
Spiking neural network simulator

Xin Jin (jinxa@cs.man.ac.uk)
Supervisor: Steve Furber

1. Overview and Background
This project is a part of an EPSRC supported project - SpiNNaker - with the aim to build a chip
multiprocessor (CMP) combined with its external SDRAM for real-time neural network
simulation. Each chip in the SpiNNaker project contains 20 identical ARM968 processing
subsystems each of which is called a fascicle processor and is responsible for modeling a number
of neurons with associated inputs and outputs. The processors on a CMP share access to the
SDRAM using a self-timed packet-switched Network-on-Chip (NoC) [1][4]. Neurons modeled by
fascicle processors connect to and receive inputs from others in the same or different fascicles by a
certain rule in terms of the specific algorithm adopted, to model a spiking neural network.

This project mainly looks at implementing the spiking neural network model and its algorithm
developed by Izhikevich [2], on ARM968 system, in order to mimic pulse-coupled neural
networks mechanism of information processing by the brain. The Izhikevich’s model can
reproduce a rich number of neuro-computational features with comparatively efficient
implementation. In his model, neurons are receiving synaptic weights as spiking signals from the
fired neurons connected, and then update their states by the Izhikevich Equation in terms of the
synaptic weights received. This progress will repeat in real-time with a certain frequency. As a
result, a neuro-computational pattern for each neuron will be generated. Similarly, in this project,
we will simulate the progress above on the event driven model used in SpiNNaker and will finally
generate very closed patterns as Izhikevich gave in his paper[3]. This allows us to evaluate the
performance and efficiency as well as the feasibility of adopting a specific neuron updating
algorithm in such a system (a ARM968 system with event driven model). The result of the
simulation can be used as a reference for the SpiNNaker hardware design and may also be useful
for carrying out further research on spiking neural network. We will develop a set of codes
running on the ARM968 simulator to process neuron inputs and output, neuron state update and so
on. These codes can simulate the activities of a small-scale neural network (about 1000 neurons)
on one ARM968 processing subsystem.

The principle of such a spiking neural network system we are using on ARM968 is illustrated in
Figure 1.1. All of the information for neuron connections, each of which is 4 bytes and is called a
synaptic word, is stored in the external SDRAM. Each synaptic word is organized in a format like
below:

|--4b-delay-|0|-11b-index-|-16b-weight-|.
Where “4b delay” represents the delay time (ms) of the input, “11b index” is the unique neuron

index number in a fascicle, “16b weight” is the essential value which should be added to the right
inputs buffer found in terms of “4b delay” in the correct neuron found by the “11b index”.

Each neuron has its own data structure:
Neuron [0..n-1]{

 struct NeuronState;

short bin [0..15];

}

It comprises the parameters of a neuron and 16 signed short neuron input buffers. The input
buffers are actually utilized for implementing the time delay.

Every neuron will update its state every millisecond according to the algorithm we are using. If
any of the neurons in the system fires, a 32-bits routing key (the neuron’s unique identifying
number), comprising its fascicle index number and an offset of the fired neuron in this fascicle,
will be sent out. When it arrives as an input at one of the fascicles which have any of the neurons
connecting to this fired neuron, that fascicle will start to process it. In the example displayed in
Figure 1.1, the fascicle number of this input is X, and the offset is 0x30. The fascicle will look up
the mapping table kept in its I-TCM to find the memory block in the SDRAM corresponding to
this input, and then add the offset 0x30 to the address. So the result of the start memory address of
the block will be 0x100430. Supposing the block size is 48 bytes comprising 12 synaptic words
(indicating that 12 neurons in this fascicle connect to the fired neuron), the memory space of
0x100430 – 0x100460 will be the memory block we want.

Figure 1.1 Principle of the system

After that, a DMA transfer is started to copy this memory block from the SDRAM to the DMA
buffer located in the D-TCM. After the DMA operation completes, another routine will start to
update the input buffer of each neuron according to the content of each synaptic word in the DMA

buffer.

0

15

bin

1

8

Delay 2ms

add

State = F(bin)

Neuron updating
algorithm

0 -11b-index--16b-weight-

Figure 1.2 Input buffers

As illustrated in Figure 1.2, each neuron has a 16 half-words (32-byte) input buffer ring holding
the “short bin [0...15]” array in its data structure. A serial of digital numbers indicating the strength
of the firing signals (electrical current “I”) is stored in this array in the order of the time they fired.
There is a time relative pointer “DelayPtr” pointing to the current position in the buffer ring which
indicates the current system time. If the value of “4b-delay” is 2 (ms), the “16b weight” will be
added to the buffer ring 2 half words after the “DelayPtr”. Within every one millisecond the
neuron state will be updated using the current “I” (one half-word) loaded from the position of
“DelayPtr” under the rule of the algorithm we are using in the system.

2. Approach of Implementation

2.1 Scheduler

There are three main tasks in each processor, with priority levels 1, 2, 3 in order as below:
1. Update neuron bin, which is to update neuron inputs buffers according to the weights in

the synaptic words.
2. New input processing, which is responsible for processing all inputs from the neurons

fired, finding the correct synaptic weight address in the SDRAM and starting DMA to
copy them into the D-TCM buffers.

3. Update neuron states, which is to update the states of the neurons in one fascicle using
the neuron updating algorithm (the Izhikevich Equation[2] in this context).

Timer Interrupt
(every 1ms)

DMA
done?

New Input
receives?

Update neuron
states

Update
neuron bin

New Input
Processing

DMA Pending

Y

Y

N

N

Figure 2.1 System Scheduler

Figure 2.1 indicates the approach of the system scheduling in each processor (we still haven’t
finally decide how to schedule the tasks. This is the scheduler we are currently using in this
example). As you can see, whenever the processor has completed a task it goes back to the
beginning to see what to do next.

A timer will generate an interrupt every millisecond to indicate the start of the next time unit. If
any neuron or input runs out of time in the previous millisecond, the processor will continue
processing it before the next round is allowed to start. Figure 2.2 illustrates the strategy to solve
the “time out”.

Scheduler

start

.....

Last
neuron?

CurrentPtr =
DelayPtr

Initialization
for new set,
CurrentPtr++

Update neuron
states

N

Y

Y

N

Figure 2.2 Strategy for time out

“Timer Interrupt” is a timer interrupt service routine which will be executed every millisecond
mainly accumulating the variable “DelayPtr” as well as doing some other jobs. As indicated in
Figure 2.2, the system will keep on processing the inputs and updating the neurons left if they run
out of time in one millisecond. The new round will only start after all of the previous jobs have
been finished. When all of the neurons have been updated, the processor will compare the value
CurrentPtr to DelayPtr. If not equal, which means the system is time out, it starts a new round.
Otherwise, it will go to process the inputs and wait for the next timer interrupt.

As in Figure 2.1, the “New Input Processing” task may branch to the “Update neuron bin” task
without going back to the scheduler. So there are two entries to access the “Update neuron bin”
task. Supposing we have two DMA buffers: Buffer A and Buffer B, the DMA status is checked
immediately in the “New Input Processing” task after a DMA transfer is started, say, from the
SDRAM to the Buffer A. If any DMA complete signal is detected, which means Buffer B has just
been filled, it will branch to the “Update neuron bin” task and pass the address of Buffer B.
Otherwise, it will return to the scheduler and check the DMA status again, if any DMA complete
signal detected at this point, it branches to “Update neuron bin” task and passes the address of the
Buffer A..

If the DMA is not ready on the point we are going to start a DMA transfer in “New Input
Processing”, it will go to “DMA Pending“ which checks the DMA status every time coming back
from “Update neuron states”, and returns to “New Input Processing” once the DMA is ready.

Codes:
StarSim

 LDR r7, =CommsBuf ;neuron commPtr

 LDR r8, =0x4000000 ;commRx

 LDR r9, =DTCMBuf1 ;DMALoc

 LDR r5, =DTCMBuf2

 EOR r5, r5, r9

 STR r5, DMALocBits

 LDR r10, =NeuronData ;&NeuronData[n]

 LDR r11, =0x0 ;DelayPtr

SCHD LDR r1, =IRQRawStatus

 LDR r1, [r1]

 TST r1, #DMA_INTbit

 MOVNE r1, r9

 BNE Synaptic_process

NoDMA LDR r6, =CommsBuf

 CMP r7, r6

 BNE newCommsInput

NoInput LDR r3, =NeuronData+NeuronNum*NeuronSize

 CMP r3, r10 ;last neuron?

 BNE Goon ;if not, go on

 LDR r0, DelayPtr

 CMP r11, r0 ;r11 = current DelayPtr

 BEQ Finish ;if yes, finish

 ADD r11, r11, #0x2 ;if not, r11+2, and start new round

 CMP r11, #0x20

 MOVEQ r11, #0x0

 LDR r8, =0x4000000

 LDR r10, =NeuronData

Goon BL IzkEquation

Finish B SCHD END
The scheduler will begin from “StarSim” when the system starts. In this part, some frequently
used variables are kept in the registers for the purpose of getting better performance.

r7 -- new input buffer address; r8 -- 4 bytes’ new input; r9 -- DMA buffer address in D-TCM
r10 -- address of neuron parameters; r11 – Current Delay pointer

2.2 Update neuron bin

This routine is responsible for processing a set of synaptic data items in the D-TCM buffer which
have already been copied from the SDRAM. The neuron data structures are as below:
struct Neurons

{

 struct NeuronState

 {

 signed short Param_v; //v

 signed short Param_u; //u

 signed short Param_a; //ab

 signed short Param_b; //-a

 signed short Param_c; //c

 signed short Param_d; //d

 }NeuronStates;

 signed short bin[16]; //delayed input buffer

};

The codes of task “update neuron bin”:
; DTCMBuf1 is passing use r1
Synaptic_process

 ;clear dma interrupt

 ldr r3, =DMAIntClr

 str r3, [r3]

 LDR r3, =NeuronData

 ADD r3, r3, #NDelayOffset

 MOV r12, #NeuronSize

 ADD r2, r1, #BlkSize

L1 LDR r0,[r1], #4

;NB schedule instruction that doesn't use r0!

 BIC r5, r0, #0xf0000000

 SMLABT r6, r12, r5, r3

;NB schedule instruction that doesn't use r6!

L2 ADD r4, r0, r11, lsl #27 ;offset from Ptr, not #28

 LSR r4, r4, #27

 LDRH r5, [r6, r4]!

 ADD r5, r5, r0

L3 STRH r5, [r6]

 CMP r1, r2 ;finished?

 BLT L1

 B SCHD

 END

2.3 New input processing

The “New Input Processing” routine arranges inputs to a fascicle by the source fascicle ID, finds
out the memory address of the synaptic words belonging to this input in the SDRAM, and then
starts a DMA transfer which copies them to the D-TCM buffer.
struct SFascicle

{

 int SFascAddr; //address to match

 int SFascMask; //bits to ignore

 int *SFascPtr; //Sdram address of fasc start

 struct SFascicle *NextSFasc; //go here if >

};

In the current system, there are only two DMA buffers – DTCMBuf1 & DTCMBuf2, to save

D-TCM space usage as well as simplify the programming. But whenever a DMA is complete, we
should process it as soon as possible to clean up the DMA buffer.

In the case when several new inputs arriving at the same time, we use another buffer – CommsBuf,
which is used just like a stack, to buffer the new inputs.

Both of the new input buffers and DMA buffers are located in the D-TCM.
BufDataStart SPACE CommsBufSize+BlkSize*2

 MAP BufDataStart ;see option.s

CommsBuf # CommsBufSize

DTCMBuf1 # BlkSize

DTCMBuf2 # BlkSize

Codes of “new input processing”:
newCommsInput

 LDR r0, [r7, #-4]! ;r0 input(routing key) received

 LDR r5, =SourceFascicle

L1 MOV r1, r5

L2 LDMIA r1!, {r2-r5}

 ANDS r6, r0, r3 ;mask out bits

 ;BEQ error ;sentinel found

 CMP r6, r2 ;this fascicle?

 BGT L1

 BLT L2

; assert: we have a match

 BIC r6, r0, r3 ;offset within fasc

 ADD r1, r6, r4 ;r1 start data address of the fired neuron

; r6 -> DRAM row to load to DTCM by DMA...

 LDR r2, =DMAstat ;check DMA status

 LDR r2, [r2]

 CMP r2, #0 ;is it free?

 STMFD sp!, {r1}

 BLNE DMAPending ;wait for DMA ready

 LDMFD sp!, {r1}

;r0 dma register start addr r1 = dma from r2 = dmato r3= dmasize r4=dmacon

 LDR r0, =DMAfrom ;dma register start addr

 LDR r6, DMALocBits

 EOR r9, r9, r6

 MOV r2, r9

 LDR r3, =BlkSize

 LDR r4, =0x1

 STMIA r0!, {r1-r4} ;start DMA

 LDR r1, =IRQRawStatus ;any previous DMA complete?

 LDR r1, [r1]

 TST r1, #DMA_INTbit ;use the other DMA buffer

 BEQ SCHD

 LDR r6, DMALocBits

 EOR r1, r9, r6

 B Synaptic_process

 END

2.4 Update neuron states

2.4.1 Description of the Equation and its parameters

The Izhikevich Equation has been adopted as the main algorithm for updating neuron states in the
system.
The original form of the Equation is :

v =v + 0.04*v*v + 5*v + 140 + I – u …………...(1)
u = u + a*(b*v - u)……………………………….(2)
if v >= 30 mV, then v = c; u = u + d…………(3).

Where v and u are dimensionless variables, and a, b, c, and d are dimensionless parameters. v
represents the membrane potential of the neuron and u represents a membrane recovery variable.
Synaptic currents or injected dc-currents are delivered via the variable I.

Different choices of the parameters a, b, c, d result in different neuron firing patterns. In the
software simulator, the ratio of excitatory to inhibitory neurons is 4 to 1 and parameters are
generated randomly according to the following [3]:

Each excitatory cell:
(ai, bi) = (0.02, 0.2) and (ci, di) = (-65,8) + (15,-6) ri

2
Each inhibitory cell:
(ai, bi) = (0.02, 0.25) + (0.08, -0.05) ri

 and (ci, di) = (-65,2)

Where ri is a random variable uniformly distributed on the interval [0, 1].
So, 0.02< ai <0.1; 0.2< bi <0.25

In the equation, the minimum value of variable v will be around -80, and the maximum will be
around 380 (when its previous value was 30mV and depending on the value of I as well).

2.4.2 The choice of scaling factor

In order to represent the variables as integers with acceptable accuracy, we need a parameter to
amplify the original variables and parameters which will be helpful to get a better precision.
The value range of Signed Short we can use is -32767 ~ +32767.

If we choose a scaling factor p, the value can be decided by:
 |v* p| < 32767 (-80<v<380)
since the variable v has both the smallest and the biggest value in the Equation. According to this,
 p < 86
So it seems that we should choose 64 as the value of p. Is 64 the limit? The answer is no, because
we can extend 16 bit to 32 bit within the processing procedure. Actually 256 is the limit according
to:

 |-80|*p<32767
-80 will be one of the results stored in the neuron structure which has a Signed Short data in it..

But 256 is still too small for the parameters a, b and constant 0.04 in the Equation if we implement
it in the form [u = u + a*(b*v - u)]. What’s more, if we want to implement it by using the form [u
= ab*v –a*u + u] (which will execute more efficiently), p = 256 is far away from the requirement,
because 0.004<ab<0.025. The solution to this issue is to adopt two different scaling factors: p1 &
p2.

p1 = 256, p2 >= 1024
One issue concerning the choice of p1 & p2 is that it is not a simple case of the bigger the better.
The option varies with the parameters a & b and implementation (such as the choice between u = u
+ a*(b*v - u) or u = ab*v –a*u + u) . Different combinations of p1 & p2 make a difference as well.
But generally, a bigger scaling factor will be better.

 Mathematic analasys:

v*p1 = {v*p1[(0.04p2* v*p1)/p2+ 6*p1]}/p1 + 140p1 – u*p1 + I*p1 ………(1)
u*p1 = [(- a*p2) *u*p1]/p2 +u*p1+ [(ab*p2)*v*p1]/p2 ……………………..(2)
where, p1 = 256; p2 = 65536
Programming Hint:
if when p2 = 65536, an equation such as
(0.04p2* v*p1)/p2+ 6*p1
can be implemented by one instruction – “SMLAWB”

2.4.3 Implementation by assembler code running on the Armulator

Following the discussion of scaling factors p1 & p2 in section 2.4.2, and taking programming and
executing efficiency into consideration, we choose

p1 = 256, p2 = 65536
The equations:
v = v*(0.04*v + 6) + 140 + I – u …………...(1)
u = ab*v –a*u + u……………………..…….(2)
are implemented by the code listed below:

IzkEquation

 MOV r0, r10

 LDMFD r0!, {r2-r4}

;;v = v*(0.04*v+6)+140+I-u;

 LDR r12, =const1

 LDR r1, =const2

 SMLAWB r1, r12, r2, r1 ;r1 = 0.04*v+6

 LSL r1, #(0x10-FixedP1)

 LDR r12, =const3

 SMLAWB r1, r1, r2, r12 ;r1 = v*(0.04*v+6)+140

 MOV r5, #0x1<<(FixedP1+InhibitI) ;inhibits I

 LDR r6, =NeuronInh

 LDR r6, [r6]

 CMP r10, r6

 ADDCC r5, r5, r5

 ADDCC r5, r5, r5, lsr #1 ;excitatory I = 3*inhibit I

 LDRH r6, [r0, r11] ;r6 = I

 STRH r5, [r0, r11]

 LSL r6, #0x10 ;in case of I is minus

 ADD r1, r1, r6, ASR #0x10

 SUB r1, r1, r2, ASR #0x10 ;r1 = v

;; u = -a*u+u+ab*v;

 SMLATT r12, r2, r3, r2

 ASR r12, #0x10

 SMLAWB r2, r1, r3, r12 ;r2 = u;

;;if (v > 30)?

 LDR r12, =threshold

 CMP r12, r1

 BGE TEnd1

 ADD r2, r4, r2, LSL #0x10 ;if v>30

 STR r2, [r10]

 STR r8, [r7], #4

 B L4

TEnd1 STRH r1, [r10] ;store v&u

 STRH r2, [r10,#0x2]

L4 ADD r8, r8, #BlkSize

 ADD r10, r10, #NeuronSize

 MOV pc, lr

 END

2.5 Timer Interrupt Service

The timer in the Amulator is used to produce an interrupt every millisecond. In the timer interrupt
service routine, operations such as accumulating the variable “DelayPtr”, checking the total
running time of the system, and preparations for the next millisecond are carried out.
The codes for these functions are below:
Timers

 STMFD sp!, {r0, r1}

L1 LDR r0, ExecTime

 ADD r0, r0, #0x1

 STR r0, ExecTime

 CMP r0, #TimeLimits

 BNE L2

 BL ProEnd

 B .

L2 LDR r0, DelayPtr

 ADD r0, r0, #2

 CMP r0, #0x20 ;DelayPtr = 34?

 MOVEQ r0, #0x0

 STR r0, DelayPtr

 ;clear timer 1 interrupt

 ldr r0, =TCLR1

 ldr r1, =0x10

 str r1, [r0]

 LDMFD sp!, {r0, r1}

 SUBS pc, lr, #4

 END

2.6 DMA Pending

“DMA Pending” is called when the DMA is already busy and a new DMA operation cannot be
started by the “New Input Processing” task. The program checks the DMA status very frequently
and goes back to the “New Input Processing” immediately the DMA is ready. The codes for these
functions are below:
DMAPending

 STMFD sp!, {lr}

loop

 LDR r3, =NeuronData+NeuronNum*NeuronSize

 CMP r3, r10 ;last neuron?

 BNE goon ;if not, go on

 LDR r0, DelayPtr

 CMP r11, r0 ;r11 = current DelayPtr

 BEQ L1 ;if yes, finish

 ADD r11, r11, #0x2 ;if not, r11+2, and start new round

 CMP r11, #0x20

 MOVEQ r11, #0x0

 LDR r8, =0x4000000

 LDR r10, =NeuronData

goon BL IzkEquation

L1 LDR r2, =DMAstat ;test DMA status

 LDR r2, [r2]

 CMP r2, #0

 BNE loop

 LDMFD sp!, {pc}

 END

2.7 System initialization

In order to start the system, a set of neuron data must be initialized including parameters for all
neurons and synaptic weights for all connections. This part is implemented in C code.
Parameters:
void Neurons_Init(void)

{

 int i,j;

 float ra, rb;

 //excitatory neurons

 for (i=0; i<InStartNum; i++)

 {

 NeuronData[i].NeuronStates.Param_v = (signed short)(ExciteV*FixedP1);

 NeuronData[i].NeuronStates.Param_u = (signed

short)(ExciteU*NeuronData[0].NeuronStates.Param_v);

 NeuronData[i].NeuronStates.Param_a = (signed short)(ExciteA*FixedP2); //a = ab

 NeuronData[i].NeuronStates.Param_b = (signed short)(ExciteB*FixedP2); //b = -a

 NeuronData[i].NeuronStates.Param_c = (signed

short)((ExciteC+ExciteCr*(rand()/(RAND_MAX+1.0))*(rand()/(RAND_MAX+1.0)))*FixedP1); //c

 NeuronData[i].NeuronStates.Param_d = (signed

short)((ExciteD+ExciteDr*(rand()/(RAND_MAX+1.0))*(rand()/(RAND_MAX+1.0)))*FixedP1); //d

for (j=0; j<16; j++)

 {

 NeuronData[i].bin[j]= (signed short)(ExciteI*(rand()/(RAND_MAX+1.0))*FixedP1);

//I currency

 }

 }

//inhibitory neurons

 for (i=InStartNum; i<NeuronNum; i++)

 {

 ra = InhibitA+InhibitAr*(rand()/(RAND_MAX+1.0));

 rb = InhibitB+InhibitBr*(rand()/(RAND_MAX+1.0));

 NeuronData[i].NeuronStates.Param_v = (signed short)(InhibitV*FixedP1);

 NeuronData[i].NeuronStates.Param_u = (signed

short)(InhibitU*NeuronData[0].NeuronStates.Param_v);

 NeuronData[i].NeuronStates.Param_a = (signed short)(ra*rb*FixedP2); //a = ab

 NeuronData[i].NeuronStates.Param_b = (signed short)(-ra*FixedP2); //b = -a

 NeuronData[i].NeuronStates.Param_c = (signed short)(InhibitC*FixedP1); //c

 NeuronData[i].NeuronStates.Param_d = (signed short)(InhibitD*FixedP1); //d

 for (j=0; j<16; j++)

 {

 NeuronData[i].bin[j]= (signed short)(InhibitI*(rand()/(RAND_MAX+1.0))*FixedP1);

 }

 }

}

Synaptic weights:
//SnapticWord |--4b-delay-|0|-11b-index-|-16b-weight-|

void SnapticWord(void)

{

 int j,k;

 srand((unsigned)time(NULL));

 for (k=0; k<InStartNum; k++)

 {

 for (j=0;j<BlkSize/4; j++)

 {

 Synapse[k][j] = (int)(16.0*rand()/(RAND_MAX+1.0))<<28 | (int)(rand()%NeuronNum)<<16

| (int)((ExSpikI*rand()/(RAND_MAX+1.0))*FixedP1);

 }

 }

 for (k=InStartNum; k<NeuronNum; k++)

 {

 for (j=0;j<BlkSize/4; j++)

 {

 Synapse[k][j] = (int)(16.0*rand()/(RAND_MAX+1.0))<<28 | (int)(rand()%NeuronNum)<<16

| (int)((InSpikI*rand()/(RAND_MAX+1.0))*FixedP1)&0xffff;

 }

 }

}

3. System Performance:
We model a system with a 200MHz ARM968 core, a 100MHz AHB bus, a 64k D-TCM and a
100MHz SDRAM, on the Armulator, using the IDE Realview 2.2.
1. Update neuron bin.

This takes 110 ns/ weight (assuming that the neuron parameters are in the D-TCM) and 240
ns/ weight on average (if the neuron parameters are in the SDRAM)

2. New input processing.
This takes 280ns to process an input from a fired neuron and start a DMA transfer (if the
DMA is free).

3. Update neuron states.
One neuron update using the Izhikevich Equation takes 240 ns (reset I to constant after
updating, if reset to a random value, it will take 330ns) when the neuron parameters (which
are V, U, a, b, c, d and I corresponding to the Equation) are in the D-TCM, and it takes about
660 ns to do the same job when the parameters are in the SDRAM (100 MHZ).

4. Performance analysis:

4.1 Firing frequency allowed

For 1000 neurons with 10% connectivity, x represents the maxima number of neurons fired in 1
millisecond (the fire rating), when all of the debugging functions are turned off.

110*100*x + 280*x + 240*1000 + y = 1000 000 (Nanosecond)
y represents time delays (nanosecond) caused by scheduler, timer interrupt, DMA pending

subroutine
x equals to about 60.
Notes: there is no operation to search the fascicle binary tree in this project and writing the

DMA register takes tens of nanoseconds, the delay of the DMA operation is also not very accurate
at the moment.

4.2 D-TCM usage:

 X represents the maxima numbers of neuron can be allocated in the D-TCM.
 768(heap) + 512(stack) + 4*100 (CommsBuf) + 44*x(neuron parameters) + 2*BlkSize(DMABuf)
+ about 40 (global variable) + 56 (VectorTable) <= 64k (Byte)
 X is about 1400.

5. Simulating results
Figure 5.1, 5.2, 5.3 presents the firing patterns of an excitatory neuron in a system of 1000 neuron
with 10% connectivity, the ratio of excitatory neurons to inhibitory neurons is 4 to 1 [3], initial

and reset values of I:
 I for excitatory neuron is random 0 - 6 (mV)
 I for inhibitory neuron is random 0 - 2 (mV)
the value of synaptic connection weights are:
 excitatory: random 0 - 1.0 (mV) inhibitory: random -2.0 - 0 (mV)

Computes for 1 second, the number of firings received by this neuron is 613.
In the figures below, the x coordinate represents time (ms), the y coordinate is its original value
multiplied by the scaling factor p1 (256).

Figure 5.1 the membrane potential variable v of an excitatory neuron

Figure 5.2 the membrane recovery variable u of an excitatory neuron

Figure 5.3 the current variable I of an excitatory neuron

The firing patterns of an inhibitory neuron in the same system as above are displayed in figures

5.4, 5.5 5.6.

Figure 5.4 the membrane potential variable v of an inhibitory neuron

Figure 5.5 the membrane recovery variable u of an inhibitory neuron

 Figure 5.6 the current variable I of an inhibitory neuron

References:
[1] S. B. Furber, S. Temple and A. D. Brown. “High-Performance Computing for Systems of

Spiking Neurons”. The AISB’06 workshop on GC5: Architecture of Brain and Mind, Bristol,
3-4 April 2006.

[2] Eugene M. Izhikevich “Which Model to Use for Cortical Spiking Neurons”, IEEE Trans.
Neural Networks, vol. 15, no. 5, Sep. 2004

[3] Eugene M. Izhikevich, “Simple Model of Spiking Neurons”, IEEE Trans. Neural Networks,
vol. 14, pp. 1569-1572, Nov. 2003.

[4] S. B. Furber, S. Temple and A. D. Brown. “On-chip and Inter-Chip Networks for Modelling
Large-Scale Neural Systems”. Proc. ISCAS’06, Kos, May 2006.

[5] Eugene M. Izhikevich, “Neural excitability, spiking and bursting,” Int. J. Bifurcation Chaos,
vol. 10, pp. 1171-1266, 2000.

[6] ARM Ltd. ARM968E-S Technical Reference Manual. DDI 0311C, 2004.
http://www.arm.com/products/CPUs/ARM968E-S.html

