
13/1/17

1

SpiNNlink frame transport

Definitions

Packet a SpiNNaker packet

Stream a flow of SpiNNaker packets on a virtual channel

Frame a single entity on the serial link: normally carries payload of packets etc.

Sequence the order of frames: an increasing number

Credit the number of frames it is known can still be sent safely

Colour a (1-bit) ID code appended to the sequence but independent from the sequence

numbers

Checkpoint the latest state of the transmitter where the transmitted data is known to have

been received

Ack and nAck may be thought of as status reports from the receiver for the transmitter.

In the following the synchronisation symbols {sync, elastic, start-up(??)} are ignored.

Frame ‘type’ Colour Sequence Carries … Function

Data TxCol yes packets

acknowledges/credit(?)

flow control

Mixed cargo(?) payloads from higher level

Frame credit return in normal operation

Packet stream control

Out of Credit

(OoC)

TxCol no Indicates that transmitter has sent everything it

can and needs some form of acknowledgement

Ack RxCol no (? ⇒) seq. of latest confirmed

frame

Return credit to transmitter

nAck (error) RxCol no (? ⇒) restart sequence No.

& colour (?)

Return credit to transmitter but request resend.

NOTE: sensibly needs a sync preceding

Start-up no no Colour ?

(Maybe system info?)

Request for ‘go’ signal from far end

Error — — — Never sent; result of fault on line

Sync — no (may amalgamate?) Byte-lane and packet index mark

Elastic — no Opportunity for Rx FIFO to readjust

data/OoC

Ack/nAck

data/OoC

Ack/nAck

data/OoC

Ack/nAck

data/OoC

Ack/nAck

Tx Rx RxTxerror

error



13/1/17

2

Principle of operation

• Two independent flows of data are multiplexed onto the same serial links: one is shown

above.

• The data from the transmitter (Tx) is sent once, identified by a frame sequence code and

protected by some form of error detection. Multiple frames can be sent successively

(subject to credit limits).

Data frames need not contain any actual data.

If credit becomes exhausted Tx simply sends the (unsequenced) OoC frames instead.

• Received data frames are either correct or not. This status determines the state of the

receiver. Erroneous frames also change the receiver colour so that subsequent (correct)

frames can be flushed.

A correct data frame will pass its error check and have the expected sequence number.

Frames which are merely wrongly coloured may simply be ignored.

• The receiver (Rx) provides updates on its status to the transmitter at expedient intervals.

These are not necessarily triggered by data arrival and continue in the absence of new data.

Information is conveyed on the credit available, the colour and the receiver status.

[Flow control information (Xon/Xoff or similar) for streams may also be carried.]

Error tolerance is provided by the repetition of these ‘frames’.

• The transmitter recredits its data frames in response to the receiver status.

(Old data, retained for possible retransmission, can be discarded up to the Ack point.)

When an error indication (nAck) is received the transmitter changes colour – ignoring

further prompts until the data stream is re-established – discards ‘old’ data up to the error

point, resets its inputs to the error point and retransmits frames from the failed frame

sequence point.

There is no requirement that the data contained is the same as the previous frames; frames

may be reformed with additional data if desired.

data/OoC

Ack/nAck

data/OoC

Ack/nAck

data/OoC

Ack/nAck

data/OoC

Ack/nAck

Tx Rx RxTxerror

error

Start

End



13/1/17

3

Variables

TxCol Colour of the legitimate outgoing data frames

RxCol Colour of acceptable incoming data frames;

used for corresponding Ack/nAcks

TxErr Flag indicating a fault is current on outgoing frames

RxErr Flag indicating a fault is current on incoming frames

TxCredit Number of outgoing data frames which can be sent:

decremented when frame sent

restored (variable amount) by Ack

‘reset’ to checkpoint value by nAck

RxCredit (reflects) the space available in the (frame) Rx FIFO:

decremented when frames arrive;

incremented as FIFO emptied;

carried by Acks

Credit

Credit is a known (may be established dynamically at start up?) number of sequence number

steps beyond the last frame acknowledged. Acks contain an up-to-date seq. number and are sent

at intervals, thus missing one may cause a delay but will not be fatal. An Ack can return any

amount of credit, including zero.

Credit is used to throttle the rate of sending to: prevent duplication of outstanding sequence cod-

ed; to limit the data rate if the Rx FIFOs are full.

It is up to the receiver how credit is established; this could be simply the count of frames al-

though this has limitations when credit is used for frames without data (in a lightly loaded link).

If data frames are unpacked on reception into different packet streams, it is suggested that credit

be established according to the space remaining in the fullest of the stream FIFOs.

It is conceivable that more credit could be issued than data can be accommodated, speculating

that capacity will become available in time. In the case of a resulting overrun it would be nec-

essary to ‘pretend’ that the data frame was erroneous, thus requesting a retransmission.



13/1/17

4

Transmitter pseudocode

IF RxErr and <some probability>

  send nAck // Sent periodically whilst fault

ELSE

  IF <some probability> // Sent periodically whilst okay

    send Ack(RxCredit)

  ELSE

    IF TxErr // Has fault occurred?

      reset data to checkpoint

      clear TxErr

      change TxCol

    IF TxCredit > 0 // If there’s credit, send something

      send data

      decrement TxCredit

    ELSE

      send OoC

Although Ack and Data are shown as separate alternatives here their contents are independent

and they can be combined, in parallel, into the same frame.

Although – Acks must continue even if Tx OoC.

Transmitter Operation

In normal operation (error free) operation there are three possible ‘frames’ which can be sent.

In the forward path data – with an incrementing seq. number – will be sent until the transmitter

is starved of credit; data frames can be ‘empty’ of useful data if there is none to send.

If credit is exhausted OoC is sent until some more credit is returned or another reason becomes

apparent.

Periodically – as determined locally by the transmitter – an Ack is sent to update the correspond-

ent’s credit. These are not sequenced and are sent redundantly.

If an incoming error has been detected there is an assumption that incoming data may have been

lost and nAck replaced Ack. nAck is an instruction to the correspondent to rewind and repeat

some outgoing frames in the original sequence but using a different colour to identify them.

nAcks are repeated until the error is cleared (by receiving the re-requested frame).

Colouring the outgoing nAcks allows the correspondent to ignore all except the first one re-

ceived successfully.

If, at the construction-of-a-frame time, a request to repeat frames (nAck) has been received from

the correspondent the outgoing sequence is reset to the ‘nAcked’ point and repeated in a

changed colour.



13/1/17

5

Receiver pseudocode

Read frame (or other unit) from input

CASE of nAck

  IF colour = TxCol

    set TxErr

    Recredit output stream from checkpoint

  ELSE

    discard

CASE of Ack

  IF colour = TxCol

    clear TxErr // (Needed here??)

    adjust TxCredit appropriately

    advance checkpoint

  ELSE

    discard

CASE of data

  IF colour = RxCol and seq correct

    clear RxErr

    store data

    increment RxCredit

  ELSE // Have missed something

    discard data

    set RxErr

    change RxCol

CASE of error

  IF !RxErr (and think this might have been a data frame)

    set RxErr

    change RxCol

  resynchronise

CASE of OoC

  IF colour = RxCol // Missed whole new sequence

    IF RxErr

      change RxCol

    ELSE // Input stream starved

      ignore // Tx periodically sends RxCredit

  ELSE

    ignore [??]



13/1/17

6

Receiver operation

Always try to remain synchronised with frame boundaries. If an error occurs strip further sym-

bols until a sync (resync. mark) is detected.

On receipt of an intact data frame with the expected colour and sequence code, unpack it and

move the contents to the appropriate output queues. Re-evaluate the credit state and update the

value returned with Acks, as appropriate.

If the frame appears correct but has an inappropriate seq. or colour then an error has occurred.

If an error (most likely a CRC-type fault) is detected set a flag to switch to nAcks (RxErr) and

discard any forwards data. Subsequent forward data will be discarded until the faulty frame is

received again (in a different colour) after which normal operation is resumed.

If the retransmitted frame is also corrupted this may be picked up later by detecting a new-col-

oured but out of sequence frame.

If this is also missed the incoming data frames will change to repeating OoCs (in the new col-

our); an OoC in the error condition (assuming there is credit, and there must have been for the

originally faulting frame) trigger a new attempt at nAck, changing colour again to allow one to

be picked up by the correspondent. This process can repeat until the link recovers.

Responses from the correspondent (Ack/nAck) are used to adjust the available outgoing credit.

In the case of nAck this also causes some outgoing frames to be repeated.



13/1/17

7

Start sequence

Following connection/full reset:

clear errors

zero credit

colours set to predefined initial value

Tx sends syncs/elastics to allow correspondent to lock

WHEN (own) Rx locked (& FIFO ‘centralised’)

  also start sending ‘start-up’

  (may contain system status information)

receipt of start-up indicates correspondent locked

change to normal operation:

  Tx will send OoCs with Acks passing credit to correspondent

receipt of Ack indicates correspondent has started

credit acquired: can start sending data

There may be less drastic reset conditions which leave error status alone, allowing starts with

some nAcks and a degree of data recovery.  [To be confirmed.]

Synchronisation

[Thoughts – not fully developed.]

The first state following reset is to lock the correspondent’s PLL and establish word alignment.

This is done by transmitting a predefined pattern repeatedly until ‘locked’ is returned. When the

start-up is complete both transmitters will assume themselves out of credit and sit correspond-

ingly idle. (When ready) Acks will begin which will transfer credit allowing the data transmis-

sion to start.

The Tx/Rx mismatch in clock rates must be accommodated by occasionally dropping or adding

symbols. Opportunity will be provided by the insertion of ‘elastic’ symbols periodically: the pe-

riod being small enough to maintain lock with a maximum mismatch of clock rates plus an al-

lowance for corrupted symbols.

It may be sensible to send these between frames, although that may not be necessary.

Receipt of an elastic symbol simply stalls the receiver process, thus discarding itself.

Syncs are used to set the phase of symbols into the output byte lanes and to indicate the start of

frames. The frame format is not specified here: frames may use syncs in their headers or may

rely on periodic syncs inserted into the data stream to maintain synchronisation.

Once achieved, synchronisation should be maintained unless there is a fault in receiving a frame

(in particular, corruption of a data frame header resulting in a misinterpreted frame length). Fol-

lowing an error synchronisation should always be sought. Therefore it is sensible (necessary?)

to insert at least one sync after the receipt/recognition of a nAck before the data sequence is re-

peated.

Periodic syncs as an extra integrity check may be sensible.



spiNNlink Frame Formats

Transmission over the high-speed links is structured in frames. The different frame formats

are shown in the figure below. There are five frame types associated with data and control

transmission:  data  (data),  out-of-credit  (ooc),  acknowledge  (ack),  negative  acknowledge

(nack), and channel flow control (cfc). Each frame is identified by a different start-of-frame

special character, highlighted in the figure, has a colour  (c) associated with it and is protected

by a  CRC checksum (CRC).  Frame types  data,  ooc,  ack and  nak also  carry  a  sequence

number (sequence).  Two additional frame types, clock correction (clkc), and idle (idle), are

used to keep the high-speed link synchronised.

8


