MANCHESTER N N . .
M Fixed-Point Maths and Libraries

LN)
-
e
et

.

Y

‘e

-
.
.

e

Lead A aa ad o B WIS IR |
I....
-

Michael Hopkins

SpiNNaker Workshop, 7" September 2016

g _____ _
vy EPSRC SpiNNaker

Human Brain Projeet -

European Research Council

Established by the European Commission

W Numerical calculation on SpiNNaker

+ No floating point hardware on SpiNNaker

+ Software floating point available but too slow for most use cases (and larger binaries)

+ Until recently, has needed hand-coded fixed point types and manipulations

+ This approach not transparent so can be prone to maintenance issues & mysterious bugs
+ More difficult than necessary for developers to translate algorithms into source code

+ SO draft 18037 for fixed point types and operations seen as a good solution

WS Overview

1. Numerical calculation on SpiNNaker
2. ISO/IEC 18037 types and operations
3. Asimple example

4. Some practical considerations

5. Libraries currently available

6. An example using the libraries

7. Using fixed-point to solve ODEs

8. Future directions

M e |ISO 18037 types and operations

1824

+ Draft standard for native fixed point types & operations used like integer or floating point
+ Currently only available on GNU toolchain >= 4.7 and ARM target architecture

+ 8-, 16-, 32 and 64-bit precisions all available in (un-)saturated and (un-)signed versions
+ accum type is 32-bit 'general purpose real'; we support io_printf() with s16.15 & u16.16

+ fract type is 16-bit in [0,1]; we support io_printf() with s0.15 & u0.16

Operations supported are:

* prefix and postfix increment and decrement operators (++, --)

* unary arithmetic operators (+, -, !)

* binary arithmetic operators (+, -, *, /)

* binary shift operators (<<, >>)

* relational operators (<, <=, >=, >)

* equality operators (==, !=)

* assignment operators (+=, -=, *=, /=, <<=, >>=)

* conversions to and from integer, floating-point, or fixed-point types

A simple example

#include <stdfix.h>

#define REAL accum
#define REAL_CONST(x) x##k

REAL a, b, ¢ = REAL_CONST(100.001);
accum d = REAL_CONST(85.08765);

int c_main(void)
{
for (unsigned int i = 0; 1 < 50; i++) {
a =1 * REAL_CONST(5.7);

b =a - 1i;

if(a>d) c
else c -

+ bj

= a
= b;
io_printf(IO_STD,

"\n i %u a =%9.3k b =%9.3k c = %9.3k", i, a, b, c
}

return 0;

Libraries currently available - 1

1) random.h — suite of pseudo random number generators by MWH

Provides three high quality uniform generators of uint32_t values; Marsaglia's KISS 32
and KISS 64 and L'Ecuyer's WELL1024a.

All three 'pass' the very stringent DIEHARD, dieharder and TestUO01 test suites
+ Trade-offs between speed, cycle length and equi-distributional properties

+ Available in both simple-to-use form and with full user control over seeds

Have used these Uniform PRNGs as the basis for a set of Non-Uniform PRNGs
including currently the following distributions:

+ Gaussian

+ Poisson (optimised for small rates at the moment)

Exponential

...with more on the way. Let us know your requirements and we will try to help.

)i

Some practical considerations

+ Range & precision e.g. for accum (s16.15) must have 0.000031 <= | x | <= 65536

+ Still need to avoid divides in loops as these are slow on ARM architecture

+ saturated types safe from overflow but significantly slower

+ Need to remember that numerical precision is absolute rather than relative

+ Literal constants require type suffix — simplest way is via macro REAL_CONST()

+ Don't forget to #include <stdfix.h>

+ Disciplined use of REAL and REAL_CONST() macros can parameterise entire code base

+ Be careful to use the correct type suffix otherwise floating-point will be assumed

Libraries currently available - 2

2) stdfix-full-iso.h & stdfix-math.h —1SO & transcendental functions by DRL
Fill in the gaps in the GCC implementation of the ISO draft fixed point maths standard

and some extensions:
+ Standardised type conversions between fixed point representations
+ Utility functions for all types i.e. abs(x), min(x), max(x), round(x), countls(x)

+ Mechanism for automatically inferring the right argument type (uses GNU extension)

Fixed point replacements for essential floating point /ibm functions i.e. expk(x), sqrtk(x),
logk(x), sink(x), cosk(x) and others such as atank(x), powk(x,y), 1/x on the way

Hand-optimised for speed and accuracy on ARM architecture

+ 10-30x faster than libm calls, hence feasible for use inside loops if necessary

WA An example using the libraries

WSS Using fixed-point to solve ODEs - 1

accum a, b, ¢, d;

uint32_t rl;

unsigned fract ufl; + Simulating neuron models usually means solving Ordinary Differential Equations (ODEs)
init_WELL1024a_simp(); // need to initialise WELL1024a RNG before use

+ This ranges from very easy (current input LIF has simple closed-form) solution to very
for (unsigned int i = 0; i < 22; i++) {
challenging i.e. Hodgkin-Huxley with 4 state variables, nonlinear and very 'stiff ODE

rl = WELL1024a_simp(); // draw from Uniform RNG

ufl = (unsigned fract) ulrbits(rl); // convert to unsigned fract + Numerical calculations are required with a balance between accuracy & efficiency
// draw from Std Gaussian distribution using MARS64

a = gaussian dist _variate(mars kiss64_simp, NULL); + With care and attention to detail, fixed-point can be used to get very close to floating-point
/7 some calculations on a and then log() results. However, models with more complex behaviour are a significant challenge

b = logk(absk(a * REAL_CONST(100.0)));

// sqrt () of value drawn from Exponential distribution using WELL1024a > oy
C — sqrtk(exponential dist_variate(WELL1024a_simp, NULL)); A new approach called Explicit Solver Reduction (ESR) makes this easier in many cases
)) and is described in: Hopkins & Furber (2015), “Accuracy and Efficiency in Fixed-Point Neural
d = expk((accum) (i - 10)); // exp() from -10 to 11

ODE Solvers”, Neural Computation 27, 1-35

io_printf(IO_STD, "\n i %4u
ufl=[Uniform{*}]= %8.6R a=[Gauss{*}]= %7.3k b=[1ln(abs (100 a))]l= %7.3k
(

- ial{*})]= %7. - i-10)]= %10.3k ", i, ufl, &, b, ¢, d); oy e s ; ;
c=[sqrt (Exponential {*})] 3k d=lexp(i~10)]= %10.3k *, 1, ufl, a, b, e, d) + Good results found for Izhikevich neuron at real-time simulation speed & 1 ms time step

WSS Using fixed-point to solve ODEs - 2 RWNOEIENSN Future directions

1824

/*
ESR algebraic reduction of the combination of Izhikevich neuron model and
Runge—-Kutta 2" order midpoint method. Hand-optimised interim variables and

arithmetic ordering for balance between speed and accuracy. See Neural Computation ¥ Opt|m|3e operations on dlffermg ﬁxed point types |e accum * /Ong fl’aCt
paper for more details.
*/ . . .
static inline void _rk2_kernel _midpoint (REAL h, neuron_pointer_t neuron, *Add to stdflx-math (eg new argument types and SpeCIal fUnCtlonS)
REAL input_this_timestep) {
// to match Mathematica names # Add to random (e.g. longer cycle uniform PRNG and more non-uniform distributions)

REAL lastVl = neuron->V;

REAL lastUl = neuron—->U;

REAL a = neuron->A; + New libraries such as probability distributions to allow Bayesian inference tools
REAL b = neuron—->B;

. . .

// generate common interim varisbles io_printf() to be extended to more types such as long fract, unsigned long fract

REAL pre_alph = REAL_CONST (140.0) + input_this_timestep - lastUl;

REAL alpha = pre_alph + Linear Algebra operations such as matrix multiply, SVD and other decompositions

+ (REAL_CONST (5.0) + REAL_CONST (0.0400) * lastVl) * lastVl;

=1 1 h * alpha); ; ; ; ; ; ;

REAL eta = lastVl + REAL HALF(alpha) + SpiNNaker architecture potentially good choice for massively parallel algorithms e.g. MCMC

// could be represented as a long fract but need efficient mixed-arithmetic functions

REAL beta = REAL_HALF(h * (b * lastVl - lastUl) * a);

// update neuron state
neuron->V += h * (pre_alph - beta

+ (REAL_CONST (5.0) + REAL_CONST (0.0400) * eta) * eta);

neuron->U += a * h * (-lastUl - beta + b * eta);

