning of the device.

Change history

version date changes

0.0 27/12/05 First draft.

0.1 16/8/06 Sundry - document still developing.

0.2 18/11/06 Comms controller and NN protocol details modified.

0.3 19/02/07 Added ARM968 memory map, updated router pseudo-code,

expanded system controller spec.

0.4 23/04/07 Added DMA controller, updated system controller to use

ADK watchdog, updated comms controller.

0.5 05/11/07 Updated area estimates, added test chip details, added pin-out

detail, added Ethernet MII interface, updated system dia-

grams.

0.6 04/12/07 Added details of timer/counter, vectored interrupt controller,

PL340; removed Router implementation detail;

0.7 6/2/08 Sundry updates - added watchdog timer

2

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

Contents

1. Chip organization . 5
1.1 Block diagram 5
1.2 System-on-Chip hierarchy 5

2. System architecture . 7
2.1 Routing 7
2.2 System-level address spaces 8

3. ARM968 processing subsystem . 9
3.1 Features 9
3.2 ARM968 subsystem organisation 9
3.3 Memory Map 9
3.4 Fault-tolerance 10
3.5 Test 10

4. ARM 968 . 11
4.1 Features 11
4.2 Organization 11
4.3 Fault-tolerance 11
4.4 Test 11

5. Vectored interrupt controller . 12
5.1 Features 12
5.2 Register summary 12
5.3 Register details 13
5.4 Interrupt sources 16
5.5 Fault-tolerance 16
5.6 Test 17

6. Counter/timer . 18
6.1 Features 18
6.2 Register summary 18
6.3 Register details 19
6.4 Fault-tolerance 20
6.5 Test 21

7. DMA controller . 22
7.1 Features 22
7.2 Using the DMA Controller 22
7.3 Register summary 23
7.4 Register details 24
7.5 Fault-tolerance 27
7.6 Test 27

8. Communications controller . 28
8.1 Features 28
8.2 Packet formats 28
8.3 Control byte summary 29
8.4 Register summary 30
8.5 Register details 31
8.6 Fault-tolerance 33
8.7 Test 34
8.8 Notes 34

 version 0.7 - DRAFT 11/2/08

3

S
p

i
N

N
a

k
e

r

9. Communications NoC . 35
9.1 Features 35
9.2 Block diagram 35
9.3 Arbiter structure 35
9.4 Fault-tolerance 36
9.5 Test 36
9.6 Notes 36

10. Communications Router . 37
10.1 Features 37
10.2 Description 37
10.3 Internal organization 38
10.4 Multicast (MC) router 38
10.5 The point-to-point (p2p) router 39
10.6 The algorithmic (ALG) router 39
10.7 Time phase handling 39
10.8 Packet error handler 40
10.9 Emergency routing 40
10.10 Errant packets 40
10.11 Pseudo-code description 40
10.12 Registers 43
10.13 Fault-tolerance 43
10.14 Test 44
10.15 Notes 44

11. Inter-chip transmit and receive interfaces 45
11.1 Features 45
11.2 Programmer view 45
11.3 Fault-tolerance 45
11.4 Test 46

12. System NoC . 47
12.1 Features 47
12.2 Organisation 47
12.3 Fault-tolerance 47
12.4 Test 48

13. SDRAM interface . 49
13.1 Features 49
13.2 Register summary 49
13.3 Register details 50
13.4 Fault-tolerance 57
13.5 Test 57

14. System Controller . 58
14.1 Register summary 58
14.2 Register details 58
14.3 Clock control 60
14.4 Fault-tolerance 60
14.5 Test 60

15. Router configuration registers . 61
15.1 Features 61
15.2 Register summary 61
15.3 Register details 61
15.4 Fault tolerance 64

4

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

15.5 Test 65
15.6 Notes 65

16. Ethernet MII interface . 66
16.1 Features 66
16.2 Using the Ethernet MII interface 66
16.3 Register summary 66
16.4 Register details 67
16.5 Fault-tolerance 72
16.6 Test 72

17. Watchdog timer . 73
17.1 Features 73
17.2 Register summary 73
17.3 Register details 74
17.4 Fault-tolerance 76
17.5 Test 76
17.6 Notes: 76

18. System RAM . 77
18.1 Features 77
18.2 Address location 77
18.3 Fault-tolerance 77
18.4 Test 77

19. Boot ROM . 79
19.1 Features 79
19.2 Address location 79
19.3 Fault-tolerance 79
19.4 Test 79

20. Boot, test and debug support . 80
20.1 Features 80
20.2 Issues 80
20.3 Boot algorithm 80
20.4 Fault-tolerance 80
20.5 Test 80

21. Input and Output signals . 81
21.1 External SDRAM interface 81
21.2 JTAG 81
21.3 Communication links 82
21.4 Ethernet MII 83
21.5 Miscellaneous 84

22. Area estimates . 85

23. Power estimates . 86

24. To Do... 87

 version 0.7 - DRAFT 11/2/08

5

S
p

i
N

N
a

k
e

r

1. Chip organization

1.1 Block diagram

The primary functional components of SpiNNaker are illustrated in the figure below.

Each chip contains 20 identical processing subsystems. Following self-test, at start-up one of the
processors is nominated as the Monitor Processor and thereafter performs system management
tasks. Each of the remaining processors is responsible for modelling one or more neuron fascicles -
a fascicle being a group of neurons with associated inputs and outputs (although some processors
may be reserved as spares for fault-tolerance purposes).

The Router is responsible for routing neural event packets both between the on-chip processors and
from and to other SpiNNaker chips. The Tx and Rx interface components are used to extend the on-
chip communications NoC across to other SpiNNaker chips. The arbiter assembles inputs from the
various on- and off-chip sources into a single serial stream which is then passed to the Router.

In addition to the primary function, there are additional resources accessible from the processor
systems via the System NoC. Each of the processors has access to the shared off-chip SDRAM, and
various system components also connect through the System NoC in order that, whichever
processor is Monitor Processor, it will have access to these components.

The sharing of the SDRAM is an implementation convenience rather than a functional requirement,
although it may facilitate function migration in support of fault-tolerant operation.

1.2 System-on-Chip hierarchy

The SpiNNaker chip is viewed as having the following structural hierarchy, which is reflected

Comms NoC

2Gb/s

(Input) (Output)
Comms NoC

1Gb/s 8Gb/s4Gb/s

Proc3...

PL340 SDRAM I/F

1GB DDR SDRAM

2of7

Enc

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Enc

2of7

Enc

2of7

Enc

2of7

Enc

2of7

Enc

CpuClk CpuClk CpuClk CpuClk CpuClk CpuClk

ROM

System System

Ctlr

Ether MII

System

RAM
Ethernet

Proc0 Proc1 Proc2 ProcN−1ProcN−2 ProcN

System NoC

MemClk

JTAG

Debug

10MHzTestReset
IRQ

Router

control

Decode

Packet Routing Output

Engine Select

I/O Port

AXI Slave

AXI Master AXI MasterAXI MasterAXI MasterAXI MasterAXI Master

CommCtlr CommCtlrCommCtlr CommCtlr CommCtlr

AXI Slave

CommCtlr

Input

Links

Output

Links

AXI Slave

AXI Master

RtrClk

PLL

Clock

MemClk
RtrClk
CpuClkAXI SlaveAXI SlaveAXI Slave

Packet Router

6

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

throughout the organisation of this datasheet:

• ARM968 processor subsystem

• the ARM968, with its tightly-coupled instruction and data memories

• Timer/counter and interrupt controller

• DMA controller / System NoC interface

• communications controller, including communications NoC interface

• Communications NoC

• Router, including multicast, algorithmic, nearest-neighbour, default and emergency routing func-

tions

• 6 inter-chip transmit interfaces

• 6 inter-chip receive interfaces

• communications NoC arbiter and fabric

• System NoC

• SDRAM interface

• System Controller

• Router configuration registers

• Ethernet MII interface

• Boot ROM

• System RAM

• System NoC arbiter and fabric

• Boot, test and debug

• central controller for ARM968 JTAG functions

 version 0.7 - DRAFT 11/2/08

7

S
p

i
N

N
a

k
e

r

2. System architecture

SpiNNaker is designed to form (with its associated SDRAM chip) a node of a massively parallel
system. The system architecture is illustrated below:

2.1 Routing

The nodes are arranged in a hexagonal mesh with bidirectional links to 6 neighbours. The system
supports multicast packets (to carry neural event information, routed by the associative Multicast
Router), point-to-point packets (to carry system management and control information, routed
algorithmically) and nearest-neighbour packets (to support boot-time flood-fill and chip debug).

Emergency routing

In the event of a link failing or congesting, traffic that would normally use that link is redirected in
hardware around two adjacent links that form a triangle with the failed link. This “emergency
routing” is intended to be temporary, and the operating system will identify a more permanent
resolution of the problem. The local Monitor Processor is informed of all uses of emergency
routing.

Deadlock avoidance

The communications system has potential deadlock scenarios because of the possibility of circular
dependencies between links. The policy used here to prevent deadlocks occurring is:

• no Router can ever be prevented from issuing its output.

The mechanisms used to ensure this are the following:

• outputs have sufficient buffering and capacity detection so that the Router knows whether or not

an output has the capacity to accept a packet;

1,00,0

0,1 1,1

2,0

2,1 2,2

2,1

0,2

Chip
SpiNNaker

SDRAM

8

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

• emergency routing is used, where possible, to avoid overloading a blocked output;

• where emergency routing fails (because, for example, the alternative output is also blocked) the

packet is ‘dropped’ to a Router register, and the Monitor Processor informed;

The expectation is that the communications fabric will be lightly-loaded so that blocked links are
very rare. Where the operating system detects that this is not the case it will take measures to
correct the problem by modifying routing tables or migrating functionality to a different part of the
system.

Errant packet trap

Packets that get mis-routed could continue in the system for ever, following cyclic paths. To
prevent this all packets are time stamped and a coarse global time phase signal is used to trap old
packets. To minimize overhead the time stamp is 2 bits, cycling 00 -> 01 -> 11 -> 10, and when the
packet is two time phases old (time sent XOR time now = 0b11) it is dropped to the local Monitor
Processor and an error flagged. The length of a time phase can be adapted dynamically to the state
of the system; normally timed-out packets should be very rare so the time phase can be
conservatively long to minimise the risk of packets being dropped due to congestion.

2.2 System-level address spaces

The system incorporates a number of different levels of component that must be enumerated in
some way:

• Each Node (where a Node is a SpiNNaker chip plus SDRAM) must have a unique, fixed address

which is used as the destination ID for a point-to-point packet, and the addresses must be organ-

ised logically for algorithmic routing to function efficiently.

• Processors will be addressed relative to their host Node address, but this mapping will not be

fixed as an individual Processor’s role can change over time. Point-to-point packets addressed to

a Node will be delivered to the local Monitor Processor, whichever Processor is serving that

function. Internal to a Node there will be some hard-wired addressing of each Processor for sys-

tem diagnosis purposes, but this mapping will be hidden outside the Node.

• Neurons ocuppy an address space that identifies each Neuron uniquely within the domain of its

multicast routing path (where this domain must include alternative links that may be taken during

emergency routing). Where these domains do not overlap it is possible to reuse the same address,

though this must be done with considerable care. Neuron addresses can be assigned arbitrarily,

and this flexibility can be exploited to optimize Router utilization (for example by giving Neu-

rons with the same routing requirements related addresses so that they can all be routed by the

same Router entries).

 version 0.7 - DRAFT 11/2/08

9

S
p

i
N

N
a

k
e

r

3. ARM968 processing subsystem

SpiNNaker incorporates 20 ARM968 processing subsystems which provide the computational
capability of the device. Each of these subsystems is capable of generating and processing neural
events communicated via the Communications NoC and, alternatively, of fulfilling the role of
Monitor Processor.

3.1 Features

• a synthesized ARM968 module with

• a 200 MIPS ARM9 processor

• 32 kB tightly-coupled instruction memory

• 64 kB tightly-coupled data memory

• a local AHB with

• communications controller connected to Communications NoC

• DMA controller & interface to the System NoC

• timer/counter and interrupt controller

3.2 ARM968 subsystem organisation

3.3 Memory Map

The memory map of the ARM968 spans a number of devices and buses. The tightly coupled
memories are directly connected to the processor and accessible at the processor clock speed. All
other parts of the memory map are visible via the AHB master interface. This gives direct access to
the registers of the DMA controller, communications controller and the timer/interrupt controller.
In addition, a path is available through the DMA controller onto the System NoC which provides
processor access to all memory resources on the System NoC. The memory map is defined as
follows:

32KB

ITCM

DTCM

64KB

CpuClk

(~200MHz)

Clock

Buf/Gen
AXIClk

DMAClk

AHBClk

ARMClk

CCClk

Timer / Counter

Controller

Interrupt

Communications

Controller

ARM968E−S

AHB−Lite M

Controller

System NoC

Comms NoC

CHAIN Gateway

DMA

AHB M AHB S

AHB S

AHB2

AHB S

IRQ

TClk

ARM IRQ/FIQ

ARMClk

AHBClk

AHBClk AHBClk

AHBClk

AXIClk

DMAClk

CCClk

AXI Master

JTAG

AHB1

10

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

// ARM968 local memories
#define ITCM_START_ADDRESS 0x00000000 // instruction memory
#define DTCM_START_ADDRESS 0x00400000 // data memory

// 8MB address area (NNOP) reserved for ‘operation mapping’ in the NN protocol
#define NNOP_START_ADDRESS 0x0f800000
#define NNOP_END_ADDRESS 0x0fffffff

// Local peripherals - unbuffered write
#define COMM_CTL_START_ADDRESS_U 0x10000000 // Communications Controller
#define CTR_TIM_START_ADDRESS_U 0x11000000 // Counter-Timer
#define VIC_START_ADDRESS_U 0x1f000000 // vectored interrupt controller

// Local peripherals - buffered write
#define COMM_CTL_START_ADDRESS_B 0x20000000 // Communications Controller
#define CTR_TIM_START_ADDRESS_B 0x21000000 // Counter-Timer
#define VIC_START_ADDRESS_B 0x2f000000 // vectored interrupt controller

// DMA controller
#define DMA_CTL_START_ADDRESS_U 0x30000000 // DMA controller - unbuffered
#define DMA_CTL_START_ADDRESS_B 0x40000000 // DMA controller - buffered

// SDRAM
#define SDRAM_START_ADDRESS_U 0x50000000 // SDRAM - unbuffered
#define SDRAM_START_ADDRESS_B 0x60000000 // SDRAM - buffered

// System NoC peripherals - buffered write
#define PL340_APB_START_ADDRESS_B 0xe0000000 // PL340 APB port
#define SYS_CTL_START_ADDRESS_B 0xe1000000 // System Controller
#define WATCHDOG_START_ADDRESS_B 0xe2000000 // Watchdog Timer
#define ETH_CTL_START_ADDRESS_B 0xe3000000 // Ethernet Controller
#define RTR_CONFIG_START_ADDRESS_B 0xe4000000 // Router configuration
#define SYS_RAM_START_ADDRESS_B 0xe5000000 // System RAM

// System NoC peripherals - unbuffered write
#define PL340_APB_START_ADDRESS_U 0xf0000000 // PL340 APB port
#define SYS_CTL_START_ADDRESS_U 0xf1000000 // System Controller
#define WATCHDOG_START_ADDRESS_U 0xf2000000 // Watchdog Timer
#define ETH_CTL_START_ADDRESS_U 0xf3000000 // Ethernet Controller
#define RTR_CONFIG_START_ADDRESS_U 0xf4000000 // Router configuration
#define SYS_RAM_START_ADDRESS_U 0xf5000000 // System RAM

// Boot ROM and VIC
#define BOOT_ROM_START_ADDRESS 0xff000000 // System ROM
#define HI_VECTORS 0xffff0000 // high vectors (for boot)
#define VIC_START_ADDRESS_H 0xfffff000 // vectored interrupt controller

The ARM968 should be configured to use high vectors after reset (to use the vectors in ROM), but
then switched to low vectors once the ITCM is enabled and initialised.

The vectored interrupt controller (VIC) has to be at 0xfffff000 to enable efficient access to its
vector registers.

All other peripherals start at a base address that can be formed with a single MOV immediate
instruction.

3.4 Fault-tolerance

The fault-tolerance of the ARM968 subsystem is defined in terms of its component parts, described
below.

3.5 Test

The test strategies for the ARM968 subsystem are likewise defined in terms of its component parts.

 version 0.7 - DRAFT 11/2/08

11

S
p

i
N

N
a

k
e

r

4. ARM 968

The ARM968 (with its associated tightly-coupled instruction and data memories) forms the core
processing resource in SpiNNaker. It is a standard synthesizable IP component from ARM Ltd, and
as such there is limited scope for customizing it for this application.

4.1 Features

• 200 MIPS ARM9TDMI processor.

• 32 kB tightly-coupled instruction memory (I-RAM).

• 64 kB tightly-coupled data memory (D-RAM).

• AHB interface to external system.

4.2 Organization

See ARM DDI 0311C – the ARM968E-S datasheet.

4.3 Fault-tolerance

Fault insertion

• ARM9TDMI can be disabled.

• Software can corrupt I-RAM and D-RAM to model soft errors. (Can these be detected?)

Fault detection

• The I-RAM and D-RAM could be protected by parity bits (not implemented).

• A chip-wide watchdog timer catches runaway software.

• Self-test routines, run at start-up and during normal operation, can detect faults.

Fault isolation

• The ARM968 unit can be disabled from the System Controller.

• Defective locations in the I-RAM and D-RAM can be mapped out of use by software.

Reconfiguration

• Software will avoid using defective I-RAM and D-RAM locations.

• Functionality will migrate to an alternative Processor in the case of permanent faults that go

beyond the failure of one or two memory locations.

4.4 Test

production test

start-up test

run-time test

12

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

5. Vectored interrupt controller

Each processor node on an SpiNNaker chip has a local vectored interrupt controller (VIC) that is
used to enable and disable interrupts from various sources, and to wake the processor from sleep
mode when required. The interrupt controller provides centralised management of IRQ and FIQ
sources, and offers an efficient indication of the active sources for IRQ vectoring purposes.

The VIC is the ARM PL190, described in ARM DDI 0181E.

5.1 Features

• manages the various interrupt sources to each local processor

• individual interrupt enables

• routing to FIQ and/or IRQ (there will normally be only one FIQ source: CC Rx ready)

• a central interrupt status view

• a vector to the respective IRQ handler

• programmable IRQ priority

• interrupt sources:

• Communication Controller flow-control interrupts

• DMA complete/error/timeout

• Timer 1 & 2 interrupts

• interrupt from another processor on the chip (usually the Monitor processor), set via a register in

the System Controller

• packet-error interrupt from the Router

• system fault interrupt

• software interrupt, for downgrading FIQ to IRQ

5.2 Register summary

Base address: 0x2f000000 (buffered write), 0x1f000000 (unbuffered write), 0xfffff000 (high).

User registers

The following registers allow normal user programming of the VIC:

Name Offset R/W Function

r0: VICirqStatus 0x0 R IRQ status register

r1: VICfiqStatus 0x4 R FIQ status register

r2: VICrawInt 0x8 R raw interrupt status register

r3: VICintSel 0xC R/W interrupt select register

r4: VICintEnable 0x10 R/W interrupt enable register

r5: VICintEnClear 0x14 W interrupt enable clear register

r6: VICsoftInt 0x18 R/W soft interrupt register

r7: VICsoftIntClear 0x1C W soft interrupt clear register

 version 0.7 - DRAFT 11/2/08

13

S
p

i
N

N
a

k
e

rID registers

In addition, there are test ID registers that will not normally be of interest to the programmer:

See the VIC Technical Reference Manual ARM DDI 0181E, for further details of the ID registers.

5.3 Register details

register 0: IRQ status

This read-only register yields the set of active IRQ requests (after masking).

register 1: FIQ status

This read-only register yields the set of active FIQ requests (after masking).

register 2: raw interrupt status

This read-only register yields the set of active input interrupt requests (before any masking).

r8: VICprotection 0x20 R/W protection register

r9: VICvectAddr 0x30 R/W vector address register

r10: VICdefVectAddr 0x34 R/W default vector address register

VICvectAddr[15:0] 0x100-13c R/W vector address registers

VICvectCtrl[15:0] 0x200-23c R/W vector control registers

Name Offset R/W Function

VICPeriphID0-3 0xFE0-C R Timer peripheral ID byte registers

VICPCID0-3 0xFF0-C R Timer Prime Cell ID byte registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IRQ status

0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FIQ status

0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

interrupt request status

Name Offset R/W Function

14

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

register 3: interrupt select

This register selects for each of the 32 interrupt inputs whether it gets sent to IRQ (0) or FIQ (1).
The reset state is not specified (though is probably ‘0’?); all interrupts are disabled by r4 at reset.

register 4: interrupt enable register

This register disables (0) or enables (1) each of the 32 interrupt inputs. Writing a ‘1’ sets the
corresponding bit in r4; writing a ‘0’ has no effect. Interrupts are all disabled at reset.

register 5: interrupt enable clear

This write-only register selectively clears interrupt enable bits in r4. A ‘1’ clears the corresponding
bit in r4; a ‘0’ has no effect.

register 6: soft interrupt register

This register enables software to force interrupt inputs to appear high (before masking). A ‘1’
written to any bit location will force the corresponding interrupt input to be active; writing a ‘0’ has
no effect. The reset state for these bits is unspecified, though probably ‘0’?

register 7: soft interrupt register clear

This write-only register selectively clears soft interrupt bits in r6. A ‘1’ clears the corresponding bit
in r6; a ‘0’ has no effect.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

interrupt select

0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

interrupt enables

0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

interrupt enable clear

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

soft interrupt register

0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

soft interrupt register clear

 version 0.7 - DRAFT 11/2/08

15

S
p

i
N

N
a

k
e

r

register 8: protection

If the P bit is set VIC registers can only be accessed in a privileged mode; if it is clear then User-
mode code can access the registers.

register 9: vector address

This register contains the address of the currently active interrupt service routine (ISR). It must be
read at the start of the ISR, and written at the end of the ISR to signal that the priority logic should
update to the next priority interrupt. Its state following reset is undefined.

register 10: default vector address

The default vector address is used by the 16 interrupts that are not vectored. Its state following reset
is undefined.

vector address [15:0]

The vector address is the address of the ISR of the selected interrupt source. Their state following
reset is undefined.

vector control [15:0]

The interrupt source is selected by bits[4:0], which choose one of the 32 interrupt inputs. The
interrupt can be enabled (E = 1) or disabled (E = 0). It is disabled following reset.

The highest priority interrupt uses vector address [0] at offset 0x100 and vector control [0] at offset
0x200, and then successively reduced priority is given to vector addresses [1], [2], ... and vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P

reset: 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

vector address

0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

default vector address

0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

vector address

0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E Source

reset: 0 0 0 0 0 0

16

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

controls [1], [2], ... at successively higher offset addresses.

5.4 Interrupt sources

14 of the 32 interrupt sources are local to the processor, 4 are from chip-wide sources (which will
normally be enabled only in the Monitor Processor), and 14 are unused.

The interrupt sources are summarised in the table below:

5.5 Fault-tolerance

Fault insertion

It is fairly easy to mess up vector locations, and to fake interrupt sources.

Name Function

0 Watchdog Watchdog timer interrupt

1 software int used only for local software interrupt generation

2 Comms Rx the debug communications receiver interrupt

3 Comms Tx the debug communications transmitter interrupt

4 Timer 1 Local counter/timer interrupt 1

5 Timer 2 Local counter/timer interrupt 2

6 CC Rx ready Local comms controller packet received

7 CC Rx parity error Local comms controller received packet parity error

8 CC Rx framing error Local comms controller received packet framing error

9 CC Tx full Local comms controller transmit buffer full

10 CC Tx overflow Local comms controller transmit buffer overflow

11 CC Tx empty Local comms controller transmit buffer empty

12 DMA done Local DMA controller transfer complete

13 DMA error Local DMA controller error

14 DMA timeout Local DMA controller transfer timed out

15 Router error Router error - packet parity, framing, or other error

16 Sys Ctl int System Controller interrupt bit set for this processor

17 Ethernet Tx Ethernet transmit frame interrupt

18 Ethernet Rx Ethernet receive frame interrupt

19 Ethernet PHY Ethernet PHY/external interrupt

20-31 not used

 version 0.7 - DRAFT 11/2/08

17

S
p

i
N

N
a

k
e

r

Fault detection

A failed vector location effectively causes a jump to a random location; this would be messy!

Fault isolation

Failed vector locations can be removed from service.

Reconfiguration

A failed vector location can be removed from service (provided there are enough vector locations
available without it). Alternatively, the entire vector system could be shut down and interrupts run
by software inspection of the IRQ and FIQ status registers.

5.6 Test

production test

start-up test

run-time test

Most registers can be tested by read/write tests at any time.

18

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

6. Counter/timer

Each processor node on an SpiNNaker chip has a local counter/timer.

The counter/timers use the standard AMBA peripheral device described on page 4-24 of the AMBA
Design Kit Technical Reference Manual ARM DDI 0243A, February 2003. The peripheral has
been modified only in that the APB interface of the original has been replaced by an AHB interface
for direct connection to the ARM968 AHB-Lite bus.

6.1 Features

• the counter/timer unit provides two independent counters, for example for:

• millisecond interrupts for real-time dynamics

• free-running and periodic counting modes

• automatic reload for precise periodic timing

• one-shot and wrapping count modes

• 100 MHz counter clock may be pre-scaled by dividing by 1, 16 or 256

6.2 Register summary

Base address: 0x21000000 (buffered write), 0x11000000 (unbuffered write).

User registers

The following registers allow normal user programming of the counter/timers:

Name Offset R/W Function

r0: Timer1load 0x0 R/W Load value for Timer 1

r1: Timer1value 0x4 R Current value of Timer 1

r2: Timer1Ctl 0x8 R/W Timer 1 control

r3: Timer1IntClr 0xc W Timer 1 interrupt clear

r4: Timer1RIS 0x10 R Timer 1 raw interrupt status

r5: Timer1MIS 0x14 R Timer 1 masked interrupt status

r6: Timer1BGload 0x18 R/W Background load value for Timer 1

r8: Timer2load 0x20 R/W Load value for Timer 2

r9: Timer2value 0x24 R Current value of Timer 2

r10: Timer2Ctl 0x28 R/W Timer 2control

r11: Timer2IntClr 0x2c W Timer 2interrupt clear

r12: Timer2RIS 0x30 R Timer 2raw interrupt status

r13: Timer2MIS 0x34 R Timer 2masked interrupt status

r14: Timer2BGload 0x38 R/W Background load value for Timer 2

 version 0.7 - DRAFT 11/2/08

19

S
p

i
N

N
a

k
e

r

Test and ID registers

In addition, there are test and ID registers that will not normally be of interest to the programmer:

See AMBA Design Kit Technical Reference Manual ARM DDI 0243A, February 2003, for further
details of the test and ID registers.

6.3 Register details

As both timers have the same register layout they can both be described as follows (X = 1 or 2):

register 0/8: Timer X load value

When written, the 32-bit value is loaded immediately into the counter, which then counts down
from the loaded value. The background load value (r6/14) is an alternative view of this register
which is loaded into the counter only when the counter next reaches zero.

register 1/9: Current value of Timer X

This read-only register yields the current count value for Timer X.

register 2/10: Timer X control

The shaded fields should be written as zero and are undefined on read. The functions of the
remaining fields are described in the table below:

Name Offset R/W Function

TimerITCR 0xF00 R/W Timer integration test control register

TimerITOP 0xF04 W Timer integration test output set register

TimerPeriphID0-3 0xFE0-C R Timer peripheral ID byte registers

TimerPCID0-3 0xFF0-C R Timer Prime Cell ID byte registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Load value for TimerX

0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TimerX current count

1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E M I Pre S O

reset: 0 0 1 0 0 0 0

Name bits R/W Function

E: Enable 7 R/W enable counter/timer (1 = enabled)

20

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

register 3/11: Timer X interrupt clear

Any write to this address will clear the interrupt request.

register 4/12: Timer X raw interrupt status

Bit zero yields the raw (unmasked) interrupt request status of this counter/timer.

register 5/13: Timer X masked interrupt status

Bit zero yields the masked interrupt status of this counter/timer.

register 6/14: Timer X background load value

The 32-bit value written to this register will be loaded into the counter when it next counts down to
zero. Reading this register will yield the same value as reading register 0/8.

6.4 Fault-tolerance

Fault insertion

Disabling a counter (by clearing the E bit in its control register) will cause it to fail in its function.

M: Mode 6 R/W 0 = free-running; 1 = periodic

I: Int enable 5 R/W enable interrupt (1 = enabled)

Pre: TimerPre 3:2 R/W divide input clock by 1 (00), 16 (01), 256 (10)

S: Timer size 1 R/W 0 = 16 bit, 1 = 32 bit

O: One shot 0 R/W 0 = wrapping mode, 1 = one shot

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

reset: 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M

reset: 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Background load value for TimerX

0 0

Name bits R/W Function

 version 0.7 - DRAFT 11/2/08

21

S
p

i
N

N
a

k
e

r

Fault detection

Use the second counter/timer with a longer period to check the calibration of the first?

Fault isolation

Disable the counter/timer with the E bit in the control register; disable its interrupt output; disable
the interrupt in the interut controller.

Reconfiguration

If one counter fails then a system that requires only one counter can use the other one.

6.5 Test

production test

start-up test

run-time test

See ‘fault detection’ above.

22

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

7. DMA controller

Each ARM968 processing subsystem includes a DMA controller. The DMA controller is primarily
used for transferring inter-neural connection data from the SDRAM in large blocks in response to
an input event arriving at a fascicle processor, and for returning updated connection data during
learning. In addition, the DMA controller provides access to other targets on the System NoC such
as the System RAM and Boot ROM.

7.1 Features

• Multithreaded DMA engine supporting parallel operations

• DMA requests

• direct pass-through requests from the ARM968

• dual buffers supporting simultaneous direct and DMA transfers

• Support for CRC error control in transferred blocks

• Interrupt-driven or polled DMA completion notification

• DMA complete interrupt signal

• DMA error interrupt signal

• DMA time-out interrupt signal

• Parameterisable buffer sizes

• Direct and DMA request queueing

7.2 Using the DMA Controller

There are 2 types of requests for DMA controller services. DMA requests use the full engine, are
initiated by writing to control registers in the controller, execute in background, and issue an
interrupt while complete - so that the ARM processor may set up a request and then return to other
processing while the requests complete. Non-DMA requests go through the passthrough channel
and are initiated by a request directly to the needed device or service. The DMA controller fulfills
these requests transparently, the host processor retaining full control of the transfer. Invisible to the
user, the controller may buffer the data from write requests for more efficient bus management.
However, the ARM processor must control the entire data transfer throughout the process.

The controller is transparent to non-DMA requests, acting as a bridge between the AHB-Lite bus on
the ARM port and the {AXI} bus on the Chain port. We will briefly outline the request latencies for
various types of transfer on this bus. No operation will take less than 2 bus cycles, because of the 2
interfaces the request must pass through. Added to this 2 clock latency are the following additional
clock cycles:

DMA controller register read or write 0

Buffered atomic data (ARM-Chain) write 0

Unbuffered atomic data write 1

Atomic data write, channel busy, buffer empty 1

Atomic data write, channel busy, buffer full, no DMA

transfer

2

Atomic data write, channel busy, buffer full, DMA transfer

in progress

indeterminate (min 2, max.

burst_size +2)

 version 0.7 - DRAFT 11/2/08

23

S
p

i
N

N
a

k
e

r

Read requests while a DMA transfer is in progress require special handling Such a request may
have large latencies. Worst-case latency if the only outstanding request is the DMA transfer is the
burst size plus 2 cycles. If, meanwhile, buffered write requests exist in the non-DMA queue, the
read must wait until all these requests have completed (to ensure data coherency) before it can
complete. The recommended procedure is for the ARM processor to interrogate the transfer_started
bit in the DMA_Status register before requesting a non-DMA read.

To initiate a DMA transfer, the ARM must write to the following registers in the DMA controller:
Control (CTRL), CHAIN Address (ADRC), TCM Address (ADRT), and Length (LEN). The
processor may also optionally write the following register to set up specific transfer parameters:
Interrupt Control (IRQC) Options (OPTS), and SDRAM Memory Segment Base Address (BASE).
The processor may read from any register at any time. Once a transfer has started (as the
transfer_started bit in the Status (STAT) register indicates), the processor may queue another
request. The processor may have a maximum of 2 outstanding requests of which only one will be
active. For the active request, the processor may only write to certain specific bits in the control and
interrupt control register. An attempt to write any other register during an active transfer will result
in an error. The controller does not clear the registers after a transfer so that the processor may, if
desired, modify only those fields that change between transfers in order to initiate a new DMA
transfer. Writing the Start bit in the control register commits the currently set up DMA request.
There will be at minimum 4 clocks latency from the point when the Start bit is set to the point where
the DMA transfer physically starts. Maximum latency occurs if there is a current non-DMA transfer
in progress, in which case it could be as high as 20 (for a 16-word non-DMA burst started just as the
Start bit was set). Data received on the source bus will appear on the destination bus 2 clock cycles
later.

7.3 Register summary

Base address: 0x40000000 (buffered write), 0x30000000 (unbuffered write).

Atomic data (ARM-Chain) read 1

Atomic data read, channel busy, no DMA transfer indeterminate (min 2, max

request_buffer_size +2)

Atomic data read, channel busy DMA transfer in progress indeterminate (min 2, max

burst_size+2)

Invalid request on the ARM (AHB slave) interface 0

Invalid request on the TCM(AHB master) interface: 1

Requests ending in an error on the Chain bus 2

Name Offset R/W Function

r0: ADRS 0x00 R/W DMA address on the system interface

r1: ADRT 0x04 R/W DMA address on the TCM interface

r2: LEN 0x08 R/W Length of the transfer in bytes

r3: CTRL 0x0C R/W Control DMA transfer

r4: STAT 0x10 R Status of DMA and other transfers

r5: GCTL 0x14 R/W Control of the DMA device

r9: CRCP 0x18 R/W 32-bit CRC checking polynomial

24

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

* These double-buffer registers are automatically written to if there is an active DMA transfer by
writing to the addresses of their corresponding primary registers

7.4 Register details

r0: System Address.

The 32-bit start address on the system interface. Note that a read is considered a data movement
from a source on the system bus to a destination on the TCM bus.

r1: TCM Address.

The 32-bit start address on the TCM interface. Note that a read is considered a data movement from
a source on the system bus to a destination on the TCM bus.

r2: Length.

The function of this field is described in the table below:

r10: CRCC 0x1C R CRC value calculated by CRC block

r11: CRCR 0x20 R CRC value in received block

r0’: AD2S 0x100 R* Queued system address

r1’: AD2T 0x104 R* Queued TCM address

r2’: LN2 0x108 R* Queued length

r3’: CTL2 0x10C R* Queued control

r4’: CRC2 0x118 R* Queued CRC polynomial

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

System Address

0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

System Address

0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Length

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

Length 15:0 R/W length of the DMA transfer, in bytes

Name Offset R/W Function

 version 0.7 - DRAFT 11/2/08

25

S
p

i
N

N
a

k
e

r

The TCM as currently envisioned has a maximum size of 64k (for the data TCM), thus, the length is
a 16-bit register. A DMA transfer must of necessity either take as a source or a destination the
TCM, justifying this restriction.

r3: Control Register

The functions of these fields are described in the table below:

r4: Status Register.

The functions of these fields are described in the table below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

W B P D L R A S

reset: 1 1 1 0 0 0 0 0 0 0

Name bits R/W Function

S: Start 0 R/W setting this bit starts a DMA transfer

A: Abort 1 R/W end current transfer and discard data

R: Restart 2 R/W resume transfer

L: Lock 3 R/W lock transfer on system interface

D: Direction 4 R/W read from (0) or write to (1) system bus

P: Priority 5 R/W normal (0) or high (1) priority DMA transfer

B: Burst 7:6 R/W burst length (1, 4, 8, 16 words)

W: Width 9:8 R/W transfer word width (8, 16, 32 or 64 bits)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Error Qpos K B T P Q M

reset: 0

Name bits R/W Function

M: Committed 0 R main DMA registers busy - transfer in progress

Q: Queue full 1 R queue DMA registers committed

P: Progress 2 R a DMA or bridge transfer is in progress

T: Timed out 3 R a DMA transfer has timed out

B: Bridge write 4 R buffered bridge write pending

K: Token 5 R DMA controller granted access to system NoC

Qpos 9:6 R position in system NoC request queue

26

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

r5: Global Control

The functions of these fields are described in the table below:

r9: CRC polynomial

The 32-bit dynamic polynomial value to use in calculating CRCs. The default value is CRC-32: X32

+ X26
 + X23

 + X22
 + X16

 + X12
 + X11

 + X10
 + X8

 + X7
 + X5

 + X4
 + X2

 + X + 1. The processor may
change this value for flexible CRC checking, however, the value should not change during a
transfer or it will corrupt all CRC checks. (Note that this feature is useful for debugging because by
violating this condition the processor can inject automatic errors) Conventional notation for CRC
polynomials is of the form SXn, where the n represents a bit-position in the polynomial set to 1, and
all unindicated positions are 0. For example, polynomial X31 + X29

 + X27
 + X21

 + X20
 + X17

 + X16

+ X15
 + X12

 + X11
 + X5

 + X3
 + X + 1 would correspond to a value of

10101000001100111001100000101011. The low-order bit (the "+1") is always 1 as a fundamental
property of CRCs and is therefore not in the CRC polynomial register which holds the bits for X32-
X1

.

r10: Calculated CRC

This is the 32-bit CRC value calculated by the DMA CRC unit.

Error 20:10 R error code

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TO Ben Erd S B E

reset: 0 1 1 1 1 1 0 0 0 1 0

Name bits R/W Function

E: Enable 0 R/W enable the DMA interface

B: Bridge buffer 1 R/W buffer bridge writes

S: Swap 2 R/W swap request queue buffers: r0 <-> r0’, etc.

Erd: Error detect 4:3 R/W error detect (none, generate, examine, both)

Ben: Buff enable 6:5 R/W enable buffers [1,0]

TO: time_out 10:7 R/W time-out period = 2^(TO+1) clocks

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CRC_polynomial

0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CRC_value (calculated)

Name bits R/W Function

 version 0.7 - DRAFT 11/2/08

27

S
p

i
N

N
a

k
e

r

r11: Received CRC

This is the 32-bit CRC value read in the block of data loaded by a DMA transfer.

7.5 Fault-tolerance

Fault insertion

Fault detection

Fault isolation

Reconfiguration

7.6 Test

production test

start-up test

run-time test

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CRC_value (received)

0 0

28

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

8. Communications controller

Each processor node on SpiNNaker includes a communications controller which is responsible for
generating and receiving packets to and from the communications network.

8.1 Features

• Support for 3 packet types:

• multicast neural event packets routed by a key provided at the source;

• point-to-point packets routed algorithmically by destination address;

• nearest-neighbour packets routed algorithmically by arrival port.

• Packets are either 40 or 72 bits long. The longer packets carry a 32-bit payload.

• 2-bit time stamp (used by Routers to trap errant packets).

• Parity (to detect corrupt packets).

8.2 Packet formats

Neural event multicast (mc) packets (type 0)

Neural event packets include a 32-bit routing key inserted by the source, and a control byte:

In addition they may include an optional (not normally used) 32-bit payload:

The 8-bit control field includes packet type (= 00 for multicast packets), emergency routing and
time stamp information, a data payload indicator, and error detection (parity) information:

Point-to-point (p2p) packets (type 1)

Point-to-point packets include 16-bit source and destination chip IDs, plus a control byte and an
optional (normally used) 32-bit payload:

Here the 8-bit control field includes packet type (=01 for p2p packets), a sequence code, time

32 bits 8 bits

routing key control

32 bits

payload

7 6 5 4 3 2 1 0

0 0 emergency routing time stamp data parity

16 bits 16 bits 8 bits

source ID destination ID control

32 bits

payload

 version 0.7 - DRAFT 11/2/08

29

S
p

i
N

N
a

k
e

r

stamp, a data payload indicator and error detection (parity) information:

Nearest-neighbour (nn) packets (type 2)

Nearest-neighbour packets include a 32-bit address or operation field, plus a control byte and an
optional 32-bit payload:

Here the 8-bit control field includes packet type (= 10 for nn packets), routing information, a data
payload indicator and error detection (parity) information:

8.3 Control byte summary

parity

The complete packet (including the data payload where used) will have odd parity.

data

Indicates whether the packet has a 32-bit data payload (=1) or not (=0).

time stamp

The system has a global time phase that cycles through 00 -> 01 -> 11 -> 10 -> 00. Global

7 6 5 4 3 2 1 0

0 1 seq code time stamp data parity

32 bits 8 bits

address/operation control

32 bits

payload

7 6 5 4 3 2 1 0

1 0 T route data parity

Field Name bits Function

parity 0 parity of complete packet (including payload when used)

data 1 data payload (1) or no data payload (0)

time stamp 3:2 phase marker indicating time packet was launched

seq code 5:4 p2p only: start, middle odd/even, end of payload

emergency routing 5:4 mc only: used to control routing around a failed link

route 4:2 nn only: information for the Router

T: nn packet type 5 nn only: packet type - normal (0) or direct (1)

packet type 7:6 = 00 for mc; = 01 for p2p; = 10 for nn

30

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

synchronisation must be accurate to within less than one time phase (the duration of which is
programmable and may be dynamically variable). A packet is launched with a time stamp equal to
the current time phase, and if a Router finds a packet that is two time phases old (time now XOR
time launched = 11) it will drop it to the local Monitor Processor. The time stamp is inserted by the
local Router, so the Communication Controller need do nothing here.

seq code

p2p packets use these bits to indicate the sequence of data payloads:

• 11 -> start packet: the first packet in a sequence (of >1 packets)

• 10 -> middle even: the second, fourth, sixth, ... packet in a sequence

• 01 -> middle odd: the third, fifth, seventh, ... packet in a sequence

• 00 -> end: the last (or only) packet in a sequence

emergency routing

mc packets use these bits to control emergency routing around a failed or congested link:

• 00 -> normal mc packet;

• 01 -> the packet has been redirected by the previous Router through an emergency route along

with a normal copy of the packet. The receiving Router should treat this as a combined normal

plus emergency packet.

• 10 -> the packet has been redirected by the previous Router through an emergency route which

would not be used for a normal packet.

• 11 -> this emergency packet is reverting to its normal route.

route

These bits are set at packet launch to the values defined in the control register. They enable a packet
to be directed to a particular neighbour (0 - 5), to all neighbours (6), or to the local Monitor
Processor (7).

T (nn packet type)

This bit specifies whether an nn packet is ‘normal’, so that it is delivered to the Monitor Processor
on the neighbouring chip(s), or ‘direct’, so that performs a read or write access to the neighbouring
chip’s System NoC resource.

packet type

These bits indicate whether the packet is a multicast (00), point-to-point (01) or nearest-neighbour
(10) packet. Packet type 11 is reserved for future use.

8.4 Register summary

Base address: 0x20000000 (buffered write), 0x10000000 (unbuffered write).

Name Offset R/W Function

r0: Tx control 0x0 R/W Controls packet transmission

r1: Rx status 0x4 R/W Indicates packet reception status

r2: send data 0x8 W 32-bit data for transmission

r3: send key 0xC W Send mc key/p2p dest ID & seq code

 version 0.7 - DRAFT 11/2/08

31

S
p

i
N

N
a

k
e

r

A packet will contain data if r2 is written before r3; this can be performed using an ARM STM
instruction.

8.5 Register details

r0: transmit control

The functions of these fields are described in the table below:

The p2p source ID is expected to be configured once at start-up. The parity and sequence code
fields of the control byte will be replaced by automatically-generated values when the packet is
launched. The time stamp (where applicable) will be inserted by the local Router.

The transmit buffer full control is expected to be used, by polling or interrupt, to prevent buffer
overrun. It is sticky, and once set will remain set until 0 is written to bit 30. Transmit buffer overrun
indicates packet loss and will remain set until explicitly cleared by writing 0 to bit 29.

E, F and O reflect the levels on the Tx interrupt signals sent to the interrupt controller.

The route field allows a packet to be sent by a processor to the router which appears to have come
from one of the external links. Normally this field will be set to 7 (0b111) but can be set to a link
number in the range 0 to 5 to achieve this.

r4: receive data 0x10 R 32-bit received data

r5: receive key 0x14 R Received mc key/p2p source ID & seq code

r6: reserved 0x18 - -

r7: test 0x1C R/W Used for test purposes

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E F O U Route control byte p2p source ID

1 0

Name bits R/W Function

E: empty 31 R Tx buffer empty

F: full 30 R/W Tx buffer full (sticky)

O: overrun 29 R/W Tx buffer overrun (sticky)

U: unused 28:27 - -

Route 26:24 W Set ‘fake’ route in packet

control byte 23:16 W control byte of next sent packet

p2p source ID 15:0 W 16-bit chip source ID for p2p packets

Name Offset R/W Function

32

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

r1: receive status

The functions of these fields are described in the table below:

A packet that is received without parity or framing error will set R, which will remain set until r5
has been read. A packet that is received with a parity and/or framing error sets P and/or F instead of
R. These bits remain set until explicitly reset by writing 0 to bit 30 or bit 29 respectively.

R, P and F reflect the levels on the Rx interrupt signals sent to the interrupt controller.

r2: send data

If data is written into r2 before a send key or dest ID is written into r3, the packet initiated by
writing to r3 will include the contents of r2 as its data payload. If no data is written into r2 before a
send key or dest ID is written into r3 the packet will carry no data payload.

r3: send mc key/p2p dest ID & sequence code

Writing to r3 will cause a packet to be issued (with a data payload if r2 was written previously).

If bits[23:22] of the control register are 00 the Communication Controller is set to send multicast
packets and a 32-bit routing key should be written into r3. The 32-bit routing key is used by the

associative multicast Routers to deliver the packet to the appropriate destination(s).

If bits[23:22] of the control register are 01 the Communication Controller is set to send point-to-
point packets and the value written into r3 should include the 16-bit address of the destination chip
in bits[15:0] and a sequence code in bits[17:16]. (See ‘seq code’ on page 30.)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R P F U Route control byte U

0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

R: received 31 R Rx packet received

P: parity 30 R/W Rx packet parity error (sticky)

F: framing error 29 R/W Rx packet framing error (sticky)

U: unused 28:27 - -

Route 26:24 R Rx route field from packet

Control byte 23:16 R Control byte of last Rx packet

U: unused 15:0 - -

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit data payload for sending with next packet

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit multicast routing key

 version 0.7 - DRAFT 11/2/08

33

S
p

i
N

N
a

k
e

r

If bits[23:22] of the control register are 10 the Communication Controller is set to send nearest
neighbour packets and the 32-bit nn address field should be written in r3.

r4: received data

If a received packet carries a data payload the payload will be delivered here and will remain valid
until r5 is read.

r5: received mc key/p2p source ID & sequence code

A received packet will deliver its mc routing key, nn address or p2p source ID and sequence code to
r5. For an mc or nn packet this will be the exact value that the sender placed into its r3 for
transmission; for a p2p packet the sequence number will be that placed by the sender into its r3, and
the 16-bit source ID will be that in the sender’s r0.

The register is read sensitive - once read it will change as soon as the next packet arrives.

r6: reserved

This register is reserved for future use.

r7: test

Setting bit 0 of this register makes all registers read/write for test purposes. Clearing bit 0 restricts
write access to those register bits marked as read-only in this datasheet. All register bits may be read
at any time.

8.6 Fault-tolerance

Fault insertion

Software can cause the Communications Controller to misbehave in several ways including
inserting dodgy routing keys, source IDs, destination IDs.

Do we need to be able to force parity errors in transmit packets?

Fault detection

Parity of received packet; received packet framing error; transmit buffer overrun.

Fault isolation

The Communications Controller is mission-critical to the local processing subsystem, so if it fails
the subsystem should be disabled and isolated.

Reconfiguration

The local processing subsystem is shut down and its functions migrated to another subsystem on
this or another chip. It should be possible to recover all of the subsystem state and to migrate it, via
the SDRAM, to a functional alternative.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

unused sq 16-bit destination ID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit received data payload

34

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

8.7 Test

production test

start-up test

run-time test

8.8 Notes

• time phase accuracy: if we assume that the system time phase is F and the skew is K (that is, all

parts of the system transition from one phase to its successor within a time K), then a packet has

at least F-K to reach its destination and will be killed after at most 2F+K.

Thus, if we want to allow for a maximum packet transit time of F-K = T and can achieve a mini-

mum phase skew of K, then T and K are both system constants and we should choose F = T+K.

The longest packet life is then 2T+3K.

 version 0.7 - DRAFT 11/2/08

35

S
p

i
N

N
a

k
e

r

9. Communications NoC

The communications NoC has the primary role of carrying neural event packets between fascicle
processors on the same or different chips.

9.1 Features

• On- and inter-chip links

• Router which handles multicast, point-to-point and nearest neighbour packets.

• Arbiter to merge all sources into a sequential packet stream into the Router.

• Individual links can be reset to clear blockages and deadlocks.

9.2 Block diagram

A block diagram of the Communications NoC was given in section 1.1 on page 5.

9.3 Arbiter structure

As the input links converge on the Router they must merge through 2-way CHAIN arbiters, and the
link width must increase to absorb the bandwidth. The following hierarchy is proposed:

• the local processor links can all be merged through a single-link arbiter tree as the local band-

width is low, e.g. at most 20 processors x 1,000 neurons x 100Hz x 40 bits = 80 Mbit/s.

• the Rx interfaces can each carry up to 1 Gbit/s, about half the on-chip single-link bandwidth, so

the first layer of arbiters can be single-link, the 2nd layer dual-link and the 3rd layer quad-link

(i.e. 8-bits or 48 wires wide).

• buffering is required wherever the link width increases to ensure that the full arbiter bandwidth is

used. Each buffer must be at least half a packet long - 36 bits?

• at each arbiter merging Rx interfaces the packet must pick up 1 bit to indicate its source, for

default routing [unless the source tagging is done by the Rx interface?]

The Arbiter structure is illustrated below. Each doubling of the wires represents a doubling of the
CHAIN link width. The numbers indicate source tagging of the packets.

Rx i/f
0

Rx i/f
1

Rx i/f
2

Rx i/f
3

Rx i/f
4

Rx i/f
5

local processors 0-19

to Router

+xx0 +xx1 +xx0 +xx1 +xx0 +xx1

+x0x +x1x +x0x +x11

+0xx +1xx

(tree)

36

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

9.4 Fault-tolerance

Fault insertion

There is little direct control of the Communications NoC fabric except at the periphery as noted in
the sections below.

Fault detection

Most failures will cause local asynchronous deadlock, which is readily detected at both the
transmitting and receiving ends of the link.

Fault isolation

If links fail their clients will have to be disabled and their functions migrated.

Reconfiguration

Client functional migration is required.

9.5 Test

production test

start-up test

run-time test

9.6 Notes

• must decide whether to add source tags for default routing in arbiters or in Rx interfaces.

 version 0.7 - DRAFT 11/2/08

37

S
p

i
N

N
a

k
e

r

10. Communications Router

The Communications Router is responsible for routing all packets that arrive at its input to one or
more of its outputs. Its primary function is to route multicast neural event packets, which it does
through an associative multicast router subsystem. But it is also responsible for routing point-to-
point packets (for which it uses a look-up table), for nearest-neighbour routing (which is a simple
algorithmic process), for default routing (when a multicast packet does not match any entry in the
multicast router) and for emergency routing (when an output link is blocked due to congestion or
hardware failure).

Various error conditions are identified and handled by the Communications Router, for example
packet parity errors, time-out, and output link failure.

10.1 Features

• 1024 programmable associative multicast routing entries.

• associative routing based on source ‘key’.

• with flexible ‘don’t care’ masking.

• updatable ‘on the fly’.

• look-up table routing of point-to-point packets

• algorithmic routing of nearest-neighbour packets.

• support for 40- and 72-bit multicast, point-to-point and nearest neighbour packets.

• default routing of unmatched multicast packets.

• automatic ‘emergency’ re-routing around failed links.

• programmable wait time before emergency routing and before dropping packet

• pipelined implementation to route 1 packet per cycle (peak)

• back-pressure flow control

• power-saving pipeline control

• failure detection and handling:

• packet parity error

• time-expired packet

• output link failure

• corrupt (wrong length) packet

10.2 Description

We assume that packets arrive from other nodes via the link receiver interfaces and from internal
clients and are presented to the router one-at-a-time. The Arbiter is responsible for determining the
order of presentation of the packets, but as each packet is handled independently the order is
unimportant (though it is desirable for packets following the same route to stay in order).

Each packet contains an identifier that is used by the Communications Router to determine which
of the outputs the packet is sent to. These outputs may include any subset of the output links, where
the packet may be sent via the respective link transmitter interface, and/or any subset of the internal
processor nodes, where the packet is sent to the respective Communications Controller.

For the neural network application the identifier can be simply a number that uniquely identifies the
source of the packet – the neuron that generated the packet by firing. This is ‘source address
routing’. In this case the packet need contain only this identifier, as a neural spike is an ‘event’
where the only information is that the neuron has fired.

38

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

The Router then functions simply as a look-up table where for each identifier it looks up a routing
word, where each routing word contains 1 bit for each destination (each link transmitter interface
and each local processor) to indicate whether or not the message should be passed to that
destination.

10.3 Internal organization

The internal organization of the Communications Router is illustrated in the figure opposite.

Packets are passed as complete 40- or 72-bit units from the Arbiter, together with an identifier of
the Rx interface that the packet arrived through (for nearest-neighbour and default routing). The
first stage of processing here is to identify errors. The second stage passes the packet to the
appropriate routing engines – the multicast (MC) router is activated only if the packet is error-free
and of multicast type, the point-to-point (P2P) handles point-to-point packets while the algorithmic
(ALG) router handles nearest-neighbour packets and also deals with default and error routing. The
output of the router stage is a vector of destinations to which the packet should be relayed. The third
stage is the emergency routing mechanism for handling failed or congested links, which it detects
using ‘full’ signals fed back from the individual destination output buffers.

10.4 Multicast (MC) router

The mc router uses the routing key in the mc packet to determine how to route the packet. The
router has 1024 look-up entries, each of which has a mask, a key value, and an output vector.

ALG Router

CHAIN wrapper CHAIN wrapper CHAIN wrapper

Dest buffer Dest buffer Dest buffer

Emergency Router

Mux

enable

hit

full

full

full

from Arbiter

P2P RouterMC Router

Error check

enable

 version 0.7 - DRAFT 11/2/08

39

S
p

i
N

N
a

k
e

r

The packet’s routing key is compared with each entry in the mc router. For each entry it is first
ANDed with the mask, then compared with the entry’s key. If it matches, the entry’s output vector
is used to determine where the packet is sent; it can be sent to any subset (including all) of the local
processors and the output links.

The matching is perfomed in a parallel ternary associative memory, with a RAM used to store the
output vectors. The associative memory should be set up to ensure that at most one entry matches
any incoming routing key. Behaviour is undefined if two entries match a routing key.

If no entry matches an mc packet’s routing key then default routing is employed - the packet will be
sent to the output link opposite the input link it arrived through. There is no default routing for
packets from local processors - the router table must have a valid entry for every locally-sourced
packet.

10.5 The point-to-point (p2p) router

The p2p router uses the 16-bit destination ID in a point-to-point packet to determine which
output(s) the packet should be routed to. A 64K entry x 8-bit SRAM lookup table directs the p2p
packet to:

• the local Monitor Processor, and/or

• adjacent chips via the appropriate links.

Each 8-bit entry has one bit which determines whether the packet is delivered to the local Monitor
Processor, one bit for each of the six output links, plus a parity bit. Thus there is a form of broadcast
capability available here.

10.6 The algorithmic (ALG) router

nn routing

Nearest-neighbour packets are used to initialise the system and to perform run-time flood-fill and
debug functions. The routing function here is to send ‘normal’ nn packets that arrive from outside
the node (i.e. via an Rx link) to the monitor processor and to send nn packets that are generated
internally to the appropriate output (Tx) link(s). This is to support a flood-fill OS load process.

In addition, the ‘direct’ form of nn packet can be used by neighbouring systems to access System
NoC resources. Here an nn ‘write’ packet (which is a direct type with a 32-bit payload) is used to
write the 32-bit data defined in the payload to a 32-bit address defined in the address/operation
field. An nn ‘read’ packet (which is a direct type without a 32-bit payload) uses the 32-bit address
defined in the address/operation field to read from the System NoC and returns the result (as a
‘normal’ nn packet) to the neighbour that issued the original packet using the Rx link ID to identify
that source. This ‘direct’ access to a neighbouring chip’s principal resources can be used to
investigate a non-functional chip, to re-assign the Monitor Processor from outside, and generally to
get good visibility into a chip for test and debug purposes.

default and error routing

In addition, the algorithmic router performs default and error routing functions.

10.7 Time phase handling

The Router maintains a 2-bit time phase signal that is used to delete packets that are out-of date.
The time phase logic operates as follows:

• locally-generated packets will have the current time phase inserted (where appropriate);

• a packet arriving from off-chip will have its time phase checked, and if it is two phases old it will

be deleted (dropped to the local Monitor Processor).

40

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

10.8 Packet error handler

The packet error handler is a routing engine that simply flags the packet for routing to the local
Monitor Processor if it detects any of the following:

• a packet parity error;

• a packet that is two time phases old;

• a packet that is the wrong length.

There must be a means for the Monitor Processor to recognise packets passed to it with errors.
Rather than complicating the Communications Controller, this is probably better done by providing
error information via the Router configuration registers.

10.9 Emergency routing

If a link fails (temporarily, due to congestion, or permanently, due to component failure) action will
be taken at two levels:

• the blocked link will be detected in hardware and subsequent packets rerouted via the other two

sides of one of the routing triangles of which the suspect link was an edge.

• the Monitor Processor will be informed. It will assess the problem, and take appropriate action:

• if the problem was due to transient congestion, it will note the congestion but do nothing further;

• if the problem was due to recurring congestion, it will negotiate and establish a new route for

some of the traffic using this link;

• if the problem appears permanent, it will reset the link (incurring some packet loss) and then, if

this does not clear the problem, negotiate and establish new routes for all of the traffic using this

link.

The hardware support for these processes include:

• default routing processes in adjacent nodes that are invoked by flagging the packet as an emer-

gency type;

• mechanisms to inform the Monitor Processor of the problem;

• mechanisms the Monitor Processor can use to reset the link;

• means of inducing the various types of fault for testing purposes.

Emergency rerouting around the triangle requires additional emergency packet types for mc
packets. p2p packets will find their own way to their destination following emergency routing.

10.10 Errant packets

In order to ensure that packets cannot circulate for ever within the system each packet includes a
time phase field. This is set when the packet is launched, and if a packet arrives at a Router two time
phases after it was launched it will be routed directly (and only) to the local Monitor Processor for
error-handling purposes.

10.11 Pseudo-code description

The following pseudo-code describes the detailed operation of the Communications Router:

Pipeline stage 1: Error Checking
inputs: 72-bit Packet p;
 3-bit SourceID src;
local info: 2-bit TimePhase timePhase

Begin stage 1==

% check error conditions

 version 0.7 - DRAFT 11/2/08

41

S
p

i
N

N
a

k
e

r

PPerr = (packetParity(p) == EVEN); % parity error
TPerr = (src < 6) AND (p.timeStamp = timePhase EOR 0b10) % !! ST was 0b11
 AND (p.type == 0b0x); % time phase error
LNerr = (p.lastSymbol != EOP); % packet length error

error = PPerr OR TPerr OR LNerr;

% update counters

if (PPerr) incPacketParityErrorCounter();
if (TPerr) incPacketTimeStampErrorCounter();
if (LNerr) incPacketLengthErrorCounter();

incPacketCounter();

% insert Time Phase

if (src == 7) AND (p.type == 0b0x) { % local p2p or mc packet
 p.timeStamp = timePhase;
 ParityFix(p.parity);
}

% engage appropriate Router

enMC = (not error) AND (p.type == MC) AND (p.emergencyRouting != 0b10);
enP2P = (not error) AND (p.type == P2P);

End stage 1==

Pipeline stage 2: Routing
inputs: 72-bit Packet p;
 3-bit SourceID src;
 Booleans PPerr, TPerr, LNerr, error;
local info: 5-bit MonitorProcessorID mpID;

Begin stage 2==

% enable relevant Router

if (enMC) {hit, MCvect} = MCrouter(p.MCkey);
else hit = 0;
if (enP2P) {P2Pvect} = P2Prouter(p.destID);

% default emergency routing vector

erVect = 0;

% send all errors to Monitor Processor

if (error) vect = 2^(mpID+6);
else {

% routing depends on packet type

case (p.type) {

MC: if (hit) vect = MCvect;
 else if (src == 7)
 vect = 2^(mpID+6) % local: miss => error
 else if (p.emergencyRouting == 0b0x)
 vect = 2^[(src+3)mod6]; % normal default
 else if (p.emergencyRouting == 0b11)
 vect = 2^[(src+2)mod6]; % ER 2nd stage default
 else vect = 0; % ER only
 if (p.emergencyRouting == 0b01 or 0b10)
 erVect = 2^[(src-1)mod6]; % ER 1st stage

P2P: vect = P2Pvect;

NN: if (src == 7) { % local source

42

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

 if (p.route == 7) % local MP
 vect = 2^(mpID+6);
 else if (p.route == 6) % all neighbours
 vect = 0b0000000000000000000111111;
 else vect = 2^(packet.route); % one neighbour
 } else { % external source
 if (p.T) { % direct NN
 if (p.data) write.SystemNoC(p.address,p.data);
 vect = 0; % packet goes nowhere
 } else {
 p.payload = read.SystemNoC(p.address);
 p.data = TRUE;
 p.T = 0; % change to normal
 ParityFix(p.parity);
 vect = 2^src; % return to sender!
 } else vect = 2^(mpID+6); % normal NN
 }
} % end case
} % end else (Â¬error)

End stage 2==

Pipeline stage 3: Emergency Routing
inputs: 72-bit Packet p;
 26-bit Vector vect;
 6-bit ERvector erVect;
local info: Booleans buffFull bFull[0..25];
 5-bit MonitorProcessorID mpID;

Begin stage 3==

% check for output contention & wait fixed max time to resolve

clockCycles = 0;
do {
 blocked = FALSE;
 for (i = 0; i++; i<6) {
 if (bFull[i] AND (vect.bit[i] OR erVect.bit[i])) blocked = TRUE;
 }
 for (i = 6; i++; i<26) {
 if (bFull[i] AND vect.bit[i]) blocked = TRUE;
 }
 clockCycles++;
} while (blocked AND (clockCycles < MaxWaitBeforeER));

% now look into Emergency Routing options & wait fixed max time

 clockCycles = 0;
 do {
 blocked = FALSE;
 for (i = 0; i++; i<6) {
 if (bFull[i] AND ((vect.bit[i] AND (bFull[(i-1)mod6] OR (p.type ==

NN))) % check if these may be ER’d
 OR erVect.bit[i])) %

these are not ER’d
 blocked = TRUE;
 }
 for (i = 6; i++; i<26) {
 if (bFull[i] AND vect.bit[i]) %

these are also not ER’d
 blocked = TRUE;
 }
 clockCycles++;
 } while (blocked AND (clockCycles < MaxWaitForER));

% if Emergency Routing has failed...

if (blocked) {
 if (bFull[mpID+6]) {
 discardPacket(); % throw away packet

 version 0.7 - DRAFT 11/2/08

43

S
p

i
N

N
a

k
e

r

 incDiscardedPacketCounter(); % record packet loss
 doSomethingWithMonitorProc(); % try to revive monitor?
 } else {
 sendPacketTo(p, buff[mpID+6]); % send to Monitor Proc
 incDroppedPacketCounter(); % record packet loss
 sendToSystemController(bFull); % report blocked links to system

controller
 }
}

% can now proceed

for (i = 0; i++; i<6) {
 if (NOT bFull[i]) { % send only if link open
 p2 = p; % copy packet

 case (p.type) {

 MC: if (vect.bit[i] OR erVect.bit[i]
 OR (bFull[(i+1)mod6] AND vect.bit[(i+1)mod6])) {
 if (vect.bit[i]) {
 if (bFull[(i+1)mod6] AND vect.bit[(i+1)mod6])
 p2.emergencyRouting = 0b01; % normal + ER 1st
 incERpacketCounter(); % record ER
 else p2.emergencyRouting = 0b00; % normal
 } elseif (bFull[(i+1)mod6] AND vect.bit[(i+1)mod6]) {
 p2.emergencyRouting = 0b10; % ER 1st stage
 incERpacketCounter(); % record ER
 } elseif (erVect.bit[i]) {
 p2.emergencyRouting = 0b11; % ER 2nd stage
 }
 ParityFix(p2.parity);
 sendPacketTo(p2, buff[i]);
 }

 P2P: if (vect.bit[i]
 OR (bFull[(i+1)mod6] AND vect.bit[(i+1)mod6])) {
 sendPacketTo(p2, buff[i]);
 }

 NN: if (vect.bit[i]) {
 sendPacketTo(p2, buff[i]);
 }
 }
 }
}
for (i = 6; i++; i<26) {
 if (vect.bit[i] AND NOT bFull[i]) {
 p2 = p; % copy packet
 if (p2.type == NN) {

 p2.route = src;
 }
 sendPacketTo(p2, buff[i]);
 }
}

End stage 3==

10.12 Registers

The Router configuration and error-reporting registers are detailed in section 15. on page 61.

10.13 Fault-tolerance

The Communications Router has limited fault-tolerance capacity, mainly coming down to mapping
out a failed multicast router entry. This is a useful mechanism as the multicast router dominates the
silicon area of the Communications Router.

44

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

Fault insertion

• enable Router to flip packet parity bits?

Fault detection

• packet parity errors

• packet time-phase errors

• packet unroutable errors (e.g. a locally-sourced multicast packet which doesn’t match any entry

in the multicast router).

• wrong packet length.

Fault isolation

• a mechanism is required to disable a multicast router entry if it fails. Possible just an ‘entry valid’

bit?

Reconfiguration

• since all multicast router entries are identical the function of any entry can be relocated to a spare

entry (within the same segment of the router if segmentation is used to save power).

• if a router (segment) becomes full a global reallocation of resources can move functionality to a

different router (segment)

10.14 Test

production test

The ternary CAM used in the multicast router should have suitable access for parallel testing
purposes, so that a processor can write the same value to all locations and see if an input with 1 bit
flipped results in a hit or a miss.

All RAMs should have read-write access for test purposes.

start-up test

run-time test

10.15 Notes

• The Router will require a number of traffic monitor features, e.g. packet counters, congestion

indicators, count packet under match & mask, dropped packet count, emergency routing count,

count on each output link, ...

 version 0.7 - DRAFT 11/2/08

45

S
p

i
N

N
a

k
e

r

11. Inter-chip transmit and receive interfaces

Inter-chip communication is implemented by extending CHAIN links from chip to chip. In order to
sustain CHAIN link throughput, there is a protocol conversion at each chip boundary from standard
CHAIN 3-of-6 return-to-zero to 2-of-7 non-return-to-zero. Each conversion maps one CHAIN
symbol to one 2-of-7 symbol. The interfaces include logic to minimise the risk of a protocol
deadlock caused by glitches on the inter-chip wires.

11.1 Features

• transmit (Tx) interface:

• converts on-chip 3-of-6 RTZ symbol into off-chip 2-of-7 NRZ symbol;

• control input to induce a fault;

• failure detection output?

• fault reset input?

• receive (Rx) interface:

• converts off-chip 2-of-7 NRZ symbol into on-chip 3-of-6 RTZ symbol;

• control input to induce a fault;

• failure detection output?

• fault reset input?

11.2 Programmer view

There are no programmer-accessible features implemented in these interfaces. In normal operation
these interfaces provide transparent connectivity between the routing network on one chip and
those on its neighbours.

11.3 Fault-tolerance

The fault inducing, detecting and resetting functions are controlled from the System Controller (see
‘System Controller’ on page 58). The interfaces are ‘glitch hardened’ to greatly reduce the
probability of a link deadlock arising as a result of a glitch on one of the inter-chip wires. Such a
glitch may introduce packet errors, which will be detected and handled elsewhere, but it is very
unlikely to cause deadlock. As a result it is expected that the link reset function will not be required
at all often.

Fault insertion

• an input controlled by the System Controller causes the interface to deadlock

Fault detection

• an output to the System Controller indicates deadlock

Fault isolation

• the interface can be disabled to isolate the chip-to-chip link. This may be the same input from the

System Controller that is used to insert a fault.

Reconfiguration

• the link interface can be reset by the System Controller to attempt recovery from a fault

• the link interface can be isolated and an alternative route used

46

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

11.4 Test

production test

start-up test

run-time test

 version 0.7 - DRAFT 11/2/08

47

S
p

i
N

N
a

k
e

r

12. System NoC

The System NoC has a primary function of connecting the ARM968 processors to the SDRAM
interface. It is also used to connect the Monitor Processor to system control and test functions, and
for a variety of other purposes.

The System NoC is generated by the Silistix CHAINworks tool.

12.1 Features

• supports full bandwidth block transfers between the SDRAM and the ARM968 processors.

• the Router is an additional initiator for system debug purposes.

• can be reset (in subsections?) to clear deadlocks.

• multiple targets:

• SDRAM interface - ARM PL340

• System RAM

• System ROM

• Ethernet interface

• System Controller

• Router configuration register

12.2 Organisation

12.3 Fault-tolerance

Fault insertion

Fault detection

Fault isolation

0 1 2

CPU0 CPU1 CPU2

AXI M AXI M

AXI S APB3 S AHB S

AHB S−>M

AHB M

AHB

SysCtl Watchdog

64

AXI M

64 64

APB3AXI 64

32

AXI AXI AXI

SM

Router

PL340

SS

clk_P clk_P clk_R

AHB S

Silistix

EthernetSysROMSysRAM

32AHB

32

32

AHB 32AHB

clk_Sclk_M

clk_P

48

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

Reconfiguration

12.4 Test

production test

start-up test

run-time test

 version 0.7 - DRAFT 11/2/08

49

S
p

i
N

N
a

k
e

r

13. SDRAM interface

The SDRAM interface connects the System NoC to an off-chip SDRAM device. It is the ARM
PL340, described in ARM document DDI 0331D.

13.1 Features

• control for external Mobile DDR SDRAM memory device

• memory request queue with one entry per ARM968 processor

• out of order request sequencing to maximise memory throughput

• AXI interface to System NoC

13.2 Register summary

Base address: 0xe0000000 (buffered write), 0xf0000000 (unbuffered write).

User registers

The following registers allow normal user programming of the PL340 SDRAM interface:

Name Offset R/W Function

r0: status 0x0 R memory controller status

r1: command 0x4 W PL340 command

r2: direct 0x8 W direct command

r3: mem_cfg 0xC R/W memory configuration

r4: refresh_prd 0x10 R/W refresh period

r5: CAS_latency 0x14 R/W CAS latency

r6: t_dqss 0x18 R/W write to DQS time

r7: t_mrd 0x1C R/W mode register command time

r8: t_ras 0x20 R/W RAS to precharge delay

r9: t_rc 0x24 R/W active bank x to active bank x delay

r10: t_rcd 0x28 R/W RAS to CAS minimum delay

r11: t_rfc 0x2C R/W auto-refresh command time

r12: t_rp 0x30 R/W precharge to RAS delay

r13: t_rrd 0x34 R/W active bank x to active bank y delay

r14: t_wr 0x38 R/W write to precharge delay

r15: t_wtr 0x3C R/W write to read delay

r16: t_xp 0x40 R/W exit power-down command time

r17: t_xsr 0x44 R/W exit self-refresh command time

50

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

Test and ID registers

In addition, there are test and ID registers that will not normally be of interest to the programmer:

See ARM document DDI 0331D for further details of the test registers.

13.3 Register details

register 0: memory controller status

The functions of these fields are described in the table below:

r18: t_esr 0x48 R/W self-refresh command time

id_n_cfg 0x100 R/W QoS settings

chip_n_cfg 0x200 R/W external memory device configuration

user_status 0x300 R state of user_status[7:0] primary inputs

user_config 0x304 W sets the user_config[7:0] primary outputs

Name Offset R/W Function

int_cfg 0xE00 R/W integration configuration register

int_inputs 0xE04 R integration inputs register

int_outputs 0xE08 W integration outputs register

periph_id_n 0xFE0-C R PL340 peripheral ID byte registers

pcell_id_n 0xFF0-C R PL340 Prime Cell ID byte registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M B C D W S

Name bits R/W Function

S: status 1:0 R Config, ready, paused, low-power

W: width 3:2 R Width of external memory: 2’b01 = 32 bits

D: DDR 6:4 R DDR type: 3b’011 = Mobile DDR

C: chips 8:7 R Number of different chip selects (1, 2, 3, 4)

B: banks 9 R Fixed at 1’b01 = 4 banks on a chip

M: monitors 11:10 R Number of exclusive access monitors (0, 1, 2, 4)

Name Offset R/W Function

 version 0.7 - DRAFT 11/2/08

51

S
p

i
N

N
a

k
e

r

register 1: memory controller command

The function of this field is described in the table below:

register 2: direct command

This register is used to pass a command directly to a memory device attached to the PL340. The
functions of these fields are described in the table below:

register 3: memory configuration

This register is used to pass a command directly to a memory device attached to the PL340.The
functions of these fields are described in the table below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cmd

Name bits R/W Function

cmd: command 2:0 W Go, sleep, wake-up, pause, config, active_pause

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

chip cmd bank addr

Name bits R/W Function

addr[13:0] 13:0 W address passed to memory device

bank 17:16 W bank passed to memory device

cmd 19:18 W command passed to memory device

chip 21:20 W chip number

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

act QoS burst C P pwr_down A row col

reset: 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Name bits R/W Function

col 2:0 R/W number of column address bits (8-12)

row 5:3 R/W number of row address bits (11-16)

A 6 R/W position of auto-pre-charge bit (10/8)

pwr_down 12:7 R/W # memory cycles before auto-power-down

P 13 R/W auto-power-down memory when inactive

C 14 R/W stop memory clock when no access

burst 17:15 R/W burst length (1, 2, 4, 8, 16)

52

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

register 4: refresh period

The function of this field is described in the table below:

register 5: CAS latency

The functions of these fields are described in the table below:

register 6: t_dqss

The function of this field is described in the table below:

QoS 20:18 R/W selects the 4-bit QoS field from the AXI ARID

act 22:21 R/W active chips: number for refresh generation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

refresh period

reset: 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0

Name bits R/W Function

refresh period 14:0 R/W memory refresh period in memory clock cycles

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cas_lat H

reset: 0 1 1 0

Name bits R/W Function

H 0 R/W CAS half cycle - must be set to 1’b0

cas_lat 3:1 R/W CAS latency in memory clock cycles

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

tdqss

reset: 0 1

Name bits R/W Function

tdqss 1:0 R/W write to DQS in memory clock cycles

Name bits R/W Function

 version 0.7 - DRAFT 11/2/08

53

S
p

i
N

N
a

k
e

r

register 7: t_mrd

The function of this field is described in the table below:

register 8: t_ras

The function of this field is described in the table below:

register 9: t_rc

The function of this field is described in the table below:

register 10: t_rcd

The functions of these fields are described in the table below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

t_mrd

reset: 0 0 0 0 0 1 0

Name bits R/W Function

t_mrd 6:0 R/W mode reg cmnd time in memory clock cycles

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

t_ras

reset: 0 1 1 1

Name bits R/W Function

t_ras 3:0 R/W RAS to precharge time in memory clock cycles

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

t_rc

reset: 1 0 1 1

Name bits R/W Function

t_rc 3:0 R/W Bank x to bank x delay in memory clock cycles

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sched t_rcd

reset: 0 1 1 1 0 1

Name bits R/W Function

t_rcd 2:0 R/W RAS to CAS min delay in memory clock cycles

54

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

register 11: t_rfc

The functions of these fields are described in the table below:

register 12: t_rp

The functions of these fields are described in the table below:

register 13: t_rrd

The function of this field is described in the table below:

sched 5:3 R/W RAS to CAS min delay in aclk cycles -3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sched t_rfc

reset: 1 0 0 0 0 1 0 0 1 0

Name bits R/W Function

t_rfc 4:0 R/W Auto-refresh cmnd time in memory clock cycles

sched 9:5 R/W Auto-refresh cmnd time in aclk cycles -3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sched t_rp

reset: 0 1 1 1 0 1

Name bits R/W Function

t_rp 2:0 R/W Precharge to RAS delay in memory clock cycles

sched 5:3 R/W Precharge to RAS delay in aclk cycles -3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

t_rrd

reset: 0 0 1 0

Name bits R/W Function

t_rrd 3:0 R/W Bank x to bank y delay in memory clock cycles

Name bits R/W Function

 version 0.7 - DRAFT 11/2/08

55

S
p

i
N

N
a

k
e

r

register 14: t_wr

The function of this field is described in the table below:

register 15: t_wtr

The function of this field is described in the table below:

register 16: t_xp

The function of this field is described in the table below:

register 17: t_xsr

The function of this field is described in the table below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

t_wr

reset: 0 1 1

Name bits R/W Function

t_wr 2:0 R/W Write to precharge dly in memory clock cycles

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

t_wtr

reset: 0 1 0

Name bits R/W Function

t_wtr 2:0 R/W Write to read delay in memory clock cycles

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

t_xp

reset: 0 0 0 0 0 0 0 1

Name bits R/W Function

t_xp 7:0 R/W Exit pwr-dn cmnd time in memory clock cycles

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

t_xsr

reset: 0 0 0 0 1 0 1 0

Name bits R/W Function

t_xsr 7:0 R/W Exit self-rfsh cmnd time in mem clock cycles

56

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

register 18: t_esr

The function of this field is described in the table below:

id_n_cfg

The functions of these fields are described in the table below:

chip_n_cfg

There is one of these registers for each external chip that is supported. The functions of these fields
are described in the table below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

t_esr

reset: 0 0 0 1 0 1 0 0

Name bits R/W Function

t_esr 7:0 R/W Self-refresh cmnd time in memory clock cycles

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

QoS_max N E

reset: 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

E 0 R/W QoS enable

N 1 R/W minimum QoS

QoS_max 9:2 R/W maximum QoS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B match mask

reset: 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Name bits R/W Function

mask 7:0 R/W address mask

match 15:8 R/W address match

B 16 R/W bank-rol-column/row-bank-column

 version 0.7 - DRAFT 11/2/08

57

S
p

i
N

N
a

k
e

r

user_status

The function of this field is described in the table below:

user_config

The function of this field is described in the table below:

13.4 Fault-tolerance

Fault insertion

Fault detection

Fault isolation

Reconfiguration

13.5 Test

production test

start-up test

run-time test

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ststus

Name bits R/W Function

status 7:0 R/W value of user_status[7:0] primary input pins

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

config

Name bits R/W Function

config 7:0 R/W sets user_config[7:0] primary output pins

58

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

14. System Controller

The System Controller incorporates a number of functions used by the Monitor Processor for
system start-up, fault-tolerance testing (invoking, detecting and resetting faults), general
performance monitoring, and such like. At present, the exact layout of the registers has not been
defined and bits and functionality may move between registers as the design progresses. The
descriptions below are therefore given in general terms.

To provide some tolerance to runaway code on any processor it is expected that access to these
registers (and similar functionality elsewhere on the chip) will only be permitted in a privileged
CPU mode. A control bit can be provided to disable this if necessary, so that user mode code can
also access these resources. Access might also be restriced just to the monitor processor at certain
times. A global watchdog timer is also provided here which the monitor processor is expected to
refresh. Failure to do so results in the chip being reset (and a new monitor chosen? - how?)

14.1 Register summary

Base address: 0xe1000000 (buffered write), 0xf1000000 (unbuffered write).

14.2 Register details

CPU Reset, Interrup, Clk disable

These three registers contain individual bit enables for each processor. They are all initialised to
zero on reset. Setting a bit will either reset, interrupt or disable the clock of a particular processor. It
is expected that only the monitor processor will access these registers.

Monitor ID

This register is written with the ID of the processor which has been chosen as the monitor
processor. Its output is required by the router (via the Router Control Register) in order to route
error packets to the monitor processor. It is initialised by power-on reset to an invalid value which
does not refer to any processor. Other forms of reset do not change this register.

Name Offset R/W Function

CPU Reset 0x0000 R/W Each bit allows a processor to be reset

CPU Interrupt 0x0004 R/W Each bit generates an interrupt at a processor

CPU Clk disable 0x0008 R/W Each bit disables the clock of a processor

Monitor ID 0x0010 R/W ID of monitor processor

Set CPU OK 0x0020 R/W Writing a 1 sets a CPU OK bit

Clr CPU OK 0x0024 R/W Writing a 1 clears a CPU OK bit

Reset Code 0x0030 RO Indicates cause of last chip reset

I/O port 0x0040 R/W Access to external I/O pins

Misc control 0x0050 R/W Miscellaneous control bits

Misc status 0x0054 RO Miscellaneous status bits

Misc test 0x0100 R/W Miscellaneous chip test control bits

 version 0.7 - DRAFT 11/2/08

59

S
p

i
N

N
a

k
e

r

Set/Clr CPU OK

These two registers contain individual bits for each processor and are used to indicate which
processors are operational. Writing a 1 to a bit in the Set register will set a bit and writing a 1 to a bit
in the Clr register will clear a bit. This mechanism ensures that the state is updated atomically when
several processors write these register ‘simultaneously’. When read, the both registers return the
same value, being a bit mask indicating the current set of operation processors. All bits are cleared
when the chip is reset.

I/O port

The I/O port controls a small number of I/O pins on the chip. A minimum of two would allow a

serial I/O interface such as I2C to be implemented. LEDs may also be driven by the I/O pins.

Misc control

This register contains a collection of bits which provide general chip control. The following
functions may be provided - PLL control, bits to allow User mode access to various parts of the
system, direction control for the I/O pins, etc, etc.

Misc status

This register provides a collection of status bits. For example, reason for last reset, state of the off-
chip links, ‘one-shot’ bit which reads as 1 only once following reset (used to assist in selecting
monitor processor), PLL lock status, etc, etc.

Test control

The test control register provides control for on-chip testing. For example, bits to simulate error
conditions in various parts of the chip, bits to reconfigure pins to allow testing to proceed, etc, etc.

60

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

14.3 Clock control

14.4 Fault-tolerance

Fault insertion

Fault detection

Fault isolation

Reconfiguration

14.5 Test

production test

start-up test

run-time test

clk_R PLL1

PLL2

Out

CLKin

Toric In

CT[X:0]

Cmpx[5:0]

Cmpx[7:6]

C1[15:0]

C2[15:0]

Cin

Fref

Fref

Cin

CkOut

CkOut

Tcki

Tcki

Tcko

Tcko

clk_P

clk_M

SpiNNaker Clock Module (outline spec only)

(eg 10MHz)

 version 0.7 - DRAFT 11/2/08

61

S
p

i
N

N
a

k
e

r

15. Router configuration registers

The Router is highly configurable; the Monitor Processor (MP) is responsible for initialising it and
updating it when necessary. The Router configuration registers are accessed via the system NoC.

15.1 Features

• used to set up the associative routing tables.

• give read/write access to the Router tables for test purposes.

• access for Monitor Processor to Router packet error information and traffic counters.

15.2 Register summary

Base address: 0xe4000000 (buffered write), 0xf4000000 (unbuffered write).

15.3 Register details

register 0: Router control register

The functions of these fields are described in the table below:

Name Offset R/W Function

r0: control 0x0 R/W Router control register

r1: error flags 0x4 R/W Router error flags (sticky)

r4: dump control 0x10 R/W dumped packet control & error information

r5: dump data 0x14 R dumped packet data payload word

r6: dump routing 0x18 R dumped packet routing word

r7: dump links 0x1C R dumped packet ouput link map

r1N: diag filter 0x100-11F R/W diagnostic count filters (N = 0-7)

r2N: diag count 0x200-21F R/W diagnostic counters (N = 0-7)

rT: test register 0xF00 R/W hardware test register

key[1023:0] 0x4000 R/W MC Router key values

mask[1023:0] 0x8000 R/W MC Router mask values

route[1023:0] 0xC000 R/W MC Router routing word values

p2p[65535:0] 0x10000 R/W p2p Router routing entries

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

wait2[7:0] wait1[7:0] MP[4:0] TP E

Name bits R/W Function

E 0 R/W enable packet routing

62

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

register 1: Router error flags

r1 records the fault conditions of any packets that fail to be routed correctly. All bits are sticky, so a
record is kept of all types of fault that have occurred. The diagnostic counters can be used to get
finer detail on the number of occurences of each type of fault.

The functions of these fields are described in the table below:

The Tx and fascicle processor link error flags indicate that a packet has been dropped because it
could not be sent through the respective link and, in the case of the Tx links, any attempt at
emergency routing was unsuccessful. All of these flags are ‘sticky’ - once set they remain set until
explicitly cleared by the processor writing a 0 to the respective bit position in this register.

register 4: dumped control information

A packet which contains an error or which cannot be routed because it times out is dumped to r4-7.
Once a packet has been dumped (indicated by bit[31] of r4 being set) any further packet that is
dumped is ignored, except that it can update the sticky bits in r1 (and can be counted by a suitably-
configured diagnostic counter). The Monitor Processor can reset bit[31] of r4 by writing ‘0’ to it.

The functions of these fields are described in the table below:

TP 7:6 R/W time phase (c.f. packet time stamps)

MP[4:0] 12:8 R/W Monitor Processor ID number

wait1[7:0] 23:16 R/W wait time (clock cycles) before emergency routing

wait2[7:0] 31:24 R/W wait time (clock cycles) before dropping packet

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

O T F P FPE[19:0] LE[5:0]

Name bits R/W Function

LE[5:0] 5:0 R/W Tx link transmit error (sticky)

FPE[19:0] 25:6 R/W Fascicle processor link error (sticky)

P 26 R/W packet parity error (sticky)

F 27 R/W packet framing error (sticky)

T 28 R/W packet time stamp error (sticky)

O 29 R/W packet time-out error (sticky)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D P F T O Route control byte

Name bits R/W Function

D: dumped 31 R/W packet has been dumped

Name bits R/W Function

 version 0.7 - DRAFT 11/2/08

63

S
p

i
N

N
a

k
e

r

register 5: dumped data payload

register 6: dumped routing word

register 7: dumped links

The functions of these fields are described in the table below:

register 1N: diagnostic control

The Router has 8 diagnostic counters (N = 0..7) each of which counts packets passing through the
Router filtered on packet characteristics defined here. A packet is counted if it has characteristics
that match with a ‘1’ in each of the 6 fields. Setting all bits to ‘1’ will count all packets.

The functions of these fields are described in the table below:

P: parity 30 R/W dumped packet parity error

F: framing error 29 R/W dumped packet framing error

T: TP error 28 R/W dumped packet time stamp error

O: time-out 27 R/W dumped packet timed-out

Route 26:24 R Rx route field of dumped packet

Control byte 23:16 R Control byte of dumped packet

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit data payload

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit routing word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FPE[19:0] LE[5:0]

Name bits R/W Function

LE[5:0] 5:0 R Tx link transmit error for dumped packet

FPE[19:0] 25:6 R Fascicle processor link error for dumped packet

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Dest PL Def TS ER Type

Name bits R/W Function

Dest 31:24 R/W Packet destination (Tx link[5:0], MP, dump)

Name bits R/W Function

64

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

register 2N: diagnostic counters

Each of these counters can be used to count selected types of packets under the control of the
corresponding r1N. The counter can have any value written to it, and will increment from that value
when respective events occur.

register T: hardware test register

This register is used only for hardware test purposes, and has no useful functions for the application
programmer.

The functions of these fields are described in the table below:

15.4 Fault tolerance

Fault insertion

Fault detection

Fault isolation

Reconfiguration

PL 13:12 R/W Packets with/without payload

Def 11:10 R/W Default/non-default routed packets

TS 9:8 R/W Timed-out/non-timed-out packets

ER 7:4 R/W Emergency routing field = 0, 1, 2 or 3

Type 3:0 R/W Packet type: mc, p2p, nn, undefined

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit count value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

H C

Name bits R/W Function

C 0 R/W Pipeline clock gating control

H 8 R MC router associative look-up ‘hit’ output

Name bits R/W Function

 version 0.7 - DRAFT 11/2/08

65

S
p

i
N

N
a

k
e

r

15.5 Test

production test

start-up test

run-time test

15.6 Notes

• time stamp: writeable, updated on newer incoming packet and by internal counter?

66

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

16. Ethernet MII interface

The SpiNNaker systems connects to a host machine via Ethernet links. Each SpiNNaker chip
includes an Ethernet MII interface, although only a few of the chips are expected to use this
interface. These chips will require an external PHY.

The interface hardware operates at the frame level. All higher-level protocols will be implemented
in software running on the local monitor processor.

16.1 Features

• support for full-duplex 10 and 100 Mbit/s Ethernet via off-chip PHY

• outgoing frame buffer, for one maximum-size frame

• outgoing frame control, CRC generation and inter-frame gap insertion

• incoming frame buffer, for two maximum-size frames

• incoming frame descriptor buffer, for up to 48 frame descriptors

• incoming frame control with length and CRC check

• support for unicast (with programmable MAC address), multicast, broadcast and promiscuous

frame capture

• receive error filter

• internal loop-back for test purposes

• general-purpose IO for PHY management (SMI) and PHY reset

• interrupt sources for frame-received, frame-transmitted and PHY (external) interrupt

[The interface does not provide support for half-duplex operation (as required by a CSMA/CD
MAC algorithm), jumbo or VLAN frames.]

16.2 Using the Ethernet MII interface

The Ethernet driver software must observe a number of sequence dependencies in initialising the
PHY and setting-up the MAC address beore the Ethernet interface is ready for use.

Details of these issues are documented in “SpiNNaker AHB-MII module” by Brendan Lynskey.
The latest version of this (currently version 003, February 2008) will be held in the SpiNNaker
document repository.

16.3 Register summary

Base address: 0xe3000000 (buffered write), 0xf3000000 (unbuffered write).

User registers

The following registers allow normal user programming of the Ethernet interface:

Name Offset R/W Function

Tx frame buffer 0x0000 W Transmit frame RAM area

Rx frame buffer 0x4000 R Receive frame RAM area

Rx desc RAM 0x8000 R Receive descriptor RAM area

r0: gen command 0xC000 R/W General command

 version 0.7 - DRAFT 11/2/08

67

S
p

i
N

N
a

k
e

r

Test registers

In addition, there are test registers that will not normally be of interest to the programmer:

See “SpiNNaker AHB-MII module” by Brendan Lynskey version 003, January 2008 for further
details of the test registers.

16.4 Register details

register 0: General command register

The functions of these fields are described in the table below:

r1: gen status 0xC004 R General status

r2: Tx length 0xC008 R/W Transmit frame length

r3: Tx command 0xC00C W Transmit command

r4: Rx command 0xC010 W Receive command

r5: MAC addr ls 0xC014 R/W MAC address low bytes

r6: MAC addr hs 0xC018 R/W MAC address high bytes

r7: PHY control 0xC01C R/W PHY control

r8: IRQ status 0xC020 W Interrupt clear

r9: Rx buf rd ptr 0xC024 R Receive frame buffer read pointer

r10: Rx buf wr ptr 0xC028 R Receive frame buffer write pointer

r11: Rx dsc rd ptr 0xC02C R Receive descriptor read pointer

r12: Rx dsc wr ptr 0xC030 R Receive descriptor write pointer

Name Offset R/W Function

r13: Rx Sys state 0xC034 R Receive system FSM state (debug & test use)

r14: Tx MII state 0xC038 R Transmit MII FSM state (debug & test use)

r15: PeriphID 0xC03C R Peripheral ID (debug & test use)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P B M U F L R T

reset: 0 1 1 1 1 0 0 0

Name bits R/W Function

T 0 R/W Transmit system enable

R 1 R/W Receive system enable

Name Offset R/W Function

68

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

register 1: General status register

The functions of these fields are described in the table below:

register 2: Transmit frame length

The functions of these fields are described in the table below:

register 3: Transmit command register

Any write to register 3 causes the transmission of a frame.

L 2 R/W Loopback enable

F 3 R/W Receive error filter enable

U 4 R/W Receive unicast packets enable

M 5 R/W Receive multicast packets enable

B 6 R/W Receive broadcast packets enable

P 7 R/W Receive promiscuous packets enable

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RxUC[6:0] T

reset: 0 0 0 0 0 0 0 0

Name bits R/W Function

T 0 R Transmit MII interface active

RxUC[6:0] 7:1 R Received unread frame count

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TxL[10:0]

reset: 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

TxL[10:0] 10:0 W Length of transmit frame {60 - 1514 bytes}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name bits R/W Function

 version 0.7 - DRAFT 11/2/08

69

S
p

i
N

N
a

k
e

r

register 4: Receive command register

Any write to register 4 indicates that the current receive frame has been processed and decrements
the received unread frame count in register 1.

register 5: MAC address low bytes

The functions of these fields are described in the table below:

register 6: MAC address high bytes

The functions of these fields are described in the table below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MAC3[7:0] MAC2[7:0] MAC1[7:0] MAC0[7:0]

0 0

Name bits R/W Function

MAC0[7:0] 7:0 W MAC address byte 0

MAC1[7:0] 15:8 W MAC address byte 1

MAC2[7:0] 23:16 W MAC address byte 2

MAC3[7:0] 31:24 W MAC address byte 3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MAC5[7:0] MAC4[7:0]

reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

MAC4[7:0] 7:0 W MAC address byte 4

MAC5[7:0] 15:8 W MAC address byte 5

70

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

register 7: PHY control

The functions of these fields are described in the table below:

register 8: Interrupt clear

The functions of these fields are described in the table below:

Writing a 1 to bit [0] if this register clears a pending transmit frame interrupts. Writing a 1 to bit [4]
clears a pending receive frame interrupt. There is no requirement to write a 0 to these bits other than
in order to prevent unintentional interrupt clearance.

register 9: Receive frame buffer read pointer

The functions of these fields are described in the table below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C E O I R

reset: 0 0 0 0

Name bits R/W Function

R 0 W PHY reset (active low)

I 1 R SMI data input

O 2 W SMI data output

E 3 W SMI data output enable

C 4 W SMI clock (active rising)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R T

Name bits R/W Function

T 0 W Clear transmit interrupt request

R 4 W Clear receive interrupt request

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

V RFBRP[9:0]

reset: 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

RFBRP[9:0] 9:0 R Receive frame buffer read pointer

V 10 R Rollover bit - toggles on address wrap-around

 version 0.7 - DRAFT 11/2/08

71

S
p

i
N

N
a

k
e

r

register 9: Receive frame buffer write pointer

The functions of these fields are described in the table below:

register 12: Receive descriptor read pointer

The functions of these fields are described in the table below:

register 12: Receive descriptor write pointer

The functions of these fields are described in the table below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

V RFBWP[9:0]

reset: 0 0 0 0 0 0 0 0 0 0 0

Name bits R/W Function

RFBWP[9:0] 9:0 R Receive frame buffer write pointer

V 10 R Rollover bit - toggles on address wrap-around

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

V RDRP[7:0]

reset 0 0 0 0 0 0 0 0 0

Name bits R/W Function

RDRP[7:0] 7:0 R Receive descriptor read pointer

V 8 R Rollover bit - toggles on address wrap-around

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

V RDWP[7:0]

reset 0 0 0 0 0 0 0 0 0

Name bits R/W Function

RDWP[7:0] 7:0 R Receive descriptor write pointer

V 8 R Rollover bit - toggles on address wrap-around

72

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

16.5 Fault-tolerance

Fault insertion

Fault detection

Fault isolation

Reconfiguration

16.6 Test

production test

start-up test

Loop-back test is available.

run-time test

Loop-back test is available.

 version 0.7 - DRAFT 11/2/08

73

S
p

i
N

N
a

k
e

r

17. Watchdog timer

The watchdog timer is an ARM PrimeCell component that is responsible for applying a system
reset when a failure condition is detected. Normally, the Monitor Processor will be responsible for
resetting the watchdog periodically to indicate that all is well. If the Monitor Processor should
crash, or fail to reset the watchdog during a pre-determined period of time, the watchdog will
trigger.

17.1 Features

• generates an interrupt request after a programmable time period;

• causes a chip-level reset if the Monitor Processor does not respond to an interrupt request within

a subsequent time period of the same length.

17.2 Register summary

Base address: 0xe2000000 (buffered write), 0xf2000000 (unbuffered write).

User registers

The following registers allow normal user programming of the Watchdog timer:

Test and ID registers

In addition, there are test and ID registers that will not normally be of interest to the programmer:

See AMBA Design Kit Technical Reference Manual ARM DDI 0243A, February 2003, for further
details of the test and ID registers.

Name Offset R/W Function

r0: WdogLoad 0x0 R/W Count load register

r1: WdogValue 0x4 R Current count value

r2: WdogControl 0x8 R/W Control register

r3: WdogIntClr 0xC W Interrupt clear register

r4: WdogRIS 0x10 R Raw interrupt status register

r5: WdogMIS 0x14 R Masked interrupt status register

r6: WdogLock 0xC00 R/W Lock register

Name Offset R/W Function

WdogITCR 0xF00 R/W Watchdog integration test control register

WdogITOP 0xF04 W Watchdog integration test output set register

WdogPeriphID0-3 0xFE0-C R Watchdog peripheral ID byte registers

WdogPCID0-3 0xFF0-C R Watchdog Prime Cell ID byte registers

74

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

17.3 Register details

register 0: Load

This read-write register contains the value the from which the counter is to decrement. When this
register is written to, the count immediately restarts from the new value. The minimum value is 1.

register 1: Count

This read-only register contains the current value of the decrementing counter. The first time the
counter decrements to zero the Watchdog raises an interrupt. If the interrupt is still active the
second time the counter decrements to zero the reset output is activated.

register 2: Control

The functions of these fields are described in the table below:

Once the Watchdog has been initialised both enables should be set to ‘1’ for normal watchdog
operation.

register 3: Interrupt clear

A write of any value to this register clears the watchdog interrupt and reloads the counter from r1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Wdog load

1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Wdog count

1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E I

reset: 0 0

Name bits R/W Function

I 0 R/W Enable Watchdog counter and interrupt (1)

E 1 R/W Enable the Watchdog reset output (1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 version 0.7 - DRAFT 11/2/08

75

S
p

i
N

N
a

k
e

r

register 4: Raw interrupt status

The function of this field is described in the table below:

register 5: Masked interrupt status

The function of this field is described in the table below:

register 6: Lock

The functions of these fields are described in the table below:

A read from this register returns only the bottom bit, indicating whether writes to other registers are
enabled (0) or disabled (1). A write of 0x1ACCE551 enables write access to the other registers; a
write of any other value disables write access to the other registers. Note that the ‘Key’ field is 32
bits and includes bit 0.

The lock function is available to ensure that the watchdog will not be reset by errant programs.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

reset: 0

Name bits R/W Function

R 0 R Raw (unmasked) watchdog interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

W

reset: 0

Name bits R/W Function

W 0 R Watchdog interrupt output

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Key L

reset: 0

Name bits R/W Function

L 0 R Write access enabled (0) or disabled (1)

Key 31:0 W Write 0x1ACCE551 to enable writes

76

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

17.4 Fault-tolerance

Fault insertion

Fault detection

Fault isolation

Reconfiguration

17.5 Test

production test

start-up test

run-time test

17.6 Notes:

NOTE: What is the timer period, & do we want to try to force a different monitor processor
when the watchdog expires?

 version 0.7 - DRAFT 11/2/08

77

S
p

i
N

N
a

k
e

r

18. System RAM

The System RAM is an additional 16 kByte block of on-chip RAM used primarily by the Monitor
Processor to enhance its program and data memory resources as it will be running more complex
(though less time-critical) algorithms than the fascicle processors.

As the choice of Monitor Processor is made at start-up (and may change during run-time for fault-
tolerance purposes) the System RAM is made available to whichever processor is Monitor
Processor via the System NoC. It is probably important that accesses by the Monitor Processor to
the System RAM are non-blocking as far as SDRAM accesses by the fascicle processors are
concerned, so the System NoC should ensure this is the case.

The System RAM may also be used by the fascicle processors to communicate with the Monitor
Processor and with each other, should the need arise.

18.1 Features

• 16 kB of SRAM, available via the System NoC.

• can be disabled to model complete failure for fault-tolerance testing.

• can we include parity or ECC to improve fault-tolerance?

18.2 Address location

Base address: 0xe5000000 (buffered write), 0xf5000000 (unbuffered write).

18.3 Fault-tolerance

Fault insertion

• It is straightforward to corrupt the contents of the System RAM to model a soft error – any proc-

essor can do this. It is not clear how this would be detected.

• The System RAM can be disabled to model a total failure.

Fault detection

• The Monitor Processor may perform a System RAM test at start-up, and periodically thereafter.

• It is not clear how soft errors can be detected without some sort of parity or ECC system.

Fault isolation

• Faulty words in the System SRAM can be mapped out of use.

Reconfiguration

• For hard failure of a single bit, avoid using the word containing the failed bit.

• If the System RAM fails completely the only option is to use the SDRAM instead, which will

probably result in compromised performance for the fascicle processors due to loss of SDRAM

bandwidth. An option then would be to relocate some of the fascicle processors’ workload to

another chip.

18.4 Test

production test

• run standard memory test patterns from one of the processing subsystems.

78

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

start-up test

run-time test

 version 0.7 - DRAFT 11/2/08

79

S
p

i
N

N
a

k
e

r

19. Boot ROM

19.1 Features

• a small (16Kbyte) on-chip ROM to provide minimal support for:

• initial self-test, and Monitor Processor selection

• Router initialisation for bootstrapping

• system boot.

The Test chip will have a minimal Boot ROM suficient to enable the loading of code from an

external I2C ROM using the GPIO[1:0] pins as an I2C interface.

19.2 Address location

Base address: 0xff000000.

19.3 Fault-tolerance

Fault insertion

Fault detection

Fault isolation

Reconfiguration

19.4 Test

production test

start-up test

run-time test

80

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

20. Boot, test and debug support

20.1 Features

• means of booting system and flood-filling the distributed operating system efficiently at start-up.

• back-up boot mechanism in case Boot ROM fails.

• access to ARM968 EmbeddedICE features.

• sundry features to facilitate production, start-up and run-time testing.

20.2 Issues

At system power-up we can make few assumptions about what is and isn’t working within the
system. What is the minimum that must work for each chip to run internal self-tests, appoint a
Monitor Processor, and then participate with its peers in an efficient bootstrap process that loads a
distributed operating system into every node?

The inter-chip communication system is very soft and must be initialised before any mc or p2p
communication can take place. But each node has no initial knowledge of where it is in the system,
so how can it initialise the Router?

The ultimate system is large, so the bootstrap process must be efficient and employ flood-fill
algorithms.

20.3 Boot algorithm

• Following power-on reset, each chip will perform internal self-tests and a Monitor Processor will

be selected, probably as a result of asynchronous arbitration processes. The node will go into

receptive mode, relying on the default boot routing process to communicate.

• The host system will begin sending OS load packets in nearest-neighbour format, tagged with

sequence numbers, to the node to which it is directly connected. All nodes receive all incoming

nn packets and, if they have not been seen before, retransmit them to all neighbours. Any packet

which has been seen before will be dropped and not retransmitted.

• Once all sequence numbers have been received a node will perform a CRC check and, if this is

correct, begin executing the loaded OS code.

20.4 Fault-tolerance

Fault insertion

Fault detection

Fault isolation

Reconfiguration

20.5 Test

production test

start-up test

run-time test

 version 0.7 - DRAFT 11/2/08

81

S
p

i
N

N
a

k
e

r

21. Input and Output signals

The SpiNNaker chip has the following IO, power and ground pins. All IO is assumed to operate at
1.8v with CMOS logic levels; the SDRAM interface is tightly-specified 1.8v LVCMOS. All other
IOs are non-critical, though output delay affects link throughput.

The IOs are listed and enumerated in the tables below for the full chip [and test chip].

21.1 External SDRAM interface

Noise: 10nH * (42 * 18mV/nH + 20 * 11mV/nH) / 15 = 650 mV ground/power bounce.

21.2 JTAG

Signal Type Drive Function # [#]

DQ[31:0] I/O 8mA B Data 1-32 1-32

A[12:0] O 4mA B Address 33-45 33-45

CK, CK# O 8mA B True and inverse clock 46, 47 46, 47

CKE O 4mA B Clock enable 48 48

CS# O 4mA B Chip select - tie to Gnd - -

RAS# O 4mA B Row address strobe 49 49

CAS# O 4mA B Column address strobe 50 50

WE# O 4mA B Write enable 51 51

DM[3:0] O 8mA B Data mask 52-55 52-55

BA[1:0] O 4mA B Bank address 56, 57 56, 57

DQS[3:0] I/O 8mA B Data strobe 58-61 58-61

VddQ[14:0] 1.8v Power for SDRAM pins 62-76 62-76

VssQ[14:0] Gnd Ground for SDRAM pins 77-91 77-91

Signal Type Drive Function # [#]

TRST I D Test reset 92 92

TCK I D Test clock 93 93

TMS I D Test mode select 94 94

TDI I D Test data in 95 95

TDO O 4mA A Test data out 96 96

82

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

21.3 Communication links

Noise: 10nH * (18 * 11mV/nH) / 6 = 330 mV ground/power bounce.

Signal Type Drive Function # [#]

L0in[6:0] I D link 0 2-of-7 input code 97-103 97-103

L0inA O 4mA B link 0 input acknowledge 104 104

L0out[6:0] O 4mA B link 0 2-of-7 output code 105-111 105-111

L0outA I D link 0 output acknowledge 112 112

L1in[6:0] I D link 1 2-of-7 input code 113-119 113-119

L1inA O 4mA B link 1 input acknowledge 120 120

L1out[6:0] O 4mA B link 1 2-of-7 output code 121-127 121-127

L1outA I D link 1 output acknowledge 128 128

L2in[6:0] I D link 2 2-of-7 input code 129-135 129-135

L2inA O 4mA B link 2 input acknowledge 136 136

L2out[6:0] O 4mA B link 2 2-of-7 output code 137-143 137-143

L2outA I D link 2 output acknowledge 144 144

L3in[6:0] I D link 3 2-of-7 input code 145-151 145-151

L3inA O 4mA B link 3 input acknowledge 152 152

L3out[6:0] O 4mA B link 3 2-of-7 output code 153-159 153-159

L3outA I D link 3 output acknowledge 160 160

L4in[6:0] I D link 4 2-of-7 input code 161-167 -

L4inA O 4mA B link 4 input acknowledge 168 -

L4out[6:0] O 4mA B link 4 2-of-7 output code 169-175 -

L4outA I D link 4 output acknowledge 176 -

L5in[6:0] I D link 5 2-of-7 input code 177-183 -

L5inA O 4mA B link 5 input acknowledge 184 -

L5out[6:0] O 4mA B link 5 2-of-7 output code 185-191 -

L5outA I D link 5 output acknowledge 192 -

VddL[5:0] 1.8v Power for link pins 193-198 161-164

VssL[5:0] Gnd Ground for link pins 199-204 165-168

 version 0.7 - DRAFT 11/2/08

83

S
p

i
N

N
a

k
e

r

21.4 Ethernet MII

Noise: 10nH * (9 * 3mV/nH) = 270mV ground/power bounce.

Signal Type Drive Function # [#]

RX_CLK I D Receive clock 205 145

RX_D[3:0] I D Receive data 206-209 146-149

RX_DV I D Receive data valid 210 150

RX_ERR I D Receive data error 211 151

TX_CLK O 2mA A Transmit clock 212 152

TX_D[3:0] O 2mA A Transmit data 213-216 153-156

TX_EN O 2mA A Transmit data valid 217 157

TX_ERR O 2mA A Force transmit data error 218 158

MDC O 2mA A Management interface clock 219 159

MDIO I/O 2mA A Management interface data 220 169

PHY_RST O 2mA A PHY reset (optional) 221 170

PHY_IRQ I D PHY interrupt (optional) 222 171

VddE 1.8v Power for Ethernet MII pins 223 -

VssE Gnd Ground for Ethernet MII pins 224 -

84

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

21.5 Miscellaneous

Noise: 10nH * (5 * 5mV/nH) = 250mV ground/power bounce.

Signal Type Drive Function # [#]

GPIO[3:0] IO 4mA A General-purpose IO 225-228 172-175

ResetIn I CSD Chip reset 229 176

ResetOut O 4mA A Daisy-chain reset out 230 -

Test I D Chip test mode 231 177

EtherMux I D select Ethernet MII or Link 3 - 178

Clk10MIn I D Main input clock - 10MHz 232 179

Clk10MOut O 4mA A Daisy-chain 10MHz clock out 233 -

Clk32kIn I CS Slow (global) 32kHz clock 234 180

Clk32kOut O 4mA A Daisy-chain 32kHz clock out 235 -

VddM 1.8v Power for miscellaneous pins 236 -

VssM Gnd Ground for miscellaneous pins 237 -

Vdd[7:0] 1.2v Power for core logic 238-245 181-184

Vss[7:0] Gnd Ground for core logic 246-253 185-188

VddP[3:0] 1.2v Power for PLLs 254-257 189-192

VssP[3:0] Gnd Ground for PLLs 258-261 193-196

 version 0.7 - DRAFT 11/2/08

85

S
p

i
N

N
a

k
e

r

22. Area estimates

We are targetting a UMC 130nm process 10mm x 10mm die. (EuroPractice runs on this process are
multiples of 5mm x 5mm. The test chip will be 5mm x 5mm.)

The Artisan in-line pads for this process are 60 µm x 293 µm, but EuroPractice recommends a
minimum bond pad pitch of 90 µm, so we can get 49 IOs on each side of the test chip.

Assumptions

• RAM is around 2µm2/bit = 3M T/mm2.

• logic is 0.2 x the density of RAM = 100k gates/mm2.

• The core area (excluding pads) is 9.414 x 9.414 [4.414 x 4.414] = 88.6 [19.48] mm2.

Estimates

Using these assumptions we total up the core logic area for the full [test] chip as follows:

• The processor nodes = 20 [3] x 3.6 = 72 [10.8] mm2.

• An ARM968 with 32 kByte I-RAM and 64 kByte D-RAM is 3.3 mm2.

• DMA, interrupt, counter/timer, communications controllers: 20 k gates = 0.2 mm2.

• Communications and System NoC interfaces = 0.1 mm2.

• The Communications NoC = 7.2 [3.7] mm2.

• The associative router with 1024 [512] associative entries is ~ 7 [3.5] mm2.

• Communications network fabric ~ 0.2 mm2.

• The System NoC = 9.95 [3.95] mm2.

• The 16 [16] kByte System RAM is 0.5 mm2.

• The 16 kByte Boot ROM is small ~ 0.3 mm2.

• The System Controller with 20k gates is 0.2 mm2.

• The PL340 SDRAM controller is 0.35 mm2.

• The Ethernet controller is 0.6 mm2.

• The network fabric is 8 [2] mm2.

• Boot, test and debug, PLLs = 0.5 mm2.

Total area

The total core logic area is thus 72 [10.8] + 7.2 [3.7] + 9.95 [3.95] + 0.5= 89.65 [18.95] mm2.

86

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

23. Power estimates

Processor

ARM968 (from ARM web site) consumes 0.12 to 0.23 mW/MHz on a 130 nm process, and delivers
1.1 dhrystone MIPS/MHz. Thus, to a good approximation, its power-efficiency is 5,000 to 10,000
MIPS/W and it uses 100-200 pJ/instruction.

neuron dynamics

30 instructions at 1 kHz = 30 kIPS = 3-6 µW.

connection processing

1,000 inputs at 10 Hz (ave.) and 10 instructions/input = 100 kIPS = 10-20 µW.

SDRAM access

assume SDRAM uses 250mW at 1 Gbyte/s; accessing 4 bytes costs 1 nJ.

1,000 inputs at 10 Hz (ave.) = 40 kByte/s = 10 µW.

communications link

1.8 V I/Os, 10 pF/wire = 15 pJ/transition

3 transitions/4 bits + EOP = 33 transitions/spike = 0.5 nJ/spike/link.

Router

assume power budget at full throughput of 200 MHz is 200 mW, so 1 nJ/route.

neuron total

at 10 Hz (ave.), with H hops, power = 3-6 + 10-20 + 10 + (1 + 1.5H)10-3
µW

= 23-36 µW (routing & inter-chip hops are negligible).

Chip

20 processors x 1,000 neurons/processor x 13-26 µW = 260-520 mW.

Node

chip + SDRAM = 460-720 mW.

System

1 billion neurons = 50,000 nodes = 23-36 kW.

 version 0.7 - DRAFT 11/2/08

87

S
p

i
N

N
a

k
e

r

24. To Do...

Comms controller

- Rx buffer size?

- NN packet type should be ‘1x’?

Interchip interfaces

- include Yebin's fault tolerance aspects?

Router

- time phase register format

- details to be checked/updated following Router Review

System Controller

- several details to be completed

- including clock control registers, etc

Fault-tolerance and test features

- still quite a lot to be detailed.

Does the ARM968 JTAG require the Comms Rx & Tx interrupts?

Add register reset states.

- Router Config; System Ctlr.

Fit in Toric pins & test IOs.

...and quite a lot more!

88

S
p

i
N

N
a

k
e

r
version 0.7 - DRAFT 11/2/08

