Simple Data Input Output and Visualisation on
Spinnaker - Lab Manual

1. Introduction

This manual will introduce you to the basics of live retrieval and injection of data (in the form of
spikes) for PyNN scripts that are running on SpiNNaker neuromorphic hardware.

2. Installation
In addition to sPyNNaker, the sPyNNakerExternalDevicesPlugin must also be installed.

3. PyNN Support

This section discusses the standard support from PyNN related to spike injection and retrieval.

3.1 Output

The standard support for data output for a platform such as SpiNNaker, through the PyNN
language, is to use the methods record(), record_v(), for declaring the need to record, and
get_Spikes(), get_v(), for retrieval of the specific data.

The issue with the get functions are that they are called after run() completes, and therefore are
not live, and so not able to interact with an external device running in real-time. In the current
implementation of sPyNNaker, all of the data declared to be recorded via record(), record_v(),
is stored on the SDRAM of the chips that the corresponding populations were placed on. By
writing the data to SDRAM, the data is stored locally and therefore is guaranteed to be read at
some point in the future. In the current implementation, if the memory requirements for
recording cannot be met, the model will be run for less time, paused whilst the data is extracted,
and then resumed. This may be repeated a number of times until the whole simulation has
completed.

When used with an external simulation, it is possible to call run a number times, extracting the
data between each run and passing it to an external simulation. This mode of operation will not
work if the external device or simulation cannot also be paused.

3.2 Input

The standard support for data input for a platform such as SpiNNaker, through the PyNN
language, is to use the neural models SpikeSourceArray and SpikeSourcePoisson. The issue
with both of these models is that they are either random rate based (the spikeSourcePoisson) or
have to be supplied in advance with all the spikes to be sent (SpikeSourceArray). As with the
output of spikes, it is possible to change the input spikes of a SpikeSourceArray between
successive calls to run(). Again, this will only work if the external device or simulation can be
paused.

4. External Device Plugin Support

As stated previously, the issue with this is that PyNN 0.7 expects its run() method to block for
the entire time of the run, and therefore it is impossible to set up a real time extraction or
retrieval of data via this FrontEnd (sPyNNaker), and has no current support for live retrieval or
live injection.

It is worth noting that future releases of PyNN may use the MUSIC interface to support live
injection and retrieval of spikes, but the current software version of sPyNNaker only supports
PyNN 0.7 and therefore there is no built in support.

To compensate for this, the sPyNNakerExternalDevicesPlugin module was created that
contains support for live injection and retrieval of spikes from a running PyNN 0.7 simulation
during the simulation, whilst still maintaining the real-time operation of the simulation.

4.1 Live Output

To activate live retrieval from a given population, the command
activate_live_output_for(<Population_object>)

is used. This informs the sPyNNaker backend to add the supporting utility model (Live packet

gatherer) into the graph object (which sPyNNaker uses to represent your PyNN neural models)

and an edge between your population and the associate LPG for your ports.

Other parameters for the activate_live_output_for() function are defined below:

Parameter Description

port The port number to receive packets from the SpiNNaker
machine.

database notify _host The hostname for the database notification protocol; by default

the localhost is used, but any external host could act as a
receiver, provided it can read the file system that the database
is written to.

database_notify_port_num | The port number for the database notification protocol; by
default database notifications are sent to port 19998. However
this can be changed if there is more than one listener, or a
separate listener for each population.

database ack port_num The port number that the database notification protocol will
listen to, to receive the acknowledgement packet that the
database has been read. By default this is 19999. It is unlikely
that this needs to be changed.

4.2 Live Injection

To activate the live injection functionality, you need to instantiate a new neural model (called a
Spikelnjector) which is located in spynnaker_external_devices_plugin.pyNN.Spikelnjector

The Spikelnjector is considered as any other neural model in PyNN, so you can build a
population with a number of neurons etc in the normal way, as shown below:

injector_forward = Frontend.Population(

5, ExternalDevices.SpikeInjector, [‘port’: 12367],
label="spike_injector_forward")

The key parameters of the Spikelnjector are as follows:

Parameter Description

port

The port that packets are going to be sent to
on the SpiNNaker system - must be one per
injector, but any port other than 17893 or
54321 can be used (these are reserved for
SpiNNaker operations).

virtual_key The base routing key that the spike injector is

going to use for routing. This parameter is
optional.

4.3 Python Live reciever
The following block of code creates a live packet receiver to receive spikes from a live

simulation:

1

W oONOUVTEA WN

declare python code when received spikes for a timer tick
def receive_spikes(label, time, neuron_ids):
for neuron_id in neuron_ids:
print “Received spike at time {} from {}-{}”.format(
time, label, neuron_id)

import python live spike connection
from spynnaker_external_devices_plugin.pyNN.connections.\
spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection

set up python live spike connection
live_spikes_connection = SpynnakerLiveSpikesConnection(
receive_labels=[“receiver”])

register python receiver with live spike connection
live_spikes_connection.add_receive_callback(“receiver”, receive_spikes)

1. Lines 1 to 5 creates a function that takes as its input all the neuron ids that fired at a
specific time, from the population with the given label. From here, it generates a print
message for each neuron.

2. Lines 7 to 9 imports the python support for live injection/live retrieval. The
SpynnakerLiveSpikesConnection handles both live retrieval and live injection.

3. Lines 11 to 13 instantiates the SpynnakerLiveSpikesConnection, and informs the
connection that it will receive data under the label “receiver”.

4. Lines 15 to 16 informs the connection that any packets being received with the “receiver”
label need to be forwarded to the function receive_spikes defined on lines 1 to 5.

This script must be run in advance of the script that sets up the simulation. The
SpynnakerLiveSpikesConnection will listen for the simulation script to complete the setup
operations and so starts synchronized with the simulation. It is possible to run the reception of
spikes within the same script as the simulation; to do this, ensure that the above code is placed
before the call to run().

If you need more than one SpynnakerLiveSpikesConnection on the same host, the connection
can take an additional parameter specifying the local port to listen on for notifications from the
simulation, by specifying the local_port parameter in the constructor e.qg.:

live_spikes_connection_1 = SpynnakerLiveSpikesConnection(

receive_labels=[“receiver”], local_port=19996)
live_spikes_connection_2 = SpynnakerLiveSpikesConnection(

receive_labels=[“receiver_2”], local_port=19997)

Note that you must then also tell the simulation side that these ports are in use. This can be
done when calling activate live output for for the population by specifying the
database_notify_port_num parameter e.g.
activate_live output_for(receiver, database_notify port_num=19996)
activate_live_ output_for(receiver_2, database_notify_ port_num=19997)

4.4 Python Live injector
The following block of code creates a live packet injector:

create python injector
def send_spike(label, sender):
sender.send_spike(label, 0, send_full keys=True)

1

2

3

5

6 # import python injector connection

7 from spynnaker_external_devices_plugin.pyNN.connections.\
8 spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection
9

10 # set up python injector connection

11 live_spikes_connection = SpynnakerLiveSpikesConnection(
12 send_labels=[“spike_sender”])

13

14 # register python injector with injector connection

15 live_spikes_connection.add_start_callback(“spike_sender”, send_spike)

1. Lines 1 to 3 create a function that will be called when the simulation starts, allowing the
synchronized sending of spikes.

2. Lines 6 to 8 imports the python support for live injection/live retrieval. The
SpynnakerLiveSpikesConnection handles both live retrieval and live injection.

3. Lines 10 to 12 instantiates the SpynnakerLiveSpikesConnection, and informs the
connection it will inject data via the label spike_sender.

4. Lines 14 to 15 informs the connection that when the simulation starts, to call the
send_spike function defined on lines 1 to 3.

As with the live reception script, this must be called before the simulation script, or before run()
in the simulation script.

4.5 C++ Implementation of SpyNNakerLiveSpikesConnection and Visualiser
The host C++ version of the Python “SpynnakerLiveSpikesConnection” and example visualiser
is currently available from the following locations:
https://spinnakermanchester.github.io/latest/visualiser_code_zip.html
https://spinnakermanchester.github.io/latest/visualiser_code_tar_gz.html
This source code must be compiled before use, and depends on the pthread and sqlite libraries
for the library itself, and the freeglut and opengl libraries for the example visualiser application.
A Makefile exists at the top level folder which will make both the spynnaker_external_device_lib
library and the example visualiser, but each can be made separately by running make in the
appropriate subdirectory.

Dependency Installation

On OSX, using Macports, you can install the dependencies as follows:
sudo port install freeglut sqlite3

On Linux, you can install the dependencies as follows (depending on if you are using Fedora or
Ubuntu):

sudo yum install

sudo apt-get install

On Windows, the dependencies are included.

spynnaker_external_device_lib

The C++ implementation is designed to be similar to the Python implementation. A number of
sample applications are provided within the spynnaker_external_device_lib/examples folder
which show how the API can be used.

c_based_visualiser_framework
This contains an example visualiser for producing a spike raster plot, and is based on the
spynnaker_external_device_lib.

The visualiser application can accept 4 parameters. These are defined below:

Parameter Description

-colour_map Path to a file containing the population labels to receive, and
their associated colours. This must be specified.

-hand_shake_port Optional port which the visualiser will listen to for database
handshake (default is 19998).

-database Optional file path to where the database is located, if needed for
manual configuration.

-remote host Optional remote host address of the SpiNNaker board, which
allows port triggering if allowed by your firewall.

7.1 colour_map file format
The colour_map file consists of a collection of lines, where each line contains 4 values
separated by tabs. These values, in order are:
1. The population label.
2. The red colour value.
3. The green colour value.
4. The blue colour value.
An example file is shown below:
spike_forward© 7] 255
spike_backwards %] 255 %]

5. Database Notification protocol

The support built behind all this software is a simple notification protocol on a database that’s
written during compilation time. The notification protocol is illustrated below:

SpiNNaker

4 5. Sends executables,
starts simulation

=
sPyNNaker front end | %
1. Writes Database |
h
Database

3. Reads |Database

2. send EIEIO command message

saying database ready to read

— Visualiser

6. Sends EIEIO Data packets which

contain live spikes

~

aniaoal 0} Apeal Jasijensia Buifes
abessall puelIWOod O|J|3 puas ‘¥

The steps within the notification protocol are defined below:

1.

The sPyNNaker front end writes a database that contains all the data objects generated
from sPyNNaker during the compilation process.

2. The naotification protocol sends a message to all the notification protocol listeners
containing the path to the database to be read. The SpynnakerLiveSpikesConnection
Python and C implementations are set up to receive this message.

3. These devices then read the database to determine the information required. This
includes the port to listen on to receive live output spikes, the port to send like input
spikes to, and the mapping between SpiNNaker routing keys and neuron ids.

4. Once these devices have read the database, they notify the sPyNNaker front end that
they are ready for the simulation to start.

5. Once all devices have notified the sPyNNaker front end, the simulation begins. The
sPyNNaker front end also notifies the devices when the simulation has actually started,
in case it was still loading data when they became ready.

6. The SpiNNaker machine transmits live spike output packets and receives live spike input
packets.

6. Caveats

To use the live injection and retrieval functionality only supports the use of the Ethernet
connection, which means that there is a limited bandwidth of a maximum of approx 30 MB/s.
This bandwidth is shared between both types of functionality, as well as system support for
certain types of neural models, such as the SpikeSourceArray.

Furthermore, this functionality depends upon the lossy communication fabric of the SpiNNaker
machine. This means that even though a neuron fires a spike you may not see it via the live
retrieval functionality. If you need to ensure you receive every packet that has been transmitted,
we recommend using the standard PyNN functionality.

By using this functionality, you are making your script non portable between different simulators.
The activate_live_output_for(<pop_object>) and Spikelnjector models are not supported by
other PyNN backends (such as Nest, Brian etc).

Finally, this functionality uses a number of additional SpiNNaker cores. Therefore a network
which would just fit onto your SpiNNaker machine before would likely fail to fit on the machine
when these functionalities are added in.

8. Tasks

Task 1.1: A synfire chain with injected spike via python injector [Easy]

This task will create a synfire chain which is stimulated from a injector spike generated on host
and then injected into the simulation. Start with the synfire chain from PyNNExamples.

Remove the spike source array population.

Replace it with the Spikelnjector population.

Build a python injector function.

Import and instantiate an SpynnakerLiveSpikesConnection connection.

link a start callback to the python injector function.

ok wbd =~

Task 1.2: A synfire chain with live streaming via the python receiver [Easy]
Start with the synfire chain from PyNNExamples.
1. Call activate_live_output_for(<pop_object>) on the synfire population.
2. Build a python receiver function that prints out the neuron ids for the population.
3. Import and instantiate a SpynnakerLiveSpikesConnection connection.
4. Link a receive callback to the python receiver function and print when a spike is
received.

Task 1.3: A synfire chain with live injection and streaming via python [Easy]
Take the code from the previous 2 tasks and integrate them together to produce one that injects
and streams the packets back to the terminal.
1. Remember that you can use both the recieve labels and send_labels of the same
SpynnakerLiveSpikesConnection.

Task 1.4: A synfire chain with live injection via python and live streaming

via the c visualiser [Medium]

Take the code from the previous task and remove the python receiver code (or don't if you feel
confident) and activate the visualizer to take the packets the original python receiver code
processed.

1. Remember to compile the visualiser
2. Remember to generate the correct colour_map
3. Remember to remove the python receiver code (or don’t if you're feeling confident).

Task 1.5: 2 Synfire chains which set each other off using python injectors
whilst still using the c visualiser [Very Hard]
Take the code from the previous task and modify it so that there are two synfire populations
which are tied to one injector population. Modify the receive function so that it contains some
logic that fires the second neuron when the last neuron in the first synfire fires, and does the
same when the last neuron for the second synfire sets off some neuron id of the first synfire
chain.
1. you will need to change the number of neurons the spike injector contains.
2. You will need to change the connector from the spike injector and each synfire
population.
3. You will need to modify the receive function, and add a global variable for the
SpynnakerLiveSpikesConnection.
4. Youll need at least 2 SpynnakerLiveSpikesConnection and multiple
activate_live_output_for(<pop_objevt>) for each population.
5. Remember that each population can only be tied to one LivePacketGatherer, so to
visualise and do closed loop systems require more populations.
6. You will need to modify the c visualiser colour_map to take into account the new synfire
population.

Task 1.6: 2 Synfire chains which set each other off using python injectors

and live retrieval with 2 visualiser instances [Very Hard/Easy]
This task takes everything you've learnt so far and raises the level. Using the code from the
previous task. Create two visualiser instances, each of which only processes one synfire
population.
1. Remember all the lessons from the previous tasks.
2. Remember to change the ports on the activate live_output for(<pop_ object>)
accordingly.
3. You will need to create at least 2 SpynnakerLiveSpikesConnection’s. But it might be
worth starting with 3 and reducing it to two once you’ve got it working.
4. Remember the different colour_maps

Task 2.1: A simple synfire chain with a injected spike via c injector [Easy]

This task requires that you replace the injector from task 1.1 with a c injector.
1. Remember to import the correct header file.
2. Remember to use c syntax.

Task 2.2: A simple synfire chain with live streaming via the c receiver [Easy]

This task requires that you replace the receiver from task 1.2 with a c receiver.
1. Remember to import the correct header file.

2. Remember to use c syntax.

Task 2.3: A simple synfire chain with live injection and live streaming via C
[Easy]

This task requires that you replace the injector and receiver from task 1.3 with a c injector and
receiver.

1. Remember to import the correct header file.

2. Remember to use c syntax.

Task 2.4: A simple synfire chain with live injection via ¢ and live streaming
via the c visualiser [Medium]
This task requires that you replace the injector from task 1.4 with a c injector and to set up the
visualiser.

1. Remember to import the correct header file.

2. Remember to use c syntax.

3. Remember to set up the visualiser correctly.

Task 2.5: 2 Synfire chains which set each other off using c injectors
[Medium]
This task requires that you replace the injectors and receivers from task 1.5 with ¢ injectors and
receivers and to set up the visualiser.

1. Remember to import the correct header file.

2. Remember to use c syntax.

Task 2.6: 2 Synfire chains which set each other off using c injectors and live
retrieval with 2 visualiser instances [Hard]
This task requires that you replace the injectors and receivers from task 1.6 with c injectors and
receivers and to set up the visualiser.

1. Remember to import the correct header file.

2. Remember to use c syntax.

3. Remember to set up the visualisers correctly.

Task 3: Create some model which uses all interfaces [Very Hard]
This task is the merging of all the functionalities covered in this lab manual. Take the codes
from both task 2.6 and 1.6 and integrate them together so that:
1. One injector is controlled by the ¢ code, whilst another is done via the python interface.
2. Still uses 2 visualisers to stream the results.
3. Uses the python receive interface to count 5 firings of a given neuron id and then
changes the neuron stimulated by the python injector.
Hint: remember to keep a global connection object for the python codes.

10

