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View of an application distributed 

across parallel processors

• Two main activities:
• Computation

• Communication

• Think of the problem as a graph:
• Vertex = computation node

• Edge = flow of information between nodes

• Node can hold a collections of objects of the 

same type, which we call atoms

• e.g. Many spiking neurons in one population
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Design Process for New 

Applications
• The application designer creates components (nodes and 

communication types)

• These components plug into our tool chain

• A user can then invoke the Graph Front End (GFE) to create and run their 
own networks on SpiNNaker

• Input is textual, like a PyNN script, in which the user instantiates the components created by 

the application designer

• Graph Front End is NOT a Graphical Interface - No GUI!
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Example script:

Conway’s Game of Life
import spinnaker_graph_front_end as front_end

import sys

# set up the front end and ask for a machine with 48 chips

front_end.setup()

cell_1 = MyCell()

cell_2 = MyCell()

edge = MachineEdge(cell_1, cell_2)

front_end.add_machine_vertex_instance(cell_1)

front_end.add_machine_vertex_instance(cell_2)

front_end.add_machine_edge_instance(edge, "STATE")

# run the simulation for 5 seconds

front_end.run(5000)

# clean yp the machine for the next application.

front_end.stop()
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Design Considerations I:

Finite resources per core
• The user’s graph will be mapped to the 

cores of the SpiNNaker machine

• Each core has finite resource:
• Compute power
• Local memory
• Share of SDRAM capacity & bandwidth
• Communications bandwidth for packets

• Where each vertex represents many atoms 
we partition each one into smaller pieces, 
so that one piece fits on one core:

• Application graph maps to Machine Graph
• Edges also split to maintain correct connectivity

• Merging of vertices NOT currently 
supported!
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Design Considerations II:

Dataflow between Vertices

• Consider the pattern of messages flowing from each vertex:
• Case 1: Messages always go to the same set of targets

• Case 2: Messages go to different targets at different times

• Case 1: Homogeneous data flow
• e.g. spikes in neural simulation

• One identifier for each machine vertex
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Design Considerations II:

Dataflow between Vertices

• Case 2: Data send to different targets at different times:
• e.g. multi-layered perceptron, with forward and backward data flow

• Useful when there are different modes of operation

• Group edges so that those in same mode are together

• A grouping is called a partition

• Assign a separate identifier for each pre-vertex/partition pair

• Six edges [1, 2, .., 6]

• Three partitions [red, blue, green]
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Software Stack 
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Where do you need to supply new 

information?

10

Where do you need to supply new 

information?
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Tell the partitioner how 
much resource a

machine vertex of the 
application vertex 

requires

Where do you need to supply new 

information?
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Tell the placer how much 
resource each machine 

vertex requires



Where do you need to supply new 

information?
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Provide a script to 
generate the data 

in SDRAM for each 
machine vertex

Data Spec. and Data Generation

• Each core running your application needs to generate its local data before 
it starts simulation

• We provide a simple virtual machine in which you can execute simple 
programs to generate this data 

• This is the Data Spec Executor (DSE)

• The tools run code called the Data Spec Generator (DSG) that create a 
program (the specification or spec) for each core that is run by the DSG to 
generate its data
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Summary

• It is useful to abstract any parallel application into the form of 

a graph with:
• Centres of computation (vertices) 

• Connected by communication pathways (edges)

• Application designer must describe the computational elements and the 

communication types and plug those into our tools:
• Executables to run on SpiNNaker (typically written in C)
• Data specification, used to create each nodes data
• Describe resource requirements to allow tools to map networks to cores

• User can then specify application networks and run them using the Graph Front 

End.The tools handle :
• Mapping
• Routing table generation
• Data generation
• Loading
• Simulation
• Results gathering
• And other stuff ….
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