Graph Front End Lab Manual

The task is to build a python program that uses the Graph Front End (GFE).

Summary

This python script should use the GFE to instantiate a working example of the Conway’s
Game of Life'. Conway’s Game of Life consist of a 2D fabric of cells, each of which has 2
states. These states are either Alive or Dead, and switching between these two states is
decided upon the states of their 8 neighbouring cells.

The rules which dictate the changing of state are as follows:

1. Any live cell with fewer than two live neighbours dies, as if caused by
underpopulation.

2. Any live cell with two or three live neighbours lives on to the next generation.

3. Any live cell with more than three live neighbours dies, as if caused by
overpopulation.

4. Any dead cell with exactly three live neighbours becomes a live cell, as if by
reproduction.

The application needs to be able to handle different initial states of the cells within the 2d
fabric, but the default states for tasks 1 to 8 should look like Figure 1 and for task 9 to 13
should look like Figure 2.

(L1 1]
C | mm
.)
(T T
(T |
I—hji | u
] |]
 EEEE B EEEE =
| EE EEN __E=Es
[mm T 111 111
- EE EEE =N
(T - EEEE B EEEE =
] | m |]
[. m |]
B B O [m
(T - | EEEEE W
(T I1] EE EEEN
EE ___EN T -
(T | N N
(I T 1 | W N
EEEEE W — mm
H BN BN T T
1 11 1111
Figure 1: Basic initial state (7 by 7 grid) Figure 2: Advanced State (28 by 28 grid)

' https://en.wikipedia.org/wiki/Conway's_Game_of_Life

Step 1 (Easy)

Create a python class which will represent a Conway Cell.

Step 2 (Easy)

Build a python script which builds a collection of Conway cells (as vertices) in the GFE
machine graph to form a 7x7 grid (hint: use the add_machine_vertex_instance() functionality
supplied with the GFE __init__.py interface to add vertex instances). Add edges between
the cells.

Step 3 (Medium)

Build the c code that represents the functionality that will run on the SpiNNaker machine. It'll
be easier to use the interfaces provided in simulation.h and data_specification.h.

At this point running the script should not produce errors, but you won't be able to tell what's
happening inside.
Step 4 (Medium)

Add a data region for storing the state per timer tick iteration in SDRAM into both the ¢ and
python class. Add code to store the data in C and retrieve it from the machine in python.

Step 5 (Easy)
Build a simple text-based visualiser to replay a simulation run using the stored state.

At this point you should be able to run the simulation and get a textual display of the state of
the simulation per timer tick.

Step 6 (Hard)

Stream the state of the simulation to the host PC during the simulation run. Display the
output as text as the simulation runs.

Step 7 (Medium)

Use the tubogrid perl application supplied within spinnaker_tools to create a live
visualisation of the simulation, or build your own.

Step 8 (Easy)

Try building a 28x28 grid of cells and see what happens. Can you explain why it doesn't
work? What ways could you go about making it work (hint: there's at least 3 ways of doing
this)?

Step 9 (Fiendishly Hard)

Convert your application so that instead of using machine vertices, you use an application
vertex to represent the entire grid of cells. Note that this will require you to receive and
interpret several ids from each base routing key (hint: sPyNNaker does this using something
called a population table to map between a base key and a block of connections).

Step 10 (Easy)

Run your new simulation with both sets of initial parameters. Try scaling up so that you hit
the limits of the system to simulate the application, and therefore make the CPU calculation
correct so that the partitioner will stop you going over the limits.

Step 11 (Medium)

Upgrade turbogrid or your own visualisation to use the database so that it auto configures
itself for the shape of the application space.

Step 12 (Epically Hard)

Build your own application for SpiNNaker using the GFE front end.

