
 Fixed-Point Maths and Libraries

Michael Hopkins

SpiNNaker Workshop, 7th September 2016

 Overview

1. Numerical calculation on SpiNNaker

2. ISO/IEC 18037 types and operations

3. A simple example

4. Some practical considerations

5. Libraries currently available

6. An example using the libraries

7. Using fixed-point to solve ODEs

8. Future directions

 Numerical calculation on SpiNNaker

 No floating point hardware on SpiNNaker

 Software floating point available but too slow for most use cases (and larger binaries)

 Until recently, has needed hand-coded fixed point types and manipulations

 This approach not transparent so can be prone to maintenance issues & mysterious bugs

 More difficult than necessary for developers to translate algorithms into source code

 ISO draft 18037 for fixed point types and operations seen as a good solution

 ISO 18037 types and operations

 Draft standard for native fixed point types & operations used like integer or floating point

 Currently only available on GNU toolchain >= 4.7 and ARM target architecture

 8-, 16-, 32 and 64-bit precisions all available in (un-)saturated and (un-)signed versions

 accum type is 32-bit 'general purpose real'; we support io_printf() with s16.15 & u16.16

 fract type is 16-bit in [0,1]; we support io_printf() with s0.15 & u0.16

Operations supported are:

● prefix and postfix increment and decrement operators (++, --)
● unary arithmetic operators (+, -, !)
● binary arithmetic operators (+, -, *, /)
● binary shift operators (<<, >>)
● relational operators (<, <=, >=, >)
● equality operators (==, !=)
● assignment operators (+=, -=, *=, /=, <<=, >>=)
● conversions to and from integer, floating-point, or fixed-point types

 A simple example

#include <stdfix.h>

#define REAL accum

#define REAL_CONST(x) x##k

REAL a, b, c = REAL_CONST(100.001);

accum d = REAL_CONST(85.08765);

int c_main(void)

{

 for(unsigned int i = 0; i < 50; i++) {

 a = i * REAL_CONST(5.7);

 b = a – i;

 if(a > d) c = a + b;

 else c -= b;

 io_printf(IO_STD,

 "\n i %u a = %9.3k b = %9.3k c = %9.3k", i, a, b, c);

 }

 return 0;

}

 Some practical considerations

 Range & precision e.g. for accum (s16.15) must have 0.000031 <= | x | <= 65536

 Still need to avoid divides in loops as these are slow on ARM architecture

 saturated types safe from overflow but significantly slower

 Need to remember that numerical precision is absolute rather than relative

 Literal constants require type suffix – simplest way is via macro REAL_CONST()

 Don't forget to #include <stdfix.h>

 Disciplined use of REAL and REAL_CONST() macros can parameterise entire code base

 Be careful to use the correct type suffix otherwise floating-point will be assumed

 Libraries currently available - 1

1) random.h – suite of pseudo random number generators by MWH

Provides three high quality uniform generators of uint32_t values; Marsaglia's KISS 32

and KISS 64 and L'Ecuyer's WELL1024a.

 All three 'pass' the very stringent DIEHARD, dieharder and TestU01 test suites

 Trade-offs between speed, cycle length and equi-distributional properties

 Available in both simple-to-use form and with full user control over seeds

Have used these Uniform PRNGs as the basis for a set of Non-Uniform PRNGs

including currently the following distributions:

 Gaussian

 Poisson (optimised for small rates at the moment)

 Exponential

...with more on the way. Let us know your requirements and we will try to help.

 Libraries currently available - 2

2) stdfix-full-iso.h & stdfix-math.h – ISO & transcendental functions by DRL

Fill in the gaps in the GCC implementation of the ISO draft fixed point maths standard

and some extensions:

 Standardised type conversions between fixed point representations

 Utility functions for all types i.e. abs(x), min(x), max(x), round(x), countls(x)

 Mechanism for automatically inferring the right argument type (uses GNU extension)

Fixed point replacements for essential floating point libm functions i.e. expk(x), sqrtk(x),

logk(x), sink(x), cosk(x) and others such as atank(x), powk(x,y), 1/x on the way

 Hand-optimised for speed and accuracy on ARM architecture

 10-30x faster than libm calls, hence feasible for use inside loops if necessary

 An example using the libraries

accum a, b, c, d;

uint32_t r1;

unsigned fract uf1;

init_WELL1024a_simp(); // need to initialise WELL1024a RNG before use

for(unsigned int i = 0; i < 22; i++) {

r1 = WELL1024a_simp(); // draw from Uniform RNG

 uf1 = (unsigned fract) ulrbits(r1); // convert to unsigned fract

// draw from Std Gaussian distribution using MARS64

 a = gaussian_dist_variate(mars_kiss64_simp, NULL);

// do some calculations on a and then log()

 b = logk(absk(a * REAL_CONST(100.0)));

// sqrt() of value drawn from Exponential distribution using WELL1024a

c = sqrtk(exponential_dist_variate(WELL1024a_simp, NULL));

d = expk((accum) (i - 10)); // exp() from -10 to 11

io_printf(IO_STD, "\n i %4u

 uf1=[Uniform{*}]= %8.6R a=[Gauss{*}]= %7.3k b=[ln(abs(100 a))]= %7.3k

c=[sqrt(Exponential{*})]= %7.3k d=[exp(i-10)]= %10.3k ", i, uf1, a, b, c, d);

}

 Using fixed-point to solve ODEs - 1

 Simulating neuron models usually means solving Ordinary Differential Equations (ODEs)

 This ranges from very easy (current input LIF has simple closed-form) solution to very

challenging i.e. Hodgkin-Huxley with 4 state variables, nonlinear and very 'stiff' ODE

 Numerical calculations are required with a balance between accuracy & efficiency

 With care and attention to detail, fixed-point can be used to get very close to floating-point

results. However, models with more complex behaviour are a significant challenge

 A new approach called Explicit Solver Reduction (ESR) makes this easier in many cases

and is described in: Hopkins & Furber (2015), “Accuracy and Efficiency in Fixed-Point Neural

ODE Solvers”, Neural Computation 27, 1–35

 Good results found for Izhikevich neuron at real-time simulation speed & 1 ms time step

 Using fixed-point to solve ODEs - 2

/*

 ESR algebraic reduction of the combination of Izhikevich neuron model and

 Runge-Kutta 2nd order midpoint method. Hand-optimised interim variables and

 arithmetic ordering for balance between speed and accuracy. See Neural Computation

 paper for more details.

*/

static inline void _rk2_kernel_midpoint(REAL h, neuron_pointer_t neuron,

 REAL input_this_timestep) {

// to match Mathematica names

 REAL lastV1 = neuron->V;

 REAL lastU1 = neuron->U;

 REAL a = neuron->A;

 REAL b = neuron->B;

// generate common interim variables

 REAL pre_alph = REAL_CONST(140.0) + input_this_timestep - lastU1;

 REAL alpha = pre_alph

 + (REAL_CONST(5.0) + REAL_CONST(0.0400) * lastV1) * lastV1;

 REAL eta = lastV1 + REAL_HALF(h * alpha);

// could be represented as a long fract but need efficient mixed-arithmetic functions

 REAL beta = REAL_HALF(h * (b * lastV1 – lastU1) * a);

// update neuron state

 neuron->V += h * (pre_alph - beta

 + (REAL_CONST(5.0) + REAL_CONST(0.0400) * eta) * eta);

 neuron->U += a * h * (-lastU1 - beta + b * eta);

}

 Future directions

 Optimise operations on differing fixed point types i.e. accum * long fract

 Add to stdfix-math (e.g. new argument types and special functions)

 Add to random (e.g. longer cycle uniform PRNG and more non-uniform distributions)

 New libraries such as probability distributions to allow Bayesian inference tools

 io_printf() to be extended to more types such as long fract, unsigned long fract

 Linear Algebra operations such as matrix multiply, SVD and other decompositions

 SpiNNaker architecture potentially good choice for massively parallel algorithms e.g. MCMC

