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1. Overview and Background 
This project is a part of an EPSRC supported project - SpiNNaker - with the aim to build a chip 
multiprocessor (CMP) combined with its external SDRAM for real-time neural network 
simulation. Each chip in the SpiNNaker project contains 20 identical ARM968 processing 
subsystems each of which is called a fascicle processor and is responsible for modeling a number 
of neurons with associated inputs and outputs. The processors on a CMP share access to the 
SDRAM using a self-timed packet-switched Network-on-Chip (NoC) [1][4]. Neurons modeled by 
fascicle processors connect to and receive inputs from others in the same or different fascicles by a 
certain rule in terms of the specific algorithm adopted, to model a spiking neural network. 
 
This project mainly looks at implementing the spiking neural network model and its algorithm 
developed by Izhikevich [2], on ARM968 system, in order to mimic pulse-coupled neural 
networks mechanism of information processing by the brain. The Izhikevich’s model can 
reproduce a rich number of neuro-computational features with comparatively efficient 
implementation. In his model, neurons are receiving synaptic weights as spiking signals from the 
fired neurons connected, and then update their states by the Izhikevich Equation in terms of the 
synaptic weights received. This progress will repeat in real-time with a certain frequency. As a 
result, a neuro-computational pattern for each neuron will be generated. Similarly, in this project, 
we will simulate the progress above on the event driven model used in SpiNNaker and will finally 
generate very closed patterns as Izhikevich gave in his paper[3]. This allows us to evaluate the 
performance and efficiency as well as the feasibility of adopting a specific neuron updating 
algorithm in such a system (a ARM968 system with event driven model). The result of the 
simulation can be used as a reference for the SpiNNaker hardware design and may also be useful 
for carrying out further research on spiking neural network. We will develop a set of codes 
running on the ARM968 simulator to process neuron inputs and output, neuron state update and so 
on. These codes can simulate the activities of a small-scale neural network (about 1000 neurons) 
on one ARM968 processing subsystem. 
 
The principle of such a spiking neural network system we are using on ARM968 is illustrated in 
Figure 1.1. All of the information for neuron connections, each of which is 4 bytes and is called a 
synaptic word, is stored in the external SDRAM. Each synaptic word is organized in a format like 
below: 

|--4b-delay-|0|-11b-index-|-16b-weight-|.  
Where “4b delay” represents the delay time (ms) of the input, “11b index” is the unique neuron 

index number in a fascicle, “16b weight” is the essential value which should be added to the right 
inputs buffer found in terms of “4b delay” in the correct neuron found by the “11b index”. 

 



Each neuron has its own data structure: 
Neuron [0..n-1]{ 

    struct NeuronState; 

short bin [0..15]; 

} 

It comprises the parameters of a neuron and 16 signed short neuron input buffers. The input 
buffers are actually utilized for implementing the time delay.  
 
Every neuron will update its state every millisecond according to the algorithm we are using. If 
any of the neurons in the system fires, a 32-bits routing key (the neuron’s unique identifying 
number), comprising its fascicle index number and an offset of the fired neuron in this fascicle, 
will be sent out. When it arrives as an input at one of the fascicles which have any of the neurons 
connecting to this fired neuron, that fascicle will start to process it. In the example displayed in 
Figure 1.1, the fascicle number of this input is X, and the offset is 0x30. The fascicle will look up 
the mapping table kept in its I-TCM to find the memory block in the SDRAM corresponding to 
this input, and then add the offset 0x30 to the address. So the result of the start memory address of 
the block will be 0x100430. Supposing the block size is 48 bytes comprising 12 synaptic words 
(indicating that 12 neurons in this fascicle connect to the fired neuron), the memory space of 
0x100430 – 0x100460 will be the memory block we want. 

 
Figure 1.1 Principle of the system 

After that, a DMA transfer is started to copy this memory block from the SDRAM to the DMA 
buffer located in the D-TCM. After the DMA operation completes, another routine will start to 
update the input buffer of each neuron according to the content of each synaptic word in the DMA 
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Figure 1.2 Input buffers 

As illustrated in Figure 1.2, each neuron has a 16 half-words (32-byte) input buffer ring holding 
the “short bin [0...15]” array in its data structure. A serial of digital numbers indicating the strength 
of the firing signals (electrical current “I”) is stored in this array in the order of the time they fired. 
There is a time relative pointer “DelayPtr” pointing to the current position in the buffer ring which 
indicates the current system time. If the value of “4b-delay” is 2 (ms), the “16b weight” will be 
added to the buffer ring 2 half words after the “DelayPtr”. Within every one millisecond the 
neuron state will be updated using the current “I” (one half-word) loaded from the position of 
“DelayPtr” under the rule of the algorithm we are using in the system. 

2. Approach of Implementation 

2.1 Scheduler 

There are three main tasks in each processor, with priority levels 1, 2, 3 in order as below: 
1. Update neuron bin, which is to update neuron inputs buffers according to the weights in 

the synaptic words.  
2. New input processing, which is responsible for processing all inputs from the neurons 

fired, finding the correct synaptic weight address in the SDRAM and starting DMA to 
copy them into the D-TCM buffers. 

3. Update neuron states, which is to update the states of the neurons in one fascicle using 
the neuron updating algorithm (the Izhikevich Equation[2] in this context). 
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Figure 2.1 System Scheduler 

Figure 2.1 indicates the approach of the system scheduling in each processor (we still haven’t 
finally decide how to schedule the tasks. This is the scheduler we are currently using in this 
example). As you can see, whenever the processor has completed a task it goes back to the 
beginning to see what to do next.  
 
A timer will generate an interrupt every millisecond to indicate the start of the next time unit. If 
any neuron or input runs out of time in the previous millisecond, the processor will continue 
processing it before the next round is allowed to start. Figure 2.2 illustrates the strategy to solve 
the “time out”. 
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Figure 2.2 Strategy for time out 

“Timer Interrupt” is a timer interrupt service routine which will be executed every millisecond 
mainly accumulating the variable “DelayPtr” as well as doing some other jobs. As indicated in 
Figure 2.2, the system will keep on processing the inputs and updating the neurons left if they run 
out of time in one millisecond. The new round will only start after all of the previous jobs have 
been finished. When all of the neurons have been updated, the processor will compare the value 
CurrentPtr to DelayPtr. If not equal, which means the system is time out, it starts a new round. 
Otherwise, it will go to process the inputs and wait for the next timer interrupt. 
 
As in Figure 2.1, the “New Input Processing” task may branch to the “Update neuron bin” task 
without going back to the scheduler. So there are two entries to access the “Update neuron bin” 
task. Supposing we have two DMA buffers: Buffer A and Buffer B, the DMA status is checked 
immediately in the “New Input Processing” task after a DMA transfer is started, say, from the 
SDRAM to the Buffer A. If any DMA complete signal is detected, which means Buffer B has just 
been filled, it will branch to the “Update neuron bin” task and pass the address of Buffer B. 
Otherwise, it will return to the scheduler and check the DMA status again, if any DMA complete 
signal detected at this point, it branches to “Update neuron bin” task and passes the address of the 
Buffer A.. 
 



If the DMA is not ready on the point we are going to start a DMA transfer in “New Input 
Processing”, it will go to “DMA Pending“ which checks the DMA status every time coming back 
from “Update neuron states”, and returns to “New Input Processing” once the DMA is ready. 
 
Codes: 
StarSim              

          LDR     r7,  =CommsBuf            ;neuron commPtr 

          LDR     r8,  =0x4000000           ;commRx 

          LDR     r9,  =DTCMBuf1            ;DMALoc 

          LDR     r5,  =DTCMBuf2  

          EOR     r5,  r5,  r9 

          STR     r5,  DMALocBits 

           

          LDR    r10,  =NeuronData          ;&NeuronData[n] 

          LDR    r11,  =0x0                 ;DelayPtr       

           

SCHD      LDR     r1,  =IRQRawStatus 

          LDR     r1,  [r1] 

          TST     r1,  #DMA_INTbit 

          MOVNE   r1,  r9 

          BNE     Synaptic_process  

            

NoDMA     LDR     r6,  =CommsBuf 

          CMP     r7,  r6 

          BNE     newCommsInput 

           

NoInput   LDR     r3,  =NeuronData+NeuronNum*NeuronSize 

          CMP     r3,  r10                 ;last neuron?  

          BNE     Goon                     ;if not, go on 

          LDR     r0,  DelayPtr 

          CMP    r11,  r0                  ;r11 = current DelayPtr 

          BEQ     Finish                   ;if yes, finish 

          ADD    r11,  r11,  #0x2          ;if not, r11+2, and start new round 

          CMP    r11,  #0x20 

          MOVEQ  r11,  #0x0 

          LDR     r8,  =0x4000000 

          LDR    r10,  =NeuronData  

 

Goon      BL      IzkEquation        

Finish    B       SCHD           END 
The scheduler will begin from “StarSim” when the system starts. In this part, some frequently 
used variables are kept in the registers for the purpose of getting better performance. 
 
r7 -- new input buffer address; r8 -- 4 bytes’ new input; r9 -- DMA buffer address in D-TCM 
r10 -- address of neuron parameters; r11 – Current Delay pointer 

2.2 Update neuron bin 

This routine is responsible for processing a set of synaptic data items in the D-TCM buffer which 
have already been copied from the SDRAM. The neuron data structures are as below: 
struct Neurons 

{ 

    struct  NeuronState 

    { 



     signed short Param_v;               //v 

      signed short Param_u;               //u 

     signed short Param_a;               //ab 

     signed short Param_b;               //-a 

      signed short Param_c;               //c 

      signed short Param_d;               //d  

    }NeuronStates;  

    signed short   bin[16];                 //delayed input buffer 

}; 
 
The codes of task “update neuron bin”: 
; DTCMBuf1 is passing use r1 
Synaptic_process  

        ;clear dma interrupt 

        ldr    r3,  =DMAIntClr   

        str    r3,  [r3] 

         

        LDR    r3,  =NeuronData 

        ADD    r3,  r3,  #NDelayOffset 

        MOV   r12,  #NeuronSize 

        ADD    r2,  r1,  #BlkSize 

L1      LDR    r0,[r1],  #4 

;NB schedule instruction that doesn't use r0!         

        BIC    r5,  r0,  #0xf0000000   

        SMLABT r6, r12,  r5,  r3 

;NB schedule instruction that doesn't use r6!         

L2      ADD    r4,  r0,  r11, lsl #27              ;offset from Ptr, not #28 

        LSR    r4,  r4,  #27 

        LDRH   r5, [r6, r4]! 

        ADD    r5,  r5,  r0 

 

L3      STRH   r5, [r6] 

        CMP    r1,  r2                             ;finished? 

        BLT    L1 

        B      SCHD 

        END 
 

2.3 New input processing 

The “New Input Processing” routine arranges inputs to a fascicle by the source fascicle ID, finds 
out the memory address of the synaptic words belonging to this input in the SDRAM, and then 
starts a DMA transfer which copies them to the D-TCM buffer. 
struct SFascicle 

{ 

 int SFascAddr;                   //address to match 

 int SFascMask;                   //bits to ignore 

 int *SFascPtr;                   //Sdram address of fasc start 

 struct SFascicle *NextSFasc;     //go here if >  

}; 
 
In the current system, there are only two DMA buffers – DTCMBuf1 & DTCMBuf2, to save 



D-TCM space usage as well as simplify the programming. But whenever a DMA is complete, we 
should process it as soon as possible to clean up the DMA buffer.  
 
In the case when several new inputs arriving at the same time, we use another buffer – CommsBuf, 
which is used just like a stack, to buffer the new inputs. 
 
Both of the new input buffers and DMA buffers are located in the D-TCM. 
BufDataStart  SPACE  CommsBufSize+BlkSize*2 

 

           MAP    BufDataStart  ;see option.s    

  

CommsBuf  #  CommsBufSize      

DTCMBuf1  #  BlkSize     

DTCMBuf2  #  BlkSize   

 
Codes of “new input processing”: 
newCommsInput 

         LDR      r0,  [r7, #-4]!                  ;r0 input(routing key) received 

         LDR      r5,  =SourceFascicle 

L1       MOV      r1,  r5 

L2       LDMIA   r1!,  {r2-r5} 

         ANDS     r6,  r0, r3                      ;mask out bits 

         ;BEQ     error                            ;sentinel found  

         CMP      r6,  r2                          ;this fascicle? 

         BGT      L1 

         BLT      L2 

; assert: we have a match      

         BIC      r6,  r0, r3                      ;offset within fasc 

         ADD      r1,  r6, r4                      ;r1 start data address of the fired neuron

; r6 -> DRAM row to load to DTCM by DMA... 

      

         LDR      r2,  =DMAstat                    ;check DMA status 

         LDR      r2,  [r2]                         

         CMP      r2,  #0                          ;is it free? 

         STMFD   sp!,  {r1} 

         BLNE     DMAPending                       ;wait for DMA ready  

         LDMFD   sp!, {r1}                       

      

;r0 dma register start addr  r1 = dma from r2 = dmato r3= dmasize r4=dmacon 

 

         LDR      r0,  =DMAfrom                    ;dma register start addr 

         LDR      r6,  DMALocBits 

         EOR      r9,  r9, r6   

         MOV      r2,  r9             

         LDR      r3,  =BlkSize 

         LDR      r4,  =0x1 

      

         STMIA   r0!, {r1-r4}                      ;start DMA 

      

         LDR      r1,  =IRQRawStatus               ;any previous DMA complete? 

         LDR      r1,  [r1] 

         TST      r1,  #DMA_INTbit                 ;use the other DMA buffer 

         BEQ      SCHD 

          

         LDR      r6,  DMALocBits 

         EOR      r1,  r9,  r6           



         B        Synaptic_process    

         END 

2.4 Update neuron states 

2.4.1 Description of the Equation and its parameters 

The Izhikevich Equation has been adopted as the main algorithm for updating neuron states in the 
system. 
The original form of the Equation is : 
 
v =v + 0.04*v*v + 5*v + 140 + I – u …………...(1) 
u = u + a*(b*v - u)……………………………….(2) 
if  v >= 30 mV,  then v = c; u = u + d…………(3). 
 
Where v and u are dimensionless variables, and a, b, c, and d are dimensionless parameters. v 
represents the membrane potential of the neuron and u represents a membrane recovery variable. 
Synaptic currents or injected dc-currents are delivered via the variable I. 
 
Different choices of the parameters a, b, c, d result in different neuron firing patterns. In the 
software simulator, the ratio of excitatory to inhibitory neurons is 4 to 1 and parameters are 
generated randomly according to the following [3]: 
 

Each excitatory cell: 
(ai, bi) = (0.02, 0.2) and (ci, di) = (-65,8) + (15,-6) ri

2  
Each inhibitory cell: 
(ai, bi) = (0.02, 0.25) + (0.08, -0.05) ri

 and (ci, di) = (-65,2)   
 

Where ri is a random variable uniformly distributed on the interval [0, 1].  
So,  0.02< ai <0.1;   0.2< bi <0.25 
 
In the equation, the minimum value of variable v will be around -80, and the maximum will be 
around 380 (when its previous value was 30mV and depending on the value of I as well). 

2.4.2 The choice of scaling factor 

In order to represent the variables as integers with acceptable accuracy, we need a parameter to 
amplify the original variables and parameters which will be helpful to get a better precision.  
The value range of Signed Short we can use is -32767 ~ +32767. 
 
If we choose a scaling factor p, the value can be decided by:  
                            |v* p| < 32767        (-80<v<380) 
since the variable v has both the smallest and the biggest value in the Equation. According to this,  
                              p < 86 
So it seems that we should choose 64 as the value of p. Is 64 the limit? The answer is no, because 
we can extend 16 bit to 32 bit within the processing procedure. Actually 256 is the limit according 
to: 



                           |-80|*p<32767 
-80 will be one of the results stored in the neuron structure which has a Signed Short data in it.. 
 
But 256 is still too small for the parameters a, b and constant 0.04 in the Equation if we implement 
it in the form [u = u + a*(b*v - u)]. What’s more, if we want to implement it by using the form [u 
= ab*v –a*u + u] (which will execute more efficiently), p = 256 is far away from the requirement, 
because 0.004<ab<0.025. The solution to this issue is to adopt two different scaling factors: p1 & 
p2.   

p1 = 256, p2 >= 1024 
One issue concerning the choice of p1 & p2 is that it is not a simple case of the bigger the better. 
The option varies with the parameters a & b and implementation (such as the choice between u = u 
+ a*(b*v - u) or u = ab*v –a*u + u) . Different combinations of p1 & p2 make a difference as well. 
But generally, a bigger scaling factor will be better. 
 
    Mathematic analasys: 

v*p1 = {v*p1[(0.04p2* v*p1 )/p2+ 6*p1]}/p1 + 140p1 – u*p1 + I*p1  ………(1) 
u*p1 = [(- a*p2) *u*p1]/p2 +u*p1+ [(ab*p2)*v*p1]/p2   ……………………..(2) 
where,  p1 = 256; p2 = 65536 
Programming Hint:  
if when p2 = 65536,  an equation such as  
(0.04p2* v*p1 )/p2+ 6*p1 
can be implemented by one instruction – “SMLAWB” 

2.4.3 Implementation by assembler code running on the Armulator 

Following the discussion of scaling factors p1 & p2 in section 2.4.2, and taking programming and 
executing efficiency into consideration, we choose  

p1 = 256,   p2 = 65536 
The equations: 
v = v*(0.04*v + 6) + 140 + I – u …………...(1) 
u = ab*v –a*u + u……………………..…….(2) 
are implemented by the code listed below: 
 
IzkEquation 

  

       MOV       r0,  r10 

       LDMFD    r0!,  {r2-r4} 

                             

;;v = v*(0.04*v+6)+140+I-u; 

       LDR      r12,  =const1 

       LDR       r1,  =const2 

       SMLAWB    r1,  r12, r2, r1               ;r1 = 0.04*v+6 

              

       LSL       r1,  #(0x10-FixedP1) 

       LDR      r12,  =const3  

       SMLAWB    r1,  r1,  r2,  r12             ;r1 = v*(0.04*v+6)+140 

  

       MOV       r5,  #0x1<<(FixedP1+InhibitI)  ;inhibits I     

        

       LDR       r6,  =NeuronInh 



       LDR       r6,  [r6] 

       CMP      r10,  r6                      

       ADDCC     r5,  r5,  r5                         

       ADDCC     r5,  r5,  r5, lsr #1           ;excitatory I = 3*inhibit I 

 

       LDRH      r6,  [r0, r11]                 ;r6 = I 

       STRH      r5,  [r0, r11] 

        

       LSL     r6,  #0x10                        ;in case of I is minus 

        

       ADD     r1,  r1,  r6, ASR #0x10 

       SUB     r1,  r1,  r2, ASR #0x10           ;r1 = v 

 

;; u = -a*u+u+ab*v;      
   

       SMLATT r12,  r2,  r3,  r2 

       ASR    r12,  #0x10 

       SMLAWB  r2,  r1,  r3,  r12                ;r2 = u;     

        

;;if (v > 30)? 

       LDR    r12,  =threshold 

       CMP    r12,  r1                

       BGE    TEnd1                                  

        

       ADD     r2,  r4,  r2,  LSL #0x10          ;if v>30   

       STR     r2,  [r10]   

   

       STR     r8,  [r7], #4 

       B       L4 

      

TEnd1  STRH    r1,  [r10]                        ;store v&u 

       STRH    r2,  [r10,#0x2] 

        

L4     ADD     r8,  r8, #BlkSize 

       ADD    r10,  r10, #NeuronSize 

       MOV     pc,  lr 

 

       END 
 

2.5 Timer Interrupt Service 

The timer in the Amulator is used to produce an interrupt every millisecond. In the timer interrupt 
service routine, operations such as accumulating the variable “DelayPtr”, checking the total 
running time of the system, and preparations for the next millisecond are carried out. 
The codes for these functions are below: 
Timers 

        STMFD sp!,  {r0,  r1}                 

L1      LDR      r0,  ExecTime 

        ADD      r0,  r0,  #0x1 

        STR      r0,  ExecTime 

        CMP      r0,  #TimeLimits 

        BNE      L2 

        BL       ProEnd 

        B        .       

           

L2      LDR      r0,  DelayPtr 



        ADD      r0,  r0,  #2 

        CMP      r0,  #0x20                       ;DelayPtr = 34? 

        MOVEQ    r0,  #0x0 

        STR      r0,  DelayPtr 

         

        ;clear timer 1 interrupt 

        ldr      r0,  =TCLR1 

        ldr      r1,  =0x10 

        str      r1,  [r0]    

    

        LDMFD   sp!,  {r0,  r1} 

        SUBS  pc,  lr,  #4         

        END 

2.6 DMA Pending  

“DMA Pending” is called when the DMA is already busy and a new DMA operation cannot be 
started by the “New Input Processing” task. The program checks the DMA status very frequently 
and goes back to the “New Input Processing” immediately the DMA is ready. The codes for these 
functions are below: 
DMAPending 

         STMFD  sp!,  {lr} 

loop      

         LDR     r3,  =NeuronData+NeuronNum*NeuronSize 

         CMP     r3,  r10                        ;last neuron?   

         BNE     goon                            ;if not, go on 

         LDR     r0,  DelayPtr                    

         CMP    r11,  r0                         ;r11 = current DelayPtr 

         BEQ     L1                              ;if yes, finish 

         ADD    r11,  r11, #0x2                  ;if not, r11+2, and start new round 

         CMP    r11,  #0x20 

         MOVEQ  r11,  #0x0 

         LDR     r8,  =0x4000000 

         LDR    r10,  =NeuronData  

          

goon     BL      IzkEquation    

L1       LDR     r2,  =DMAstat                   ;test DMA status 

         LDR     r2,  [r2]                         

         CMP     r2,  #0  

         BNE     loop 

         LDMFD  sp!,  {pc} 

         END 

 

2.7 System initialization 

In order to start the system, a set of neuron data must be initialized including parameters for all 
neurons and synaptic weights for all connections. This part is implemented in C code. 
Parameters: 
void Neurons_Init(void) 

{ 

    int i,j; 

    float ra, rb; 

    //excitatory neurons 

    for (i=0; i<InStartNum; i++ ) 

    {     



    NeuronData[i].NeuronStates.Param_v = (signed short)(ExciteV*FixedP1); 

    NeuronData[i].NeuronStates.Param_u = (signed 

short)(ExciteU*NeuronData[0].NeuronStates.Param_v); 

    NeuronData[i].NeuronStates.Param_a = (signed short)(ExciteA*FixedP2);           //a = ab

    NeuronData[i].NeuronStates.Param_b = (signed short)(ExciteB*FixedP2);           //b = -a 

    NeuronData[i].NeuronStates.Param_c = (signed 

short)((ExciteC+ExciteCr*(rand()/(RAND_MAX+1.0))*(rand()/(RAND_MAX+1.0)))*FixedP1); //c 

    NeuronData[i].NeuronStates.Param_d = (signed 

short)((ExciteD+ExciteDr*(rand()/(RAND_MAX+1.0))*(rand()/(RAND_MAX+1.0)))*FixedP1); //d 

     

for (j=0; j<16; j++) 

        { 

         NeuronData[i].bin[j]= (signed short)(ExciteI*(rand()/(RAND_MAX+1.0))*FixedP1);  

//I currency 

        } 

    } 

     

//inhibitory neurons 

    for (i=InStartNum; i<NeuronNum; i++ ) 

    { 

        ra = InhibitA+InhibitAr*(rand()/(RAND_MAX+1.0));  

        rb = InhibitB+InhibitBr*(rand()/(RAND_MAX+1.0)); 

         

        NeuronData[i].NeuronStates.Param_v = (signed short)(InhibitV*FixedP1); 

        NeuronData[i].NeuronStates.Param_u = (signed 

short)(InhibitU*NeuronData[0].NeuronStates.Param_v); 

        NeuronData[i].NeuronStates.Param_a = (signed short)(ra*rb*FixedP2);    //a = ab      

        NeuronData[i].NeuronStates.Param_b = (signed short)(-ra*FixedP2);      //b = -a      

        NeuronData[i].NeuronStates.Param_c = (signed short)(InhibitC*FixedP1); //c 

        NeuronData[i].NeuronStates.Param_d = (signed short)(InhibitD*FixedP1); //d 

     for (j=0; j<16; j++) 

     { 

        NeuronData[i].bin[j]= (signed short)(InhibitI*(rand()/(RAND_MAX+1.0))*FixedP1); 

     }      

   } 

} 
 
Synaptic weights: 
//SnapticWord |--4b-delay-|0|-11b-index-|-16b-weight-| 

void SnapticWord(void) 

{ 

    int j,k; 

     

 srand( (unsigned)time( NULL ) ); 

     

    for (k=0; k<InStartNum; k++) 

    {   

         for (j=0;j<BlkSize/4; j++) 

         { 

          

       Synapse[k][j] = (int)(16.0*rand()/(RAND_MAX+1.0))<<28 | (int)(rand()%NeuronNum)<<16

| (int)((ExSpikI*rand()/(RAND_MAX+1.0))*FixedP1);        

      } 

    } 

    for (k=InStartNum; k<NeuronNum; k++) 

    {   

         for (j=0;j<BlkSize/4; j++) 

         {          

       Synapse[k][j] = (int)(16.0*rand()/(RAND_MAX+1.0))<<28 | (int)(rand()%NeuronNum)<<16



| (int)((InSpikI*rand()/(RAND_MAX+1.0))*FixedP1)&0xffff; 

      }  

    } 

} 

 

3. System Performance: 
We model a system with a 200MHz ARM968 core, a 100MHz AHB bus, a 64k D-TCM and a 
100MHz SDRAM, on the Armulator, using the IDE Realview 2.2. 
1. Update neuron bin. 

This takes 110 ns/ weight (assuming that the neuron parameters are in the D-TCM) and 240 
ns/ weight on average (if the neuron parameters are in the SDRAM) 

2. New input processing.  
This takes 280ns to process an input from a fired neuron and start a DMA transfer (if the 
DMA is free).  

3. Update neuron states.  
One neuron update using the Izhikevich Equation takes 240 ns (reset I to constant after 
updating, if reset to a random value, it will take 330ns) when the neuron parameters (which 
are V, U, a, b, c, d and I corresponding to the Equation) are in the D-TCM, and it takes about 
660 ns to do the same job when the parameters are in the SDRAM (100 MHZ). 

4. Performance analysis: 

4.1 Firing frequency allowed 

For 1000 neurons with 10% connectivity, x represents the maxima number of neurons fired in 1 
millisecond (the fire rating), when all of the debugging functions are turned off. 

110*100*x + 280*x + 240*1000 + y = 1000 000                 (Nanosecond) 
y represents time delays (nanosecond) caused by scheduler, timer interrupt, DMA pending 

subroutine 
x equals to about 60.  
Notes: there is no operation to search the fascicle binary tree in this project and writing the 

DMA register takes tens of nanoseconds, the delay of the DMA operation is also not very accurate 
at the moment. 

4.2 D-TCM usage: 

 X represents the maxima numbers of neuron can be allocated in the D-TCM.  
 768(heap) + 512(stack) + 4*100 (CommsBuf) + 44*x(neuron parameters) + 2*BlkSize(DMABuf) 
+ about 40 (global variable) + 56 (VectorTable) <= 64k                   (Byte) 
 X is about 1400. 
 

5. Simulating results 
Figure 5.1, 5.2, 5.3 presents the firing patterns of an excitatory neuron in a system of 1000 neuron 
with 10% connectivity, the ratio of excitatory neurons to inhibitory neurons is 4 to 1 [3], initial 



and reset values of I: 
    I for excitatory neuron is random 0 - 6 (mV) 
    I for inhibitory neuron is random 0 - 2 (mV) 
the value of synaptic connection weights are: 
    excitatory: random 0 - 1.0 (mV)    inhibitory: random -2.0 - 0 (mV) 

Computes for 1 second, the number of firings received by this neuron is 613. 
In the figures below, the x coordinate represents time (ms), the y coordinate is its original value 
multiplied by the scaling factor p1 (256 ). 

 
Figure 5.1 the membrane potential variable v of an excitatory neuron 



 
Figure 5.2 the membrane recovery variable u of an excitatory neuron 

 
Figure 5.3 the current variable I of an excitatory neuron 

 
The firing patterns of an inhibitory neuron in the same system as above are displayed in figures 



5.4, 5.5 5.6. 

 
Figure 5.4 the membrane potential variable v of an inhibitory neuron 

 
Figure 5.5 the membrane recovery variable u of an inhibitory neuron 



 Figure 5.6 the current variable I of an inhibitory neuron 
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