
SpiNNaker Workshop

September 2016

Simon Davidson, Alan Stokes, Andrew Rowley

Writing an Application for SpiNNaker -

Introduction

Contents

• View of an application distributed across parallel processors

• SpiNNaker Graph Front End (GFE)

• Design Considerations:
• Managing finite resources (partitioning)

• Thinking about data flow (message identifiers/routing keys)

• Process to port a new application to SpiNNaker
• What the tools will do for you (mapping, routing tables, data generation, etc.)

• What the designer must supply (binaries, data spec, meta-data)

• Summary

2

View of an application distributed

across parallel processors

• Two main activities:
• Computation

• Communication

• Think of the problem as a graph:
• Vertex = computation node

• Edge = flow of information between nodes

• Node can hold a collections of objects of the

same type, which we call atoms

• e.g. Many spiking neurons in one population

3

1000
atoms

9000
atoms

5
atoms

Design Process for New

Applications
• The application designer creates components (nodes and

communication types)

• These components plug into our tool chain

• A user can then invoke the Graph Front End (GFE) to create and run their
own networks on SpiNNaker

• Input is textual, like a PyNN script, in which the user instantiates the components created by

the application designer

• Graph Front End is NOT a Graphical Interface - No GUI!

4

Example script:

Conway’s Game of Life
import spinnaker_graph_front_end as front_end

import sys

set up the front end and ask for a machine with 48 chips

front_end.setup()

cell_1 = MyCell()

cell_2 = MyCell()

edge = MachineEdge(cell_1, cell_2)

front_end.add_machine_vertex_instance(cell_1)

front_end.add_machine_vertex_instance(cell_2)

front_end.add_machine_edge_instance(edge, "STATE")

run the simulation for 5 seconds

front_end.run(5000)

clean yp the machine for the next application.

front_end.stop()

5

Design Considerations I:

Finite resources per core
• The user’s graph will be mapped to the

cores of the SpiNNaker machine

• Each core has finite resource:
• Compute power
• Local memory
• Share of SDRAM capacity & bandwidth
• Communications bandwidth for packets

• Where each vertex represents many atoms
we partition each one into smaller pieces,
so that one piece fits on one core:

• Application graph maps to Machine Graph
• Edges also split to maintain correct connectivity

• Merging of vertices NOT currently
supported!

6

200
atoms 400

atoms

200
atoms

200
atoms

200
atoms

200
atoms

200
atoms

(max 200 atoms
per core)

Design Considerations II:

Dataflow between Vertices

• Consider the pattern of messages flowing from each vertex:
• Case 1: Messages always go to the same set of targets

• Case 2: Messages go to different targets at different times

• Case 1: Homogeneous data flow
• e.g. spikes in neural simulation

• One identifier for each machine vertex

7

v1

v3

v4

v2

Design Considerations II:

Dataflow between Vertices

• Case 2: Data send to different targets at different times:
• e.g. multi-layered perceptron, with forward and backward data flow

• Useful when there are different modes of operation

• Group edges so that those in same mode are together

• A grouping is called a partition

• Assign a separate identifier for each pre-vertex/partition pair

• Six edges [1, 2, .., 6]

• Three partitions [red, blue, green]

8

v1

v3

v4

v2

1

2

3

4

5

6

Software Stack

9

Where do you need to supply new

information?

10

Where do you need to supply new

information?

11

Tell the partitioner how
much resource a

machine vertex of the
application vertex

requires

Where do you need to supply new

information?

12

Tell the placer how much
resource each machine

vertex requires

Where do you need to supply new

information?

13

Provide a script to
generate the data

in SDRAM for each
machine vertex

Data Spec. and Data Generation

• Each core running your application needs to generate its local data before
it starts simulation

• We provide a simple virtual machine in which you can execute simple
programs to generate this data

• This is the Data Spec Executor (DSE)

• The tools run code called the Data Spec Generator (DSG) that create a
program (the specification or spec) for each core that is run by the DSG to
generate its data

14

Summary

• It is useful to abstract any parallel application into the form of

a graph with:
• Centres of computation (vertices)

• Connected by communication pathways (edges)

• Application designer must describe the computational elements and the

communication types and plug those into our tools:
• Executables to run on SpiNNaker (typically written in C)
• Data specification, used to create each nodes data
• Describe resource requirements to allow tools to map networks to cores

• User can then specify application networks and run them using the Graph Front

End.The tools handle :
• Mapping
• Routing table generation
• Data generation
• Loading
• Simulation
• Results gathering
• And other stuff ….

15

