
ybug 2.0.0 Page 1

ybug - System Control Tool for SpiNNaker

SpiNNaker Group, School of Computer Science, University of Manchester

Steve Temple - 8 Mar 2016 - Version 2.0.0

Introduction

ybug is a program which runs on a host computer (workstation) and provides an interactive
text-based interface to a SpiNNaker system. It allows the system to be bootstrapped and
programs and data to be downloaded. There are a number of low-level debugging features
such as the ability to inspect and change memory in any SpiNNaker chip in the system. ybug
communicates with the target system using a protocol based on UDP/IP and so can control
systems located anywhere on the Internet.

Installation and dependencies

ybug is written in Perl and uses a number of locally developed Perl libraries. Installation
just requires the copying of the main source file and the libraries to a suitable place on your
workstation and the setting of some environment variables to reference these. ybug needs
the library String::CRC32 which is commonly installed but can be also found at CPAN or as
package libstring-crc32-perl (Ubuntu, etc) or perl-String-CRC32 (Fedora, etc).

There is also one optional, but very useful, dependency on the Perl library which interfaces
to the GNU ReadLine library. This provides command history and filename completion and
requires the installation of the library Term::ReadLine::Gnu. This can be downloaded ei-
ther from CPAN or via a package such as libterm-readline-gnu-perl (Ubuntu, etc) or
perl-Term-ReadLine-Gnu (Fedora, etc).

Background

ybug began as a simple hack to talk to early SpiNNaker systems. Like many hacks, it has not
(yet) been superseded. This note documents version 2.0.0 of ybug .

Starting ybug and the Command Line Interface (CLI)

ybug is started from the Unix shell by giving the command ybug with a single compulsory
argument which is the IP address of the SpiNNaker system that you wish to control. The
IP address can be numeric or a host name which will be looked up in the usual way. ybug
accepts options which begin with -. The option -help will list all options. If you don’t have
the ReadLine library loaded and ybug complains about this, the -norl flag may help.

When the program starts you are presented with a prompt which has four components. The
first is the hostname or IP address which was given when the program was started. The second,
third and fourth are three numbers which indicate which chip and core on the SpiNNaker system
certain ybug commands will be directed to.

At this point you can type commands which will be executed by the ybug CLI. A line beginning
with the character # will be ignored and can be used for comments. Otherwise the first non-blank
field on the line is interpreted as a command and further fields are interpreted as arguments to
the command. If the ReadLine library is in use then completion of the command name (the first

ybug 2.0.0 Page 2

item on the command line) is attempted as is filename completion on subsequent items on the
line.

Some commands not directly related to SpiNNaker are as follows

• ? - provides a short-form list of all commands which are available.

• help [<name>] - provides a long list of all commands, their arguments and purpose. If a
valid command name is given as an argument, just that command is listed.

• <command> ? - performs the same function as help <command>

• version - displays the ybug version number

• expert - enables some commands which are rarely required or may be dangerous if used
carelessly

• echo <string> - echoes the string to the console. There is no newline printed at the end of
the string but the characters \n will generate a newline anywhere in the string.

• pause <string> - echoes the string to the console (like echo) and then waits for the user to
press Enter.

• @ <file.F> [quiet] - reads subsequent commands from the supplied file. Commands are
echoed unless the quiet flag is provided. This command can be nested up to 10 deep.

• quit - exits ybug

Arguments

ybug commands take a variety of arguments. These may be file names, numbers in decimal
or hex, IP addresses, etc. The format of each argument required by a command is documented
in the help text where this is possible. In the help text, argument names are followed by a
character which indicates what form the argument should take.

Where a hexadecimal number is expected, a preceding “0x” is not necessary and is ignored if
provided. Where a decimal number is expected, a preceding “0x” is allowed and the number
converted.

D Decimal number
X Hexadecimal number
R Real number
F File name
M MAC address
P IP address

Selecting a core or chip

Most ybug commands cause communication to take place with the SpiNNaker system. Some
commands need to communicate with a particular core on a particular chip. Other commands
need to communicate with the monitor processor on a particular chip while others need to
communicate with the monitor processor on the root chip which is usually the one connected
to the system’s Ethernet interface.

SpiNNaker chips are addressed with a pair of coordinates which are their X and Y position in
the grid of chips. The chip at coordinate (0, 0) is normally the root chip. The range of X and
Y coordinates will vary according to the size of the SpiNNaker system. SpiNNaker cores are

ybug 2.0.0 Page 3

addressed as a number in the range 0 to 17. Core 0 is the monitor processor and cores 1 to 17
are application processors on which application programs are run. The current X, Y and Core
settings are shown in ybug ’s prompt.

The ybug command sp is used to select the chip and/or core. It can have up to three arguments
as follows

sp root ChipX = 0, ChipY = 0, Core = 0
sp <core> Core = core
sp <X> <Y> ChipX = X, ChipY = Y, Core = 0
sp <X> <Y> <core> ChipX = X, ChipY = Y, Core = core

ybug commands which know that they need to talk to a specific chip or core which is in conflict
with the currently selected chip/core will ignore the relevant parts of the selection.

Bootstrapping a SpiNNaker system

After a SpiNNaker system has been powered-on or reset, it needs to be bootstrapped by loading
its control software (a program called SC&MP). Once the system has been bootstrapped it
should not normally be necessary to reboot it unless an application program goes badly wrong
and corrupts some critical data on a chip. At this point the system will normally need to be
reset and rebooted.

The ybug command to reboot a system is boot and it needs two arguments. The first is the
name of a boot file and the second is the name of a configuration file which is used to configure
the bootstrap for the particular system which is being booted. A set of standard configuration
files will be supplied with your system. For example, if you have a SpiNN-3 board you should
use the configuration file spin3.conf. Various operating parameters of the system, such as
the clock speed of the processors, can be configured by editing the config file. A typical boot
command looks like this.

> boot scamp.boot spin4.conf

The boot and config files are searched for using the path in the environment variable $SPINN PATH.
This variable must be set (and exported) otherwise the files will not be found (ie there is no
default search location).

Booting may take a couple of seconds and you should see a message confirming that the bootstrap
was successful. If not, consider resetting the system before trying again.

Commands to control ybug

These commands control the way that ybug operates and do not directly interact with the
SpiNNaker system.

• debug <num.D> - sets a debug variable which controls how much debug information is dis-
played as ybug operates. 0 means no debug and 1 through 4 provide increasing amounts of
information. The information is mostly related to data packets going to and from SpiNNaker.
Without an argument, the current setting is displayed.

• sleep <time.R> - causes ybug to pause for the specified number of seconds. Can be useful
in command files where time needs to be allowed between successive commands. If no time
is given, 1 second is used.

ybug 2.0.0 Page 4

• timeout <time.R> - sets the timeout (in seconds) for responses from SpiNNaker when com-
mands are sent to it. The default is 0.5 seconds and this is likely to be adequate for most
connections. Without an argument, the current setting is displayed.

Commands to load and control Applications

A SpiNNaker application is a program which runs on a single SpiNNaker core. Many cores may
be loaded with the same application. While an application is running on SpiNNaker it has an
Application ID which is allocated when the application is loaded. The AppID is a number in
the range 16 to 254. AppIDs below 16 and above 254 are reserved for system use. The AppID is
used to control the application as a whole while it runs on SpiNNaker and also serves to identify
shared resources on the chip which are currently being used by the application.

A SpiNNaker application is stored in an APLX file and files of this type are loaded into SpiN-
Naker to start an application running.

• app load <file.F> <region> <cores> <app id.D> [wait] - loads an application onto the
specified set of cores on the chips in the specified region. The application is contained in the
file which should be in APLX format.

The region specifies a set of chips ranging from all chips to a single chip. The definition of
regions on SpiNNaker is documented elsewhere but some examples are given here.

all All chips
@X,Y Chip (X, Y)
. Current chip (as selected by sp)
0.0.0 16 chips bounded by (0,0), (0,3), (3,3), (3,0)

The cores can be specified as a comma separated list or a minus separated range, a combination
of these two or the string all. Some examples

1 core 1
1-4 cores 1 to 4
7,9 cores 7 and 9
1-4,7,9 cores 1 to 4 and 7 and 9
all all cores (1 to 17)

The application starts to load onto all cores on a chip at the same time but variations in
access to the shared memory where the APLX file is loaded may mean that not all cores start
to run the application simultaneously. Similarly, each chip will start to load at a different
time. Chips further away from the root chip start to load later. If this is an issue, there are
various software techniques available to synchronise start-up.

The application is given the supplied AppID when it starts. You should not load another
application with the same AppID into the system while the original one is still running.
Applications remain in the system even after they terminate (ie exit c main). This allows
debugging and inspection of their state but also means that they must be explicitly removed.

If the wait flag is specified, the application is loaded but does not start to execute until it
receives a start signal. This is useful for loading many different applications and having
them all start at the same time.

• app stop <app id.D>[-<app id.D>] - causes the application with the given AppID to stop
on all chips on which it is running. It will be replaced with a default system application and
all shared resources that it claimed during execution will be freed. A range of AppIDs may
be given subject to certain restrictions. The number of AppIDs in the range must be a power
of 2 and the lower AppID must be a multiple of that power of 2. Examples of valid ranges
are 16-23, 64-95, 80-81.

ybug 2.0.0 Page 5

• app sig <region> <app id.D>[-<app id.D>] <signal> [<state>] - sends a signal to all
cores running AppIDs in the given range in chips in the given region. This feature is still in
development but it allows signals similar to Unix signals to be sent to running applications
and also allows counting how many cores in the application are in a particular execution
state. For example to count cores running AppId 16 which are in state RUN and to count cores
running AppID 0 which are in state IDLE (the default state)

> app sig all 16 count run

> app sig all 0 count idle

Some valid signals are

stop Terminate application and clean up
start Start an application when wait was given in app load
sync0 Proceed past barrier (eg on API start-up)
count Count cores in a given state

• ps <core.D>|x|d - displays the status of all cores on a chip or a single core. When used
without arguments, the ps command displays the state of every core on the chip showing the
application it is running, its state, how long it has been running and when it was loaded.

With the argument d or x it displays the four user variables associated with each core in
decimal or hex. This is a useful way of getting debugging and status information out while
an application is running.

With a numeric argument (a core number) the command displays a more detailed set of
information about a single core. Where the core has crashed this will include a register dump
which may help with diagnosing the problem.

Commands to load, dump, inspect and alter memory

These commands allow the memory of many chips or a particular chip or core to be displayed
and altered. Before those commands which relate to a specific chip or core are issued, the
appropriate chip and core must be selected (with the sp command). Some memory on a chip
(eg SDRAM) can be accessed from any core whereas other memory (eg DTCM) can only be
accessed if the appropriate core is selected.

Note that memory-mapped peripherals may also be accessed with these commands but great care
must be taken to only access them in valid ways (ie using the correct data size and alignment)
otherwise a system crash may result.

• smemw <addr.X> - displays 256 bytes of memory as a hex dump. The memory is loaded as
64 words starting at the supplied address and the display is organised in word format.

• smemh <addr.X> - displays 256 bytes of memory as a hex dump. The memory is loaded as 128
half-words starting at the supplied address and the display is organised in half-word format.

• smemb <addr.X> - displays 256 bytes of memory as a hex dump. The memory is loaded as
256 bytes starting at the supplied address and the display is organised in byte format. Where
the byte has a printable ASCII representation, it is also shown as a character.

• sw <addr.X> [<data.X>] - displays (one argument) or sets (two arguments) a single word
in memory at the given address (which should be word aligned).

• sh <addr.X> [<data.X>] - displays (one argument) or sets (two arguments) a single half-
word in memory at the given address (which should be half-word aligned).

ybug 2.0.0 Page 6

• sb <addr.X> [<data.X>] - displays (one argument) or sets (two arguments) a single byte in
memory.

• sload <file.F> <addr.X> - reads a file and copies its contents into memory beginning at
the specified address. The data is written as bytes so that any length of file may be used.

• sdump <file.F> <addr.X> <len.X> - reads the specified length of SpiNNaker memory start-
ing at the given address and copies it to a file. The data is read as bytes. Note that the length
is specified in hexadecimal.

• sfill <from.X> <to.X> <word.X> - fills SpiNNaker memory with the specified word, be-
ginning at the specified from address and ending at the word below the to address. Both
addresses should be word aligned.

• data load <file.F> <region> <addr.X> - writes the content of the specified file to memory
at the given address in all chips specified by region. This is useful if the same data has to
be sent to many chips simultaneously and the data is going to a shared area of memory (ie
not ITCM or DTCM). Writing to a single chip is more efficient using sload.

The next three commands are only available in expert mode.

• gw <addr.X> <data.X> - writes the specified data as a word to the given address on every
SpiNNaker chip in the system. Note that only a limited set of addresses is supported, to allow
access to some important peripherals and parts of memory. Probably not for everyday use
but can be useful for debugging.

• gh <addr.X> <data.X> - writes the specified data as a half-word to the given address on
every SpiNNaker chip in the system. See gw for further details.

• gb <addr.X> <data.X> - writes the specified data as a byte to the given address on every
SpiNNaker chip in the system. See gw for further details.

Commands to control IPTags

An IPTag is a numeric identifier which is used to index a table in a chip with an Ethernet
interface. Entries in the table contain an IP address and port number. They are used to direct
SDP packets which arrive at the Ethernet-connected chip from within SpiNNaker bearing an
IPTag to the appropriate IP address and port using the UDP protocol.

A typical use is to direct debugging output from io printf functions executed on application
cores to a host system which then displays the debug text. IPTag 0 is normally used for this
purpose. The iptag command is used to control the IPTag tables.

• iptag - without arguments, the iptag command displays the contents of the IPTag table.
Only valid entries are displayed. The table has two sections and the size of these sections is
shown by this command as well as the timeout which is applied to transient IPTags. Lower
entries in the table are permanent tags which are set up explicitly either by a host or by a
SpiNNaker application. Higher entries are transient and only last for the lifetime of a SCP
(command) transaction between the host and SpiNNaker. The number of packets which have
passed through the IPTag since it was created is also displayed.

• iptag <tag.D> set <ip addr.P> <port.D> - this form of the command sets an IPTag. It
is usual for tag 0 to be pre-allocated to the controlling host with a port number of 17892 (the

ybug 2.0.0 Page 7

Tubotron port). The ip addr can be a numeric address or a hostname in which case it will
be looked up using DNS.

The character . can also be supplied for the ip addr in which case the IP address of the host
on which ybug is running will be used. The IP address 0.0.0.0 will cause the source IP
address of the UDP/IP packet which carries the IPTag command into SpiNNaker to be used.
This is useful where the packet has been through address translation (eg NAT) en-route to
SpiNNaker. Some examples.

iptag 3 set 192.168.0.4 2222 Set IPTag 3, port=2222. IP=192.168.0.4
iptag 2 set . 15555 Set IPTag 2, port=15555 IP = host IP address

• iptag <tag.D> reverse <port.D> <dest addr.X> <dest port.X> - this creates a reverse
tag which forwards incoming UDP packets on the specified port to the SpiNNaker chip speci-
fied by dest addr and dest port. The UDP payload (which must be small enough to fit in an
SDP packet) is copied into an SDP packet and delivered within SpiNNaker. When a packet
arrives, a reverse path is set up so that a response can be sent by using the same IPTag.

iptag 5 reverse 12345 0304 23 Set reverse IPTag 5, port=1234

The example above will cause incoming UDP packets on port 12345 to be sent on to chip
(3,4), core 3, port 1.

• iptag <tag.D> clear - this form of the command clears (removes) an IPTag table entry.

Debugging Commands

A number of commands are provided specifically to help with debugging and others are likely
to be added on demand.

• sver - this command queries the currently addressed core to find out what operating software
it is currently running. This will usually be SC&MP for monitor processors (core 0) and SARK
for application processors. The information includes the version number of the software, the
system it is running on (usually SpiNNaker) and the date it was built. The physical core
number of the core is also shown (in square brackets).

• led <0123>* on|off|inv|flip - controls the LEDs attached to a selected SpiNNaker chip.
Up to 4 LEDs can be turned on, off or inverted. Some SpiNNaker boards have fewer than 4
LEDs.

• heap sdram|sysram|system - displays the allocated and free blocks in one of the three shared
heaps on the selected chip. With no argument, all three heaps are displayed. The Tag and
AppID associated with each allocated block are shown.

• iobuf <core.D> [<file.F>] - dumps the contents of the IO buffer of the specified core. The
IO buffer contains the output of io printf functions which have been executed on the core.
It is assumed that this is ASCII text and it is printed to the terminal. The IO buffers are
allocated in the System Heap and are kept until the application is terminated with app stop.
If the file argument is given, the text is written to the file rather than the terminal.

Commands to control the Router

These commands control the router on the selected chip. They are mainly concerned with
controlling the MC routing tables.

ybug 2.0.0 Page 8

• rtr load <file.F> <app id.D> - loads the specified file into the router MC table and asso-
ciates the given AppID with the set of entries that is created. It is assumed that the file is in
the appropriate format though some rudimentary checks are performed to verify that this is
the case. The number of entries that have to be allocated in the router table is determined
from the file and a block of that size is requested. If this is successful then the file is loaded
into the appropriate entries in the table.

• rtr dump - displays all router MC entries which are currently allocated. The key, mask and
route fields are displayed as well as the AppID and core associated with each entry. Note
that entries allocated with rtr load will show an AppID of 0. Their real AppID is stored in
the router MC heap data structures (see below). Entries which were initialised by application
code running on SpiNNaker will show the true AppID.

• rtr heap - displays the router MC heap which lists allocated and free blocks and the AppID
associated with allocated blocks. Note that the output will only be meaningful if applications
have chosen to use the router MC heap. If they have allocated MC entries manually, the
display may be misleading.

• rtr diag [clr] - displays the router diagnostic count registers which were set up when
the system booted. This shows the number of packets of various types which have passed
through the router. If the clr flag is given then the counts are zeroed after the counts have
been displayed. Thus, when the command is given again, the counts will refer to the period
since the clearing command was given. If an application has modified the configuration of the
count registers then the display is likely to be misleading.

Commands to control a Serial ROM

Some SpiNNaker chips have an SPI-based serial EEPROM (Serial ROM or SROM) attached to
their GPIO port. This can be used to bootstrap the chip or to hold data which needs to be
non-volatile. Chips which have an Ethernet interface use a Serial ROM to hold MAC and IP
addresses. and ybug allows these parameters to be changed. This is applicable to Spin2, Spin3
and Spin4 boards. These commands are only accessible in expert mode.

• srom ip [<ip addr.P> [<gw addr.P> [<net mask.P>]]] - displays and/or sets IP addresses
in the SROM. Without an argument this command displays the current IP and MAC ad-
dresses. With one argument it sets the IP address of the system. With a second argument it
also sets the gateway IP address and with a third argument it also sets the net mask.

Take great care to set these parameters carefully or you may not be able to communicate
with the system after the changes have taken effect. The SROM is read when the system
bootstraps so changes made by this command will not take effect until the system is reset.

• srom init - completely initialises an SROM which contains IP addresses. Use srom init ?
to get a list of the arguments. This command is probably not required by most users.

• srom read [<addr.X>] - reads and displays as a hex dump the contents of the SROM at the
specified address. Useful for debugging SROM problems but probably not required by most
users.

• srom write <file.f> <addr.X> - writes the contents of the given file into the SROM at the
specified address. Again, one for experts only and likely to be useful if you want to create
your own custom bootstrap SROM.

• srom erase - completely erases the SROM (all bytes are set to 0xff). Only do this is you
are sure you know what you are doing!

ybug 2.0.0 Page 9

SpiNNaker Board Control Commands

The 48-node SpiNNaker boards (Spin4 and Spin5) have a Board Management Processor (BMP)
which has its own network interface. The BMP controls the overall operation of the board and
provides facilities to reset the SpiNNaker chips. A single BMP can control all of the SpiNNaker
boards in a sub-rack.

ybug provides an interface to the BMP for this purpose. The IP address of the BMP must
be specified on the command line with the -bmp flag. The IP address (or host name) must
be followed by a “/” character and then a range of slot numbers which represent the various
SpiNNaker boards which are being used in the current ybug session. Typically this will just be
a single board. For example

ybug 192.168.240.25 -bmp 192.168.240.0/3-5

ybug spinn-9 -bmp spinn-9c/0

The first command indicates that the controlling BMP is at IP address 192.168.240.0 and the
SpiNNaker systems that should be controlled in the ybug session are in slots 3 through 5 of
the sub-rack. The second command indicates that the controlling BMP has hostname spinn-9c
and that the SpiNNaker system that is being controlled is in slot 0 (ie on the same board as the
BMP). This is the common case of a single Spin4 or Spin5 board.

In the situation where many SpiNNaker boards in a sub-rack are being used as individual
systems, it is important to correctly specify which boards are being controlled by the BMP.
Otherwise, the wrong systems can end up being reset!

• reset - resets all of the specified SpiNNaker systems. This applies a hard reset to all SpiN-
Naker chips on each controlled system. It will be necessary to boot those systems after this
command is given.

• power on|off - turns the power to the SpiNNaker systems on or off. This can be used to
put the system into a low power mode when it is not being used. Turning the power on also
applies a reset to the SpiNNaker chips. Where the system has SpinLink FPGAs (Spin4 and
Spin5 boards), these are also put into power-down mode when the power is turned off. Their
configuration is reloaded when they are powered on again.

Change log:

• 1.20 - 18aug13 - ST - initial release - comments to steven.temple@manchester.ac.uk

• 1.30 - 02apr14- ST - update for 1.30

• 1.33 - 19sep14- ST - update for 1.33 - IPTag changes, String::CRC32 dependency.

• 2.0.0 - 08mar16- ST - update for 2.0.0

