
Using neuromodulated STDP on SpiNNaker

This document describes how to run models where the synaptic weights can be
neuromodulated based upon “reward” and “punishment” values. This work was originally
undertaken by Mantas Mikaitis [2] as part of his PhD and has recently been updated and
modified to become part of the “master” sPyNNaker [3] toolchain. This implementation is not
currently part of the “default” PyNN implementation but as with a number of projects within
sPyNNaker, is designed to work with as little modification to how a user would interact with
PyNN as possible.
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1. Getting Started
In order to use neuromodulation currently (March 2022) you need to use the git “master”
repositories.  This can either be done by using Jupyter with the “sPyNNakerGit” kernel, or by
installing the tools either in developer mode or from the command line.

Once you are installed, make sure you are up-to-date with the latest changes and ensure that
all C and Java code is built.

To illustrate how to make a PyNN script including neurmodulated synaptic weights, consider the
following example, taken from

PyNN8Examples/examples/stdp_neuromodulation_test.py

In this case we are considering a simple weight change based on a “reward” of a single neuron,
based upon Izhikevich’s paper from 2007 [1].  Firstly we set parameters for this setup:

import pyNN.spiNNaker as sim

timestep = 1.0

duration = 3000

# Main parameters from Izhikevich 2007 STDP paper

t_pre = [1500, 2400] # Pre-synaptic neuron times

t_post = [1502] # Post-synaptic neuron stimuli time

t_dopamine = [1600] # Dopaminergic neuron spike times

tau_c = 1000 # Eligibility trace decay time constant.

tau_d = 200 # Dopamine trace decay time constant.

http://spinnakermanchester.github.io/latest/jupyter.html
http://spinnakermanchester.github.io/development/devenv6.0.html
http://spinnakermanchester.github.io/development/gitinstall.html


DA_concentration = 0.1  # Dopamine trace step increase size

# Initial weight

rewarded_syn_weight = 0.0

cell_params = {

'cm': 0.3,

'i_offset': 0.0,

'tau_m': 10.0,

'tau_refrac': 4.0,

'tau_syn_E': 1.0,

'tau_syn_I': 1.0,

'v_reset': -70.0,

'v_rest': -65.0,

'v_thresh': -55.4}

Next we call the setup function, and then build a network of stimulus, reward, pre- and
post-populations.

sim.setup(timestep=timestep)

pre_pop = sim.Population(1, sim.SpikeSourceArray, {

'spike_times': t_pre})

# Create a population of dopaminergic neurons for reward

reward_pop = sim.Population(1, sim.SpikeSourceArray, {

'spike_times': t_dopamine}, label='reward')

# Stimulus for post synaptic population

post_stim = sim.Population(1, sim.SpikeSourceArray, {

'spike_times': t_post})

# Create post synaptic population which will be modulated by DA

concentration.

post_pop = sim.Population(

1, sim.IF_curr_exp, cell_params,

label='post1')

We connect the stimulus to the post-population:

# Stimulate post-synaptic neuron

sim.Projection(

post_stim, post_pop,

sim.AllToAllConnector(),



synapse_type=sim.StaticSynapse(weight=6),

receptor_type='excitatory')

Next we build a simple STDP model with a timing pair rule and additive weight dependence:

# Create STDP dynamics

synapse_dynamics = sim.STDPMechanism(

timing_dependence=sim.SpikePairRule(

tau_plus=10, tau_minus=12,

A_plus=1, A_minus=1),

weight_dependence=sim.AdditiveWeightDependence(

w_min=0, w_max=20),

weight=0.0)

And then add this as a projection between the pre- and post-populations:

# Create a plastic connection between pre and post neurons

plastic_projection = sim.Projection(

pre_pop, post_pop,

sim.AllToAllConnector(),

synapse_type=synapse_dynamics,

receptor_type='excitatory', label='Pre-post projection')

And finally we create a projection between the reward and post population to tell it that
synapses connecting into it are to be neuromodulated:

# Create dopaminergic connection

reward_projection = sim.Projection(

reward_pop, post_pop,

sim.AllToAllConnector(),

synapse_type=sim.extra_models.Neuromodulation(

tau_c=1000, tau_d=200, weight=DA_concentration, w_max=20.0),

receptor_type='reward', label='reward synapses')

Note the order here; the STDP connection is defined first, then neuromodulation is added
afterwards; this ordering is critical.  The network is now ready so we can run the example, print
out the final weight, and end:

sim.run(duration)

# End simulation on SpiNNaker

print("Final weight: " + repr(plastic_projection.get('weight',

'list')))



sim.end()

This will give a weight value on SpiNNaker of 10.0654296875, comparable to the value
calculated using the equations in [1] of 10.0552710.

This script worked because the binary code required to run it is built in the standard Makefile
build.  You may find that your particular combination of neuron model and neuromodulated
STDP with certain timing or weight rules is not built by default; if this is the case, to build the
binary you require, copy the directory and Makefile contained in it at

neural_modelling/makefiles/neuron/IF_curr_exp_stdp_izhikevich_neuromo
dulation_pair_additive

into another directory in

neural_modelling/makefiles/neuron

Edit this new Makefile to use the components you require, and then make sure that this
combination is built by adding it to the Makefile in

neural_modelling/makefiles/neuron/Makefile

and then either running “make” inside this directory, or running the automatic_make.sh script in
the SupportScripts repository.  You can check that your binary is built at the end of this
procedure by having a look for it in

sPyNNaker/spynnaker/pyNN/model_binaries

2. Further Examples
A further neuromodulated STDP example can be found at

PyNN8Examples/examples/stdp_neuromodulated_example.py

In this example, we take 10 populations of 5 stimuli neurons and connect to each 10
post-synaptic populations of 5 neurons.  The spiking of stimuli causes some spikes in
post-synaptic neurons initially.  We then inject reward signals from dopaminergic neurons
periodically to reinforce synapses that are active.  This is followed by increased weights of some
synapses and thus increased response to the stimuli.  We then proceed to inject punishment
signals from dopaminergic neurons which causes an inverse effect to reduce response of
post-synaptic neurons to the same stimuli.

The STDP rule is the same as in the example in section 1; the remainder of the script is simply
creating the network of the multiple pre- and post-populations described above, and then



plotting the spike raster across the multiple post-populations alongside an indication of where
the rewards and punishments take place.  See figure 1.

Figure 1: post-synaptic neuron activity across multiple populations affected by rewards (green)
followed by punishments (red).

More complicated code binaries are built by default; in particular, it is possible to combine both
neuromodulated STDP and structural plasticity (see [4] for details of this implementation).  This
is shown best in the example in

PyNN8Examples/examples/split_examples/structural_plasticity_with_stdp
_neuromodulated.py

In this case the synapse dynamics are specified in the following way:

# Create synapse dynamics with neuromodulated STDP and structural plasticity

# Structurally plastic connection between pre_pop and post_pop

partner_selection_last_neuron = sim.RandomSelection()

formation_distance = sim.DistanceDependentFormation(

grid=[np.sqrt(n_neurons), np.sqrt(n_neurons)],  #spatial org of neurons

sigma_form_forward=0.5  # spread of feed-forward connections

)

elimination_weight = sim.RandomByWeightElimination(

prob_elim_potentiated=0.2,  # no eliminations for potentiated synapses

prob_elim_depressed=0.2,  # no elimination for depressed synapses

threshold=plastic_weights  # Use same weight as initial weight

)

synapse_dynamics = sim.StructuralMechanismSTDP(

# Partner selection, formation and elimination rules from above

partner_selection_last_neuron, formation_distance, elimination_weight,



# Use this weight when creating a new synapse

initial_weight=plastic_weights,

# Use this weight for synapses at start of simulation

weight=plastic_weights,

# Use this delay when creating a new synapse

initial_delay=10,

# Use this delay for synapses at the start of simulation

delay=10,

# Maximum allowed fan-in per target-layer neuron

s_max=64,

# Frequency of rewiring in Hz

f_rew=10 ** 4,

# timing and weight as required for neuromodulation

timing_dependence=sim.SpikePairRule(

tau_plus=2, tau_minus=1,

A_plus=1, A_minus=1),

weight_dependence=sim.AdditiveWeightDependence(w_min=0, w_max=5.0))

The remaining network is set up similarly to in the previous example, and the resulting spike
raster on the population is shown in Figure 2.

Figure 2: post-synaptic neuron activity across multiple populations affected by rewards (green)
followed by punishments (red), with built-in rewiring (formation and elimination).

Note also that in this particular example, the binary with neuron update plus synapse update
with both neuromodulation and structural plasticity is currently larger than the available
instruction memory on a single core.  We are able to still run an example like this because of
other work within the code which allows the splitting of code onto “neuron cores” and “synapse
cores”.  This is achieved in this example by simply adding a (non-PyNN) splitter object to the
post-population’s additional_parameters dictionary like so:

for i in range(n_pops):

stimulation.append(sim.Population(n_neurons, sim.SpikeSourcePoisson,



{'rate': stim_rate, 'duration': duration}, label="pre"))

post_splitters.append(SplitterAbstractPopulationVertexNeuronsSynapses(1))

post_pops.append(sim.Population(

n_neurons, sim.IF_curr_exp, cell_params, label='post',

additional_parameters={"splitter": post_splitters[i]}))

with the remainder of the PyNN script remaining the same as it would be without the use of the
splitter.  The argument of the splitter object details how many synapse cores there are per
neuron core; in this instance we only need to choose 1 because we are only interested in being
able to compile the code, but it is possible to choose a number of synapse cores per neuron
core in this way that should only be limited by the cores having to be on the same chip as this
code works through their shared (chip’s) memory (SDRAM).

3. More Details
If you are interested in editing the code further, for example to add more implementation rules
and/or synapse dynamics, then the place to start is to look at the current (Izhikevich-based)
implementation in

sPyNNaker/neural_modelling/src/neuron/plasticity/stdp/synapse_dynamic
s_izkhikevich_neuromodulation.c

and also have a read of the paper describing the (initial) implementation of this [2].
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