6" SpiNNaker
Workshop

Lab Manuals

September
5th- gth 2016

[
" '. ..".
."'i:,.fi-._:ﬁ. r
L

Manchester, UK

SpiNNaker

Intro Lab

This lab is meant to expose workshop participants to examples of problems which can be
applied to the SpiNNaker architecture.

Installation

The software installation instructions can be found here:
https://spinnakermanchester.github.io/latest/spynnaker_install.html
https://spinnakermanchester.github.io/latest/gfe install.html

File download

All of these examples can be found here:
https://spinnakermanchester.qithub.io/latest/intro_lab.html

Please download and open a terminal at the top level of the folder.

Run Applications

Below is a list of applications with the corresponding folders and execution commands,
please run each script as it currently stands, and attempt to understand what the application
is doing.

Neural Network Synfire Chain
Conductive Material with Applied Heat
Sudoku Game Through Neural Network
Graphic Ray Tracer of an Environment
Simple Learning Network

ok wbd =~

https://spinnakermanchester.github.io/latest/spynnaker_install.html
https://spinnakermanchester.github.io/latest/gfe_install.html
https://spinnakermanchester.github.io/latest/intro_lab.html

Neural Network Synfire Chain

1000 Splkles Sent By C.ham

800 - |I || || || .
600 - | | | | 1

400

i | | | | | | | |
0 200 400 600 800 1000
Time (ms)

Neuron
-
—
—
—

Figure 1: The output from a simple Synfire chain.
To run this example, from the top level of the folder type:
cd synfire
python synfire.py
A plot like the above should appear.
This example shows a PyNN Neural Network with a chain of 10 populations of 100 neurons

each, where 10 neurons from each population excite all the neurons in the next population in
the chain. The first population is then stimulated at the start of the simulation to start the

chain running.

\

Figure 2: The Synfire Chain of Populatlons

Conductive Material with Applied Heat

[B] VisRT - plotting your network data in real time = O X

Heat Demo — Live SpiNNaker (2x2) Plot

Colour Map (1,2,3.), Mode: [iled, (hyistogram, (nteraolation, (jines, (Haster, Menu: right click.

3318

=~

35.00

30.00

(2]

25.00

o

20.00

B

15.00

10.00

Y Coord
[9:]

5.00

N

Figure 3: The output from the conductive material simulation

To run this example, from the top level of the folder type:

cd heat_demo

python heat_demo.py
A visualiser should appear here, as shown in Figure 3. You can press “9” to randomize the
heat applied at each edge of the simulation, or press select a black square and press “+” to

increase the temperature, or “-” to decrease it, followed by

“g” to update it.

This example shows a piece of conductive material (e.g. a metal sheet) which is represented
by a collections of cells which represent atoms of the material. Temperature is transferred
between the atoms of the material in the simulation by sending packets over the SpiNNaker
network. Figure 4 shows this application in graphical form.

Figure 4: The conductive material application in graphical form

Sudoku Game Through Neural Network

[®7 Sudoku

sudoku

Gf—
E

T

0Q | |
I mmm;q

slinfa| e | ©f 93| oo

QD' £4

y (le

—l

1
[15l
Al
: (EJ .

Figure 5: The output from the Sudoku game application

To run this example, from the top level of the folder type:
cd sudoku
python sudoku.py

A visualiser will pop up, which is shown in Figure 5.

This example shows a PyNN neural network which describes a neural network for running
sudoku problems. The spikes representing each cell are shown behind each number, with
green output indicating that the value is valid according to the rules of Sudoku and red
output indicating that the value is invalid. The problem to be solved is described near the top
of the sudoku.py file, with Os representing values to be computed. Note that on a small
SpiNNaker board, the network is not always successful at solving the problem.

Graphic Ray Tracer of an Environment

[B7 Path Tracer = [m] X

Figure 6: The output from the graphical ray tracer application

To run this example, from the top level of the folder type:
cd ray_trace
python ray_trace.py

A visualiser will pop up, which is shown in Figure 6.

This example shows a ray tracing application on SpiNNaker. This has been designed so
that to operate in parallel; the more cores in use, the faster it completes. Note that it is still
quite slow, and you may have to click on the window to force it to update.

Simple Learning Network

40

.

35+

.+ wa ..
ses g He st »
.

.
.
.

0 1000 5000

Time/ms

Figure 7: The output from the learning application

To run this example, from the top level folder type:
cd learning
python learning.py

A plot like the above should appear.
This example shows the spike outputs from two populations of neurons. At the start, only

one of the populations spikes regularly. In the middle, some learning is done, and at the
end, both populations spike regularly.

Running PyNN Simulations on SpiNNaker

Introduction

This manual will introduce you to the basics of using the PyNN neural network language on SpiNNaker
neuromorphic hardware.

Installation
The PyNN toolchain for SpiNNaker (sPyNNaker), can be installed by following the instructions available
from here:

http://spinnakermanchester.github.io/2015.005.Arbitrary/PyNNOnSpinnakerlnstall.html

Matplotlib is marked as optional, but you will also need to install this dependency to complete some of the
forthcoming exercises.

Spiking Neural Networks

Biological neurons have been observed to produce sudden and short increases in voltage, commonly
referred to as spikes. The spike causes a charge to be transferred across the synapse between neurons.
The charge from all the presynaptic neurons connected to a postsynaptic neuron builds up, until that
neuron releases the charge itself in the form of a spike. The spike travels down the axon of the neuron
which then arrives after some delay at the synapses of that neuron, causing charge to be passed forward to
the next neuron, where the process repeats.

1) Neurons “spike”, causing charge to be passed
across the synapses between the neurons

3) The spike travels down the
axon of the neuron

2) When enough charge has been passed to
the post-synaptic neuron, it causes it to spike

Artificial spiking neural networks tend to model the membrane voltage of the neuron in response to the
incoming charge over time. The voltage is described using a differential equation over time, and the
solution to this equation is usually computed at fixed time-steps within the simulation. In addition to this, the
charge or current flowing across the synapse can also be modelled over time, depending on the model in
use.

The charge can result in either an excitatory response, in which the membrane voltage of the postsynaptic
neuron increases or an inhibitory response, in which the membrane voltage of the postsynaptic neuron
decreases as a result of the spike.

The PyNN Neural Network Description Language

PyNN is a language for building neural network models. PyNN models can then be run on a number of
simulators without modification (or with only minor modifications), including SpiNNaker. The basic steps of
building a PyNN network are as follows:

Setup the simulator

Create the neural populations

Create the projections between the populations
Setup data recording

Run the simulation

Retrieve and process the recorded data

ok LON =

An example of this is as follows:

import pyNN.spiNNaker as p

p.setup(timestep=1.0)

pop_1l = p.Population(1, p.IF_curr_exp, {}, label="pop_1")

input = p.Population(1l, p.SpikeSourceArray,

{"'spike_times': [[@]]}, label="input")

input_proj = p.Projection(input, pop_1, p.OneToOneConnector(
weights=5.0, delays=1), target="excitatory")

pop_1.record()

pop_1.record_v()

p.run(10)

import pylab

time = [i[1] for 1 in v if i[0@] == 0]
membrane_voltage = [i[2] for i in v if i[@] == O]
pylab.plot(time, membrane_voltage)
pylab.xlabel("Time (ms)")

pylab.ylabel("Membrane Voltage")

pylab.axis([@, 10, -75, -45])

pylab.show()

spike_time = [i[1] for i in spikes]
spike_id = [i[@] for i in spikes]
pylab.plot(spike_time, spike_id, ".")
pylab.xlabel("Time (ms)")
pylab.ylabel("Neuron ID")
pylab.axis([e, 10, -1, 1])
pylab.show()

This example runs using a 1.0ms timestep. It creates a single input source (A SpikeSourceArray) sending
a single spike at time 0, connected to a single neuron (with model IF _curr_exp). The connection is
weighted, so that a spike in the presynaptic neuron sends a current of 5 nanoamps (nA) to the excitatory
synapse of the postsynaptic neuron, with a delay of 1 millisecond. The spikes and the membrane voltage
are recorded, and the simulation is then run for 10 milliseconds. Graphs are then created of the membrane
voltage and the spikes produced.

PyNN provides a number of standard neuron models. One of the most basic of these is known as the
Leaky Integrate and Fire (LIF) model, and this is used above (IF_curr_exp). This models the neuron as a
resistor and capacitor in parallel; as charge is received, this builds up in the capacitor, but then leaks out
through the resistor. In addition, a threshold voltage is defined; if the voltage reaches this value, a spike is
produced. For a time after this, known as the refractory period, the neuron is not allowed to spike again.

Once this period has passed, the neuron resumes operation as before. Additionally, the synapses are
modelled using an exponential decay of the received current input (5 nA in the above example); the weight
of the current is added over a number of timesteps, with the current decaying exponentially between each.
A longer decay rate will result in more charge being added overall per spike that crosses the synapse.

In the above example, the default parameters of the IF_curr_exp are used. These are:

'cm': 1.0,
"tau_m': 20.9,
"tau_refrac': 2.0,
'v_reset': -70.0,
'v_rest': -65.0,
'v_thresh': -50.0,
"tau_syn_E': 5.0,

The capacitance of the LIF neuron in nano-Farads

The time-constant of the RC circuit, in milliseconds

The refractory period, in milliseconds

The voltage to set the neuron at immediately after a spike
The ambient rest voltage of the neuron

The threshold voltage at which the neuron will spike

The excitatory input current decay time-constant
"tau_syn_I': 5.0, The inhibitory input current decay time-constant
'i_offset': 0.0, # A base input current to add each timestep

H OH OH OH OHF OH K OH

PyNN supports both current-based models and conductance-based models. In conductance models, the
input is measured in microSiemens, and the effect on the membrane voltage also varies with the current
value of the membrane voltage; the higher the membrane voltage, the more input is required to cause a
spike. This is modelled as the reversal potential of the synapse; when the membrane potential equals the
reversal potential, no current will flow across the synapse. A conductance-based version of the LIF model
is provided, which, in addition to the above parameters, also supports the following:

‘e rev_E': 0., # The reversal potential of the exponential synapse
'e rev_I': -80.0 # The reversal potential of the inhibitory synapse

The initial value of the state variables of the neural model can also be set (such as the membrane voltage).
This is done via the initialize function of the population, which takes the name of the state variable as a
string (e.g. “v” for the membrane voltage), and the value to be assigned e.g. to set the voltage to -65.0mV:

pop.initialize(“v”, -65.0)

In PyNN, the neurons are declared in terms of a population of a number of neurons with similar properties.
The projection between populations therefore has a connector, which describes the connectivity between
the individual neurons in the populations. Some common connectors include:

e OneToOneConnector - each presynaptic neuron connects to one postsynaptic neuron (there should
be the same number of neurons in each population) with weight weights and delay delays.

e AllToAllConnector - all presynaptic neurons connect to all postsynaptic neurons with weight weights
and delay delays.

e FixedProbabilityConnector - each presynaptic neuron connects to each postsynaptic neuron with a
given fixed probability p_connect, with weight weights and delay delays.

e FromListConnector - the exact connectivity is described by conn_list, which is a list of
(pre_synaptic_neuron_id, post_synaptic_neuron_id, weight, delay)

Commonly, random weights and/or delays are used. To specify this, the value of the weights or delays of
the connector are set to a RandombDistribution (note that the FromListConnector requires the specification
of explicit weights and delays, and so does not support this; instead the next() method of the random
distribution can be called to give random values for this connector). This supports several parameters via
the parameters argument, depending on the value of the distribution argument which identifies the
distribution type. The supported distributions include a ‘uniform’ distribution, with parameters of [minimum
value, maximum value]; and a ‘normal’ distribution with parameters of [mean, standard deviation]. A
boundary can also be specified as [minimum, maximum] to constrain the values generated (where an
unbounded end can make use of -numpy.inf or numpy.inf); this is often useful for keeping the delays within

range allowed by the simulator. The RandombDistribution can also be used when specifying neural
parameters, or when initialising state variables.

In addition to neuron models, the PyNN language also supports some utility models, which can be used to
simulate inputs into the network with defined characteristics. These include:

e SpikeSourceArray - this sends spikes at predetermined intervals defined by spike times. In
general, PyNN forces each of the neurons in the population to spike at the same time, and so
spike_times is an array of times, but sPyNNaker also allows spike _times to be an array of arrays,
each defining the the times at which each neuron should spike e.g. spike_times=[[0], [1]] means that
the first neuron will spike at Oms and the second at 1ms.

e SpikeSourcePoisson - this sends spikes at random times with a mean rate of rate spikes per
second, starting at time start (0.0ms by default) for a duration of duration milliseconds (the whole
simulation by default).

Using PyNN with SpiNNaker
In addition to the above steps, sPyNNaker requires the additional step of configuration via the

.spynnaker.cfg file to indicate which physical SpiNNaker machine is to be used. This file is located in your
home directory, and the following properties must be configured:

[Machine]
machineName = None
version = None

The machineName refers to the host or IP address of your SpiNNaker board. For a 4-chip board that you
have directly connected to your machine, this is usually (but not always) set to 792.7168.240.253, and the
version is set to 3, indicating a “SpiNN-3" board (often written on the board itself). Most 48-chip boards are
given the IP address of 192.7168.240.1 with a version of 5.

The range of delays allowed when using sPyNNaker depends upon the timestep of the simulation. The
range is 1 to 144 timesteps, so at 1ms timesteps, the range is 1.0ms to 144.0ms, and at 0.1ms, the range is
0.1ms to 14.4ms.

The default number of neurons that can be simulated on each core is 256; larger populations are split up
into 256-neuron chunks automatically by the software. Note though that the cores are also used for other
things, such as input sources, and delay extensions (which are used when any delay is more than 16
timesteps), reducing the number of cores available for neurons.

Spike-Time-Dependent Plasticity

STDP plasticity is a form of learning that depends upon the timing between the spikes of two neurons
connected by a synapse. It is believed to be the basis of learning and information storage in the human
brain.

In the case where a presynaptic spike is followed closely by a postsynaptic spike, then it is presumed that
the presynaptic neuron caused the spike in the postsynaptic neuron, and so the weight of the synapse
between the neurons is increased. This is known as potentiation.

If a postsynaptic spike is emitted shortly before a presynaptic spike is emitted, then the presynaptic spike
cannot have caused the postsynaptic spike, and so the weight of the synapse between the neurons is
reduced. This is known as depression.

The size of the weight change depends on the relative timing of the presynaptic and postsynaptic spikes; in
general, the change in weight drops off exponentially as the time between the spikes gets larger, as shown
in the following figure [Sjostrom and Gerstner (2010), Scholarpedia]. However, different experiments have

highlighted different behaviours depending on the conditions (e.g. [Graupner and Brunel (2012), PNAS]).
Other authors have also suggested a correlation between ftriplets and quadruplets of presynaptic and
postsynaptic spikes to trigger synaptic potentiation or depression.

pre
pre ¥
P T |

@
\\ﬁH"” Itfl.-mﬁ.r

L !
| !

post ; :

e

hetore post

STDP in PyNN

The steps for creating a network using STDP are much the same as previously described, with the main
difference being that some of the projections are given an synapse_dynamics argument to describe the
plasticity. Here is an example of the creation of a projection with STDP:

timing_rule = p.SpikePairRule(tau_plus=20.0, tau_minus=20.0)
weight_rule = p.AdditiveWeightDependence(
w_max=5.0, w_min=0.0, A plus=0.5, A_minus=0.5)

stdp_model = p.STDPMechanism(
timing_dependence=timing_rule, weight_dependence=weight_rule)

stdp_projection = p.Projection(
pre_pop, post_pop, p.OneToOneConnector(weights=0.0, delays=5.0),
synapse_dynamics=p.SynapseDynamics(slow=stdp_model))

In this example, firstly the timing rule is created. In this case, it is a SpikePairRule, which means that the
relative timing of the spikes that will be used to update the weights will be based on pairs of presynaptic
and postsynaptic spikes. This rule has two required parameters, tau_plus and tau_minus which describe
the respective exponential decay of the size of the weight update with the time between presynaptic and
postsynaptic spikes. Note that the decay can be different for potentiation (defined by tau_ plus) and
depression (defined by fau_minus). This rule also accepts a parameter of nearest (by default this is False).
If set to true, only the nearest pairs of spikes are considered when looking at weight updates.

The next thing defined is the weight update rule. In this case it is a AdditiveWeightDependence, which
means that the weight will be updated by simply adding to the current weight. This rule requires the
parameters w_max and w_min, which define the maximum and minimum weight of the synapse
respectively, and the parameters A_plus and A_minus which define the maximum weight to respectively
add during potentiation or subtract during depression. Note that the actual amount added or subtracted will
depend additionally on the timing of the spikes, as determined by the timing rule.

In addition, there is also a MultiplicativeWeightDependence supported, which means that the weight
change depends on the difference between the current weight and w_max for potentiation, and w_min for
depression. The value of A_plus and A_minus are then respectively multiplied by this difference to give the

maximum weight change; again the actual value depends on the timing rule and the time between the
spikes.

The timing and weight rules are combined into a single STDPMechanism object which describes the overall
desired mechanism. This is finally specified as the slow argument of a SynapseDynamics object, and then
added to the Projection using the synapse_dynamics argument. Note that the projection still requires the
specification of a Connector which includes weights and delays. This connector is still used to describe the
overall connectivity between the neurons of the pre- and post-populations, as well as the delay values
which are unchanged by the STDP rules, and the initial weight values. It is preferable that the initial
weights fall between w_min and w_mayx; it is not an error if they do not, but when the first update is
performed, the weight will be changed to fall within this range.

Note: In the implementation of STDP on SpiNNaker, the plasticity mechanism is only activated when the
second presynaptic spike is received at the postsynaptic neuron. Thus at least two presynaptic spikes are
required for the mechanism to be activated.

Task 1.1: A simple neural network [Easy]

This task will create a very simple network from scratch, using some of the basic features of PyNN and
SpiNNaker.

Write a network with a 1.0ms time step, consisting of two input source neurons connected to two
current-based LIF neurons with default parameters, on a one-to-one basis, with a weight of 5.0 nA and a
delay of 2ms. Have the first input neuron spike at time 0.0ms and the second spike at time 1.0ms. Run the
simulation for 10 milliseconds. Record and plot the spikes received against time.

Task 1.2: Changing parameters [Easy]

This task will look at the parameters of the neurons and how changing the parameters will result in different
network behaviour.

Using your previous script, set tau_syn_E to 1.0 in the IF_curr_exp neurons. Record the membrane
voltage in addition to the spikes. Print the membrane voltage out after the simulation (you can plot it if you
prefer, but you should note that the array returned from get_v() contains a list of [neuron_id, time, voltage]
and so you will need to separate out the voltages of the individual neurons).

1. Did any of the neurons spike?
2. What was the peak membrane voltage of any of the neurons, compared to the default threshold
voltage of -50mV?

Try increasing the weight of the connection and see what effect this has on the spikes and membrane
voltage.

Task 2.1: Synfire Chain [Moderate]

This task will create a network known as a Synfire chain, where a neuron or set of neurons spike and cause
activity in an ongoing chain of neurons or populations, which then repeats.

Setup the simulation to use 1ms timesteps.

Create an input population of 1 source spiking at 0.0ms.

Create a synfire population with 100 neurons.

With a FromListConnector, connect the input population to the first neuron of the synfire population,
with a weight of 5nA and a delay of 1ms.

5. Using another FromListConnector, connect each neuron in the synfire population to the next
neuron, with a weight of 5nA and a delay of 5ms.

~oobh -

6. Connect the last neuron in the synfire population to the first.
7. Record the spikes produced from the synfire populations.
8. Run the simulation for 2 seconds, and then retrieve and plot the spikes from the synfire population.

Task 2.2: Random Values [Easy]

Update the network above so that the delays in the connection between the synfire population and itself are
generated from a uniform random distribution with values between 1.0 and 15.0. Update the run time to be
5 seconds.

Task 3.1: Balanced Random Cortex-like Network [Hard]

This task will create a network that this similar to part of the Cortex in the brain. This will take some input
from outside of the network, representing other surrounding neurons in the form of poisson spike sources.
These will then feed into an excitatory and an inhibitory network set up in a balanced random network. This
will use distributions of weights and delays as would occur in the brain.

1. Set up the simulation to use 0.1ms timesteps.

2. Choose the number of neurons to be simulated in the network.

3. Create an excitatory population with 80% of the neurons and an inhibitory population with 20% of
the neurons.

4. Create excitatory poisson stimulation population with 80% of the neurons and an inhibitory poisson
stimulation population with 20% of the neurons, both with a rate of 1000Hz.

5. Create a one-to-one excitatory connection from the excitatory poisson stimulation population to the
excitatory population with a weight of 0.1nA and a delay of 1.0ms.

6. Create a similar excitatory connection from the inhibitory poisson stimulation population to the
inhibitory population.

7. Create an excitatory connection from the excitatory population to the inhibitory population with a
fixed probability of connection of 0.1, and using a normal distribution of weights with a mean of 0.1
and standard deviation of 0.1 (remember to add a boundary to make the weights positive) and a
normal distribution of delays with a mean of 1.5 and standard deviation of 0.75 (remember to add a
boundary to keep the delays within the allowed range on SpiNNaker).

8. Create a similar connection between the excitatory population and itself.

9. Create an inhibitory connection from the inhibitory population to the excitatory population with a
fixed probability of connection of 0.1, and using a normal distribution of weights with a mean of -0.4
and standard deviation of 0.1 (remember to add a boundary to make the weights negative) and a
normal distribution of delays with a mean of 0.75 and standard deviation of 0.375 (remember to add
a boundary to keep the delays within the allowed range on SpiNNaker).

10. Create a similar connection between the inhibitory population and itself.

11. Initialize the membrane voltages of the excitatory and inhibitory populations to a uniform random
number between -65.0 and -55.0.

12. Record the spikes from the excitatory population.

13. Run the simulation for 1 or more seconds.

14. Retrieve and plot the spikes.

The graph should show what is known as Asynchronous Irregular spiking activity - this means that the
neurons in the population don’t spike very often and when they do, it is not at the same time as other
neurons in the population.

Task 3.2: Network Behavior [Moderate]

Note in the above network that the weight of the inputs is the same as the mean weight of the excitatory
connections (0.1nA) and that the mean weight of the inhibitory connections is 4 times this value (-0.4nA).
Try setting the excitatory connection mean weight and input weights to 0.11nA and the inhibitory mean

weight to -0.44nA, and see how this affects the behavior. What other behavior can you get out of the
network by adjusting the weights?

Task 4.1: STDP Network [Easy]

This task will create a simple network involving STDP learning rules.

Write a network with a 1.0ms time step consisting of two single-neuron populations connected with an
STDP synapse using a spike pair rule and additive weight dependency, and initial weights of 0. Stimulate
each of the neurons with a spike source array with times of your choice, with the times for stimulating the
first neuron being slightly before the times stimulating the second neuron (e.g. 2ms or more), ensuring the
times are far enough apart not to cause depression (compare the spacing in time with the tau_plus and
tau_minus settings); note that a weight of 5.0 should be enough to force an IF_curr_exp neuron to fire with
the default parameters. Add a few extra times at the end of the run for stimulating the first neuron. Run the
network for a number of milliseconds and extract the spike times of the neurons and the weights.

You should be able to see that the weights have changed from the starting values, and that by the end of
the simulation, the second neuron should spike shortly after the first neuron.

Task 4.2: STDP Parameters [Easy]

Alter the parameters of the STDP connection, and the relative timing of the spikes. Try starting with a large
initial weight and see if you can get the weight to reduce using the relative timing of the spikes.

Task 5: STDP Curve [Hard]

This task will attempt to plot an STDP curve, showing how the weight change varies with timing between
spikes.

1. Set up the simulation to use a 1ms time step.

2. Create a population of 100 presynaptic neurons.

3. Create a spike source array population of 100 sources connected to the presynaptic population. Set
the spikes in the arrays so that each spikes twice 200ms apart, and that the first spike for each is
1ms after the first spike of the last e.g. [[0, 200], [1, 201], ...] (hint: you can do this with a list
comprehension).

4. Create a population of 100 postsynaptic neurons.

5. Create a spike source array connected to the postsynaptic neurons all spiking at 50ms.

6. Connect the presynaptic population to the postsynaptic population with an STDP projection with an
initial weight of 0.5 and a maximum of 1 and minimum of 0.

7. Record the presynaptic and postsynaptic populations.

8. Run the simulation for long enough for all spikes to occur, and get the weights from the STDP
projection.

9. Draw a graph of the weight changes from the initial weight value against the difference in
presynaptic and postsynaptic neurons (hint: the presynaptic neurons should spike twice but the
postsynaptic should only spike once; you are looking for the first spike from each presynaptic
neuron).

Graph Front End Lab Manual

The task is to build a python program that uses the Graph Front End (GFE).

Summary

This python script should use the GFE to instantiate a working example of the Conway’s
Game of Life'. Conway’s Game of Life consist of a 2D fabric of cells, each of which has 2
states. These states are either Alive or Dead, and switching between these two states is
decided upon the states of their 8 neighbouring cells.

The rules which dictate the changing of state are as follows:

1. Any live cell with fewer than two live neighbours dies, as if caused by
underpopulation.

2. Any live cell with two or three live neighbours lives on to the next generation.

3. Any live cell with more than three live neighbours dies, as if caused by
overpopulation.

4. Any dead cell with exactly three live neighbours becomes a live cell, as if by
reproduction.

The application needs to be able to handle different initial states of the cells within the 2d
fabric, but the default states for tasks 1 to 8 should look like Figure 1 and for task 9 to 13
should look like Figure 2.

(L1 1]
C | mm
.)
(T T
(T |
I—hji | u
] |]
 EEEE B EEEE =
| EE EEN __E=Es
[mm T 111 111
- EE EEE =N
(T - EEEE B EEEE =
] | m |]
[. m |]
B B O [m
(T - | EEEEE W
(T I1] EE EEEN
EE ___EN T -
(T | N N
(I T 1 | W N
EEEEE W — mm
H BN BN T T
1 11 1111
Figure 1: Basic initial state (7 by 7 grid) Figure 2: Advanced State (28 by 28 grid)

' https://en.wikipedia.org/wiki/Conway's_Game_of_Life

Step 1 (Easy)

Create a python class which will represent a Conway Cell.

Step 2 (Easy)

Build a python script which builds a collection of Conway cells (as vertices) in the GFE
machine graph to form a 7x7 grid (hint: use the add_machine_vertex_instance() functionality
supplied with the GFE __init__.py interface to add vertex instances). Add edges between
the cells.

Step 3 (Medium)

Build the c code that represents the functionality that will run on the SpiNNaker machine. It'll
be easier to use the interfaces provided in simulation.h and data_specification.h.

At this point running the script should not produce errors, but you won't be able to tell what's
happening inside.
Step 4 (Medium)

Add a data region for storing the state per timer tick iteration in SDRAM into both the ¢ and
python class. Add code to store the data in C and retrieve it from the machine in python.

Step 5 (Easy)
Build a simple text-based visualiser to replay a simulation run using the stored state.

At this point you should be able to run the simulation and get a textual display of the state of
the simulation per timer tick.

Step 6 (Hard)

Stream the state of the simulation to the host PC during the simulation run. Display the
output as text as the simulation runs.

Step 7 (Medium)

Use the tubogrid perl application supplied within spinnaker_tools to create a live
visualisation of the simulation, or build your own.

Step 8 (Easy)

Try building a 28x28 grid of cells and see what happens. Can you explain why it doesn't
work? What ways could you go about making it work (hint: there's at least 3 ways of doing
this)?

Step 9 (Fiendishly Hard)

Convert your application so that instead of using machine vertices, you use an application
vertex to represent the entire grid of cells. Note that this will require you to receive and
interpret several ids from each base routing key (hint: sPyNNaker does this using something
called a population table to map between a base key and a block of connections).

Step 10 (Easy)

Run your new simulation with both sets of initial parameters. Try scaling up so that you hit
the limits of the system to simulate the application, and therefore make the CPU calculation
correct so that the partitioner will stop you going over the limits.

Step 11 (Medium)

Upgrade turbogrid or your own visualisation to use the database so that it auto configures
itself for the shape of the application space.

Step 12 (Epically Hard)

Build your own application for SpiNNaker using the GFE front end.

Simple Data Input Output and Visualisation on
Spinnaker - Lab Manual

1. Introduction

This manual will introduce you to the basics of live retrieval and injection of data (in the form of
spikes) for PyNN scripts that are running on SpiNNaker neuromorphic hardware.

2. Installation
In addition to sPyNNaker, the sPyNNakerExternalDevicesPlugin must also be installed.

3. PyNN Support

This section discusses the standard support from PyNN related to spike injection and retrieval.

3.1 Output

The standard support for data output for a platform such as SpiNNaker, through the PyNN
language, is to use the methods record(), record_v(), for declaring the need to record, and
get_Spikes(), get_v(), for retrieval of the specific data.

The issue with the get functions are that they are called after run() completes, and therefore are
not live, and so not able to interact with an external device running in real-time. In the current
implementation of sPyNNaker, all of the data declared to be recorded via record(), record_v(),
is stored on the SDRAM of the chips that the corresponding populations were placed on. By
writing the data to SDRAM, the data is stored locally and therefore is guaranteed to be read at
some point in the future. In the current implementation, if the memory requirements for
recording cannot be met, the model will be run for less time, paused whilst the data is extracted,
and then resumed. This may be repeated a number of times until the whole simulation has
completed.

When used with an external simulation, it is possible to call run a number times, extracting the
data between each run and passing it to an external simulation. This mode of operation will not
work if the external device or simulation cannot also be paused.

3.2 Input

The standard support for data input for a platform such as SpiNNaker, through the PyNN
language, is to use the neural models SpikeSourceArray and SpikeSourcePoisson. The issue
with both of these models is that they are either random rate based (the spikeSourcePoisson) or
have to be supplied in advance with all the spikes to be sent (SpikeSourceArray). As with the
output of spikes, it is possible to change the input spikes of a SpikeSourceArray between
successive calls to run(). Again, this will only work if the external device or simulation can be
paused.

4. External Device Plugin Support

As stated previously, the issue with this is that PyNN 0.7 expects its run() method to block for
the entire time of the run, and therefore it is impossible to set up a real time extraction or
retrieval of data via this FrontEnd (sPyNNaker), and has no current support for live retrieval or
live injection.

It is worth noting that future releases of PyNN may use the MUSIC interface to support live
injection and retrieval of spikes, but the current software version of sPyNNaker only supports
PyNN 0.7 and therefore there is no built in support.

To compensate for this, the sPyNNakerExternalDevicesPlugin module was created that
contains support for live injection and retrieval of spikes from a running PyNN 0.7 simulation
during the simulation, whilst still maintaining the real-time operation of the simulation.

4.1 Live Output

To activate live retrieval from a given population, the command
activate_live_output_for(<Population_object>)

is used. This informs the sPyNNaker backend to add the supporting utility model (Live packet

gatherer) into the graph object (which sPyNNaker uses to represent your PyNN neural models)

and an edge between your population and the associate LPG for your ports.

Other parameters for the activate_live_output_for() function are defined below:

Parameter Description

port The port number to receive packets from the SpiNNaker
machine.

database notify _host The hostname for the database notification protocol; by default

the localhost is used, but any external host could act as a
receiver, provided it can read the file system that the database
is written to.

database_notify_port_num | The port number for the database notification protocol; by
default database notifications are sent to port 19998. However
this can be changed if there is more than one listener, or a
separate listener for each population.

database ack port_num The port number that the database notification protocol will
listen to, to receive the acknowledgement packet that the
database has been read. By default this is 19999. It is unlikely
that this needs to be changed.

4.2 Live Injection

To activate the live injection functionality, you need to instantiate a new neural model (called a
Spikelnjector) which is located in spynnaker_external_devices_plugin.pyNN.Spikelnjector

The Spikelnjector is considered as any other neural model in PyNN, so you can build a
population with a number of neurons etc in the normal way, as shown below:

injector_forward = Frontend.Population(

5, ExternalDevices.SpikeInjector, [‘port’: 12367],
label="spike_injector_forward")

The key parameters of the Spikelnjector are as follows:

Parameter Description

port

The port that packets are going to be sent to
on the SpiNNaker system - must be one per
injector, but any port other than 17893 or
54321 can be used (these are reserved for
SpiNNaker operations).

virtual_key The base routing key that the spike injector is

going to use for routing. This parameter is
optional.

4.3 Python Live reciever
The following block of code creates a live packet receiver to receive spikes from a live

simulation:

1

W oONOUVTEA WN

declare python code when received spikes for a timer tick
def receive_spikes(label, time, neuron_ids):
for neuron_id in neuron_ids:
print “Received spike at time {} from {}-{}”.format(
time, label, neuron_id)

import python live spike connection
from spynnaker_external_devices_plugin.pyNN.connections.\
spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection

set up python live spike connection
live_spikes_connection = SpynnakerLiveSpikesConnection(
receive_labels=[“receiver”])

register python receiver with live spike connection
live_spikes_connection.add_receive_callback(“receiver”, receive_spikes)

1. Lines 1 to 5 creates a function that takes as its input all the neuron ids that fired at a
specific time, from the population with the given label. From here, it generates a print
message for each neuron.

2. Lines 7 to 9 imports the python support for live injection/live retrieval. The
SpynnakerLiveSpikesConnection handles both live retrieval and live injection.

3. Lines 11 to 13 instantiates the SpynnakerLiveSpikesConnection, and informs the
connection that it will receive data under the label “receiver”.

4. Lines 15 to 16 informs the connection that any packets being received with the “receiver”
label need to be forwarded to the function receive_spikes defined on lines 1 to 5.

This script must be run in advance of the script that sets up the simulation. The
SpynnakerLiveSpikesConnection will listen for the simulation script to complete the setup
operations and so starts synchronized with the simulation. It is possible to run the reception of
spikes within the same script as the simulation; to do this, ensure that the above code is placed
before the call to run().

If you need more than one SpynnakerLiveSpikesConnection on the same host, the connection
can take an additional parameter specifying the local port to listen on for notifications from the
simulation, by specifying the local_port parameter in the constructor e.qg.:

live_spikes_connection_1 = SpynnakerLiveSpikesConnection(

receive_labels=[“receiver”], local_port=19996)
live_spikes_connection_2 = SpynnakerLiveSpikesConnection(

receive_labels=[“receiver_2”], local_port=19997)

Note that you must then also tell the simulation side that these ports are in use. This can be
done when calling activate live output for for the population by specifying the
database_notify_port_num parameter e.g.
activate_live output_for(receiver, database_notify port_num=19996)
activate_live_ output_for(receiver_2, database_notify_ port_num=19997)

4.4 Python Live injector
The following block of code creates a live packet injector:

create python injector
def send_spike(label, sender):
sender.send_spike(label, 0, send_full keys=True)

1

2

3

5

6 # import python injector connection

7 from spynnaker_external_devices_plugin.pyNN.connections.\
8 spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection
9

10 # set up python injector connection

11 live_spikes_connection = SpynnakerLiveSpikesConnection(
12 send_labels=[“spike_sender”])

13

14 # register python injector with injector connection

15 live_spikes_connection.add_start_callback(“spike_sender”, send_spike)

1. Lines 1 to 3 create a function that will be called when the simulation starts, allowing the
synchronized sending of spikes.

2. Lines 6 to 8 imports the python support for live injection/live retrieval. The
SpynnakerLiveSpikesConnection handles both live retrieval and live injection.

3. Lines 10 to 12 instantiates the SpynnakerLiveSpikesConnection, and informs the
connection it will inject data via the label spike_sender.

4. Lines 14 to 15 informs the connection that when the simulation starts, to call the
send_spike function defined on lines 1 to 3.

As with the live reception script, this must be called before the simulation script, or before run()
in the simulation script.

4.5 C++ Implementation of SpyNNakerLiveSpikesConnection and Visualiser
The host C++ version of the Python “SpynnakerLiveSpikesConnection” and example visualiser
is currently available from the following locations:
https://spinnakermanchester.github.io/latest/visualiser_code_zip.html
https://spinnakermanchester.github.io/latest/visualiser_code_tar_gz.html
This source code must be compiled before use, and depends on the pthread and sqlite libraries
for the library itself, and the freeglut and opengl libraries for the example visualiser application.
A Makefile exists at the top level folder which will make both the spynnaker_external_device_lib
library and the example visualiser, but each can be made separately by running make in the
appropriate subdirectory.

Dependency Installation

On OSX, using Macports, you can install the dependencies as follows:
sudo port install freeglut sqlite3

On Linux, you can install the dependencies as follows (depending on if you are using Fedora or
Ubuntu):

sudo yum install

sudo apt-get install

On Windows, the dependencies are included.

spynnaker_external_device_lib

The C++ implementation is designed to be similar to the Python implementation. A number of
sample applications are provided within the spynnaker_external_device_lib/examples folder
which show how the API can be used.

c_based_visualiser_framework
This contains an example visualiser for producing a spike raster plot, and is based on the
spynnaker_external_device_lib.

The visualiser application can accept 4 parameters. These are defined below:

Parameter Description

-colour_map Path to a file containing the population labels to receive, and
their associated colours. This must be specified.

-hand_shake_port Optional port which the visualiser will listen to for database
handshake (default is 19998).

-database Optional file path to where the database is located, if needed for
manual configuration.

-remote host Optional remote host address of the SpiNNaker board, which
allows port triggering if allowed by your firewall.

7.1 colour_map file format
The colour_map file consists of a collection of lines, where each line contains 4 values
separated by tabs. These values, in order are:
1. The population label.
2. The red colour value.
3. The green colour value.
4. The blue colour value.
An example file is shown below:
spike_forward© 7] 255
spike_backwards %] 255 %]

5. Database Notification protocol

The support built behind all this software is a simple notification protocol on a database that’s
written during compilation time. The notification protocol is illustrated below:

SpiNNaker

4 5. Sends executables,
starts simulation

=
sPyNNaker front end | %
1. Writes Database |
h
Database

3. Reads |Database

2. send EIEIO command message

saying database ready to read

— Visualiser

6. Sends EIEIO Data packets which

contain live spikes

~

aniaoal 0} Apeal Jasijensia Buifes
abessall puelIWOod O|J|3 puas ‘¥

The steps within the notification protocol are defined below:

1.

The sPyNNaker front end writes a database that contains all the data objects generated
from sPyNNaker during the compilation process.

2. The naotification protocol sends a message to all the notification protocol listeners
containing the path to the database to be read. The SpynnakerLiveSpikesConnection
Python and C implementations are set up to receive this message.

3. These devices then read the database to determine the information required. This
includes the port to listen on to receive live output spikes, the port to send like input
spikes to, and the mapping between SpiNNaker routing keys and neuron ids.

4. Once these devices have read the database, they notify the sPyNNaker front end that
they are ready for the simulation to start.

5. Once all devices have notified the sPyNNaker front end, the simulation begins. The
sPyNNaker front end also notifies the devices when the simulation has actually started,
in case it was still loading data when they became ready.

6. The SpiNNaker machine transmits live spike output packets and receives live spike input
packets.

6. Caveats

To use the live injection and retrieval functionality only supports the use of the Ethernet
connection, which means that there is a limited bandwidth of a maximum of approx 30 MB/s.
This bandwidth is shared between both types of functionality, as well as system support for
certain types of neural models, such as the SpikeSourceArray.

Furthermore, this functionality depends upon the lossy communication fabric of the SpiNNaker
machine. This means that even though a neuron fires a spike you may not see it via the live
retrieval functionality. If you need to ensure you receive every packet that has been transmitted,
we recommend using the standard PyNN functionality.

By using this functionality, you are making your script non portable between different simulators.
The activate_live_output_for(<pop_object>) and Spikelnjector models are not supported by
other PyNN backends (such as Nest, Brian etc).

Finally, this functionality uses a number of additional SpiNNaker cores. Therefore a network
which would just fit onto your SpiNNaker machine before would likely fail to fit on the machine
when these functionalities are added in.

8. Tasks

Task 1.1: A synfire chain with injected spike via python injector [Easy]

This task will create a synfire chain which is stimulated from a injector spike generated on host
and then injected into the simulation. Start with the synfire chain from PyNNExamples.

Remove the spike source array population.

Replace it with the Spikelnjector population.

Build a python injector function.

Import and instantiate an SpynnakerLiveSpikesConnection connection.

link a start callback to the python injector function.

ok wbd =~

Task 1.2: A synfire chain with live streaming via the python receiver [Easy]
Start with the synfire chain from PyNNExamples.
1. Call activate_live_output_for(<pop_object>) on the synfire population.
2. Build a python receiver function that prints out the neuron ids for the population.
3. Import and instantiate a SpynnakerLiveSpikesConnection connection.
4. Link a receive callback to the python receiver function and print when a spike is
received.

Task 1.3: A synfire chain with live injection and streaming via python [Easy]
Take the code from the previous 2 tasks and integrate them together to produce one that injects
and streams the packets back to the terminal.
1. Remember that you can use both the recieve labels and send_labels of the same
SpynnakerLiveSpikesConnection.

Task 1.4: A synfire chain with live injection via python and live streaming

via the c visualiser [Medium]

Take the code from the previous task and remove the python receiver code (or don't if you feel
confident) and activate the visualizer to take the packets the original python receiver code
processed.

1. Remember to compile the visualiser
2. Remember to generate the correct colour_map
3. Remember to remove the python receiver code (or don’t if you're feeling confident).

Task 1.5: 2 Synfire chains which set each other off using python injectors
whilst still using the c visualiser [Very Hard]
Take the code from the previous task and modify it so that there are two synfire populations
which are tied to one injector population. Modify the receive function so that it contains some
logic that fires the second neuron when the last neuron in the first synfire fires, and does the
same when the last neuron for the second synfire sets off some neuron id of the first synfire
chain.
1. you will need to change the number of neurons the spike injector contains.
2. You will need to change the connector from the spike injector and each synfire
population.
3. You will need to modify the receive function, and add a global variable for the
SpynnakerLiveSpikesConnection.
4. Youll need at least 2 SpynnakerLiveSpikesConnection and multiple
activate_live_output_for(<pop_objevt>) for each population.
5. Remember that each population can only be tied to one LivePacketGatherer, so to
visualise and do closed loop systems require more populations.
6. You will need to modify the c visualiser colour_map to take into account the new synfire
population.

Task 1.6: 2 Synfire chains which set each other off using python injectors

and live retrieval with 2 visualiser instances [Very Hard/Easy]
This task takes everything you've learnt so far and raises the level. Using the code from the
previous task. Create two visualiser instances, each of which only processes one synfire
population.
1. Remember all the lessons from the previous tasks.
2. Remember to change the ports on the activate live_output for(<pop_ object>)
accordingly.
3. You will need to create at least 2 SpynnakerLiveSpikesConnection’s. But it might be
worth starting with 3 and reducing it to two once you’ve got it working.
4. Remember the different colour_maps

Task 2.1: A simple synfire chain with a injected spike via c injector [Easy]

This task requires that you replace the injector from task 1.1 with a c injector.
1. Remember to import the correct header file.
2. Remember to use c syntax.

Task 2.2: A simple synfire chain with live streaming via the c receiver [Easy]

This task requires that you replace the receiver from task 1.2 with a c receiver.
1. Remember to import the correct header file.

2. Remember to use c syntax.

Task 2.3: A simple synfire chain with live injection and live streaming via C
[Easy]

This task requires that you replace the injector and receiver from task 1.3 with a c injector and
receiver.

1. Remember to import the correct header file.

2. Remember to use c syntax.

Task 2.4: A simple synfire chain with live injection via ¢ and live streaming
via the c visualiser [Medium]
This task requires that you replace the injector from task 1.4 with a c injector and to set up the
visualiser.

1. Remember to import the correct header file.

2. Remember to use c syntax.

3. Remember to set up the visualiser correctly.

Task 2.5: 2 Synfire chains which set each other off using c injectors
[Medium]
This task requires that you replace the injectors and receivers from task 1.5 with ¢ injectors and
receivers and to set up the visualiser.

1. Remember to import the correct header file.

2. Remember to use c syntax.

Task 2.6: 2 Synfire chains which set each other off using c injectors and live
retrieval with 2 visualiser instances [Hard]
This task requires that you replace the injectors and receivers from task 1.6 with c injectors and
receivers and to set up the visualiser.

1. Remember to import the correct header file.

2. Remember to use c syntax.

3. Remember to set up the visualisers correctly.

Task 3: Create some model which uses all interfaces [Very Hard]
This task is the merging of all the functionalities covered in this lab manual. Take the codes
from both task 2.6 and 1.6 and integrate them together so that:
1. One injector is controlled by the ¢ code, whilst another is done via the python interface.
2. Still uses 2 visualisers to stream the results.
3. Uses the python receive interface to count 5 firings of a given neuron id and then
changes the neuron stimulated by the python injector.
Hint: remember to keep a global connection object for the python codes.

10

Creating New Neuron Models for SpiNNaker

Introduction

This manual will guide you in the creation of new neuron models to be run on SpiNNaker. This includes the
C code that will be compiled to run on the SpiNNaker hardware, as well as the Python code which interacts
with the PyNN script to configure the model.

Installation
In order to create new models, you will need to ensure that you have set up a development environment
suitable for compiling C code for SpiNNaker. This can be done by following the instructions here:

http://spinnakermanchester.github.io/latest/spynnaker extensions.html

Project Layout

The recommended layout for a new model project is shown below; this example shows a model called
“my_model”, with current-based exponential synapses. It is recommended that the C and Python code is
kept in the same project to help keep them synchronized.

C code

v & c_models
~ (5 srC
~ [neuron
~ [additional_inputs
[% my_additional_inputh
~ & builds
~ [my_model_curr_exp

& build
@ Makefile

> =% my_maodel_curr_exp_my_additional_input

% my_model_curr_exp_my_threshold

» =% my_model_curr_exp_stdp_mad_my_timing_my_weight

= my_model_curr_my_synapse_type
= Makefile.common
~ [models
[# my_neuron_model_impl.c
[#) my_neuron_model_implh
=y plasticity
~ [y synapse_types
[synapse_types_my_impl.h
~ [threshold_types
[# my_threshold_type.h
Li Makefile
= Makefile.common
@ Makefile

Python code

~ H examples
[_init_.py
[# my_example.py
~ i python_models
B3 connectors
» H§ model_binaries

~ H3 neuron
~ f} additional inputs
B _init__
B my_addltlonal_input.py
~ & builds
] _init__py

[l my_model_curr_exp_my_additional_input.py
[} my_model_curr_exp_my_threshold.py
[my_model_curr_exp.py
[} my_model_curr_my_synapse_type.py
~ f} neuron_models
[_init_.py
[l my_neuron_model.py
~ H#} plasticity
% stdp
[_init_.py
~ B synapse types
[_init_
B my_synapse_type.py
~ f threshold types
B _init_
] my_threshold_type.py
@ _init_.py

This template structure can be downloaded from one of the following locations:
https://spinnakermanchester.github.io/latest/spynnaker_new_model_template_zip.html

https://spinnakermanchester.qithub.io/latest/spynnaker_new_model_template tar_gz.html

http://spinnakermanchester.github.io/latest/spynnaker_extensions.html
https://spinnakermanchester.github.io/latest/spynnaker_new_model_template_zip.html
https://spinnakermanchester.github.io/latest/spynnaker_new_model_template_tar_gz.html

C model builds

All neuron builds consist of a collection of components which when connected together produce a complete
neural model. These components are defined in Table 1.

Component

Definition

Input component

The type of input the model takes. Currently there are conductance and
current based inputs supported by sPyNNaker. It is possible to define
other input types, but this is not described in this tutorial.

Synapse type component

The synapse type controls the shaping of the synapses in response to the
input weights. Within sPyNNaker, support so far includes exponential
synapses (with one excitatory and one inhibitory synapse per neuron
which decay exponentially with a configured time-constant) and
dual-excitatory exponential synapses (with 2 separate excitatory synapses
and one inhibitory synapse per neuron, decaying as per the previous type).

Threshold component

Determines the threshold of the membrane voltage which determines
when the neuron spikes. Currently the only implementation is a static
threshold.

Additional input component

Any additional input current that might be based on the membrane voltage
or other parameters. This is currently only implemented in the
SpyNNakerExtraModelsPlugin.

Neuron model component

Determines how the neuron state changes over time and the outputs the
current membrane voltage of the neuron. Currently there are IZK and LIF
implementations supported by sPyNNaker.

Synapse dynamics
component

Determines how plasticity works within the model. sPyNNaker implements
a model for no plasticity (i.e. static dynamics), and two different STDP
dynamics models. Only static dynamics are considered in this tutorial.

Table 1: Different supported components

Each build is stored within its own folder in the c_models->src->neuron->builds directory. Within each build
is a ¢ Makefile which describes the separate components required to build that specific form of Neuron

model.

If we look at the simple my_model_curr_exp’s makefile located in:
¢_models->src->neuron->builds->my_model_curr_exp->Makefile
we can see the lines show in Code 1.

BUILD_DIR = build/

©CoN>OhWN =

10.

APP = $(notdir $(CURDIR))

NEURON_MODEL = $(EXTRA_SRC_DIR)/neuron/models/my_neuron_model_impl.c
NEURON_MODEL_H = $(EXTRA_SRC_DIR)/neuron/models/my_neuron_model_impl.h
INPUT_TYPE_H = $(SOURCE_DIR)/neuron/input_types/input_type_current.h
THRESHOLD_TYPE_H = $(SOURCE_DIR)/neuron/threshold_types/threshold_type_static.h
SYNAPSE_TYPE_H = $(SOURCE_DIR)/neuron/synapse_types/synapse_types_exponential_impl.h
. SYNAPSE_DYNAMICS = $(SOURCE_DIR)/neuron/plasticity/synapse_dynamics_static_impl.c

11. include ../Makefile.common

Code 1: my_model_curr_exp’s Makefile

e Line 1 declares the name of the APP - here we are using the name of the current directory. The
aplx extension is added automatically.

e Line 2 declares the directory in which the model will be built. This is where object files and other
intermediate files are stored; the final aplx location is determined in Makefile.common (see later).

e Lines 4 and 5 states the files that make up the neuron model component (described in Table 1)
used for this model build (both the .c and .h files are needed). Note that these are stated to be in
the $(EXTRA_SRC_DIR) folder - this is declared to be the ¢c_models/src folder within the archive
within Makefile.common. The sPyNNaker standard source files are declared to be within
$(SOURCE_DIR), and these are used by other components.

e Line 6 states the input type component (described in Table 1) for this model. Input types are
implemented entirely in a header file.

e Line 7 states the threshold type component (described in Table 1) for this model. Threshold types
are implemented entirely in a header file.

e Line 8 states the synapse type component (described in Table 1) for this model. Synapse types are
implemented entirely in a header file.

Line 9 states the synapse dynamics component (described in Table 1) for this model.
Line 11 tells the make system to import the next level up Makefile so that it can detect where the
rest of the code needed to be linked in can be found.

Other Makefile instances might also include TIMING_DEPENDENCE_H and WEIGHT_DEPENDENCE_H;
these are used when the synapse dynamics includes plasticity. A tutorial on how to add new plasticity is
covered here.

To make a new Neuron model build, you must either:

1. Create a copy of the example builds discussed above,
2. Modify the names and component listings,
3. Mody Line 1 of the Makefile located in src->neuron->Makefile so that it includes your new build.

Or:

1. Change the template’s component listings directly.

Compiling a new model
Once the Makefile has been created, you can build the binary by simply changing to the directory
containing the Makefile and typing:

make

As the build relies on header files that are not explicitly specified in the Makefile, some of the changes that
you make may require you to clean the build before building it, by running
make clean

Finally, you can also build the application in debug mode by typing:
make SPYNNAKER DEBUG=DEBUG

This will enable the log_debug statements in the code, which print out information to the iobuf buffers on
the SpiNNaker machine. By default, the tools won’t extract the printed error messages. To enable this
behaviour, you can add the following to your .spynnaker.cfg file:

[Reports]
extract_iobuf=True

http://spinnakermanchester.github.io/2016.001.AnotherFineProductFromTheNonsenseFactory/spynnaker/NewPlasticityModels-LabManual.pdf

The “iobuf’ messages will then be downloaded after the execution is complete. These are stored relative to
your executing script in reports/latest/provenance_data/; each is a .txt file containing any output printed
from your program.

C code file interfaces

The rest of this section goes through the different components interfaces and tries to explain what each one
does, for the case where you need to create a new component for your neuron build.

Neuron Models
The C header file defines:

e The neuron data structure neuron_t. This includes the parameters and state for each neuron to be
executed on a core. This commonly includes the membrane voltage of the neuron, as well as an
offset input current.

e The global parameters data structure global neuron_params_t. This includes parameters that
are shared across all neurons within a population. This might include such things as the time step
of the simulation.

See neuron_model_my_model_curr_exp.h in the template for an example of a header file. Comments
show where the file should be updated to create your own model.

The C code file defines the functions that make up the interface of the neuron API. Note that pointer types
are automatically created for the data structures defined in the header as follows:

neuron_t * — neuron_pointer_t
global neuron_params_t * — global_neuron_params_pointer_t

@® void neuron_model set _global neuron_params(
global neuron_params_pointer_t params)
This function is used to set the global parameters after they have been read by the initialization
function. This would often be used to store the parameters in a static variable for later use.

@® state_t neuron_model state_update(

input_t exc_input, input_t inh_input,

input_t external_bias, neuron_pointer_t neuron)
This function takes the excitatory and inhibitory input; any external bias input (used in some
plasticity models); and a neuron data structure; and uses these to compute the new state of the
given neuron at this timestep. This function is where any differential equation solving should be
implemented. After the state update, the function should return the value of the membrane voltage.
Note that the input will always be presented as current - conductance input is converted to current
input in the input type. Additionally, the input values are all positive, including the inhibitory input;
thus if the total input current is being considered, the inhibitory input current should be subtracted
from the excitatory input current.

@ state_t neuron_model _get_membrane_voltage(neuron_pointer_t neuron)
This function should return the membrane voltage of the neuron from the given neuron structure.
This may simply return the value of a variable in the structure, or it might perform a more complex
calculation to obtain the membrane voltage. The value returned is used for the recording of the
membrane voltage in the simulation, and is taken before the state update is performed.

@® void neuron_model_has_spiked(neuron_pointer_t neuron);

This function is used to reset neuron parameters after it has spiked. It is called only if the
membrane voltage value returned from neuron_model state update is determined to be above
the threshold determined by the threshold type.

@® void neuron_model print_parameters(restrict neuron_pointer_t neuron)
This function is only used when the neuron model is compiled in “debug” mode. It should use the
“log_debug” function to print each of the parameters of the neuron that don’t change during the run,
and that might be useful in debugging.

@® void neuron_model print_state variables(restrict neuron_pointer_t neuron)
This function is only used when the neuron model is compiled in “debug” mode. It should use the
“log_debug” function to print each of the state variables of the neuron that change during a run and
that might be useful in debugging.

See neuron_model_my_impl.c in the template for an example of an implementation of the neuron interface.

A number of other modules are available for use for performing mathematical functions as part of the
neuron state update. The spinn_common library provides a number of efficient fixed-point implementations
of common functions. This includes random.h, which provides random number generation, normal.h,
which provides normal distributions, exp . h, which provides an exp function and 1log.h which provides a log
function.

Synapse types

The synapse type header file defines the synapse_param_t data structure that determines the parameters
required for shaping the synaptic input. For example, this might be done to compensate for the valve
behaviour of a synapse in biology (spike goes in, synapse opens, then closes slowly). The parameters for
all the synaptic inputs for a single neuron need to be defined in this structure; for example, if there are
different parameters for excitatory and inhibitory neurons, both of these parameters must be explicitly
defined in this structure. The structure might also contain parameters for computing the initial value that will
be added to the input buffer following a spike from a preceding neuron.

Note that the input will have already been delayed by the appropriate amount before it reaches this
function, and that the input weights from several spikes may be combined into a single weight. Additionally,
the input weights might be either current or conductance as determined by the input type. The synapse
type should not perform any conversion of the weights.

The synapse type header file also defines the functions that make up the interface of the synapse type API.
The synapse Type API requires the following interface functions to be implemented.

@® static void synapse_types_shape_input(

input_t *input_buffers, index_t neuron_index,

synapse_param_t* parameters);
Shapes the values (current or conductance) in the input buffers for the synapses of a given neuron.
The input buffers for all neurons and synapse types are given here, and the following function can
be used to obtain the index of the appropriate input buffer given the indices of the neuron and of the
synapse (e.qg. if there is an excitatory and inhibitory synapse per neuron, the indices might be 0 and
1 respectively):

index_t synapse_types_get input buffer_index(synapse_index,

neuron_index)

@® static void synapse_types_add_neuron_input(
input_t *input_buffers, index_t synapse_type_index, index_t
neuron_index,
synapse_param_t* parameters, input_t input)

Adds a synaptic weight input to the input buffer for a given synapse of a given neuron after a spike
has been received (and appropriately delayed). This allows the weight to be scaled as required
before it is added to the buffer.

@® static input_t synapse_types_get_excitatory_input(
input_t *input_buffers, index_t neuron_index)
Returns the total combined excitatory input from the buffers available for a given neuron id. Note
that if several synapses are excitatory, this function should add up the input values (or perform an
otherwise appropriate function) to return the total excitatory input value.

@® static input_t synapse_types get _inhibitory_input(
input_t *input_buffers, index_t neuron_index)
Extracts the total combined inhibitory input from the buffers available for a given neuron id. Note
that if several synapses are inhibitory, this function should add up the input values (or perform an
otherwise appropriate function) to return the total inhibitory input value. Note also that the value
should be a positive number; subtraction is performed in the neuron model as required.

@ static const char *synapse_types_get_type_char(index_t synapse_type_index)
Returns a human readable character for the type of synapse. Examples would be X = excitatory
types and | = inhibitory types.

@® static void synapse_types_print_parameters(synapse_param_t *parameters)
Prints the static parameters of the synapse type. This is currently only executed when the models
are in debug mode.

@® static void synapse_types_print_input(
input_t input_buffers, index_t neuron_index)
Prints the input for a neuron id given the available inputs. This is currently only executed when the
models are in debug mode.

See synapse_types_my_impl.h for an example of an implementation of a synapse type.

Threshold types

The threshold type header file defines the threshold_type_t data structure that declares the parameters
required for the threshold type. This might commonly include the actual threshold value amongst other
parameters. The header also defines the functions that make up the interface of the threshold type API.
The threshold Type API requires the following interface functions to be implemented.

@® static bool threshold_type_is_above_ threshold(
state_t value, threshold _type pointer_t threshold type)
Determines if the threshold has been reached; if the neuron is to spike, given the value of the state
variable, true is returned, otherwise false is returned.

Set my_threshold_type.h for an example of an implementation of a threshold type.

Additional inputs

The additional input header file defines the additional_ input_t data structure, which declares the
parameters required for the additional input. The header also defines the functions that make up the
interface of the additional input type API. The additional input Type API requires the following interface
functions to be implemented:

@® static input_t additional_input_get_input_value_as_current(
additional_input_pointer_t additional_input, state_t membrane_voltage)

Gets the value of current provided by the additional input. This may or may not be dependent on the
membrane voltage.

@ static void additional_input_has_spiked(
additional_input_pointer_t additional_input)
Notifies the additional input type that the neuron has spiked.

Python Model Builds

Once the C code has been constructed, the PyNN model must be created in Python to translate the PyNN
parameters into a form that the C code can understand. In PyNN, populations can be made up of an
arbitrary number of neurons, however to maintain real-time operation the number of neurons that are
simulated on each core must be limited. The PACMAN module is used by sPyNNaker to partition the
populations into subpopulations, based on the specified maximum number of atoms per core of the model,
as well as the resources required by the synaptic matrix. The DataSpecification module is then used to
write the data for each subpopulation. This is then loaded onto the machine, along with binary executable,
using SpiNNMan.

As with the C code, there are number of components that can be re-used, so that only properties relevant
to the new model itself need to be defined. This is done by constructing an individual component for:

1. Neuron model,

2. Input type,

3. Synapse type,

4. Threshold type,

5. Additional input.
These 5 components are then handed over to the main interface object that every neuron model has to
extend.

If we look at the my_model_curr_exp in python_models -> neuron -> builds directory, we will see the code
shown in Code 4 where the my_model_curr_exp builds its components and hands them over to the main
sPyNNaker interface. The breakdown is as follows:

1. On Lines 91 and 92 the neuron model component is created.
On Lines 96 and 97 the synapse type component is created.
On Line 101 the input type component is created.
On Line 105 the threshold type component is created.
Line 109 shows that this model does not contain any additional input components.
Lines 113 to 135 show the handing over of these separate components to the sPyNNaker main
system which will handle all the python support. Note that the binary must match the name of the
aplx file generated by the C code.

o0 k0N

89. # TODO: create your neuron model class (change if required)

90. # create your neuron model class

91. neuron_model = MyNeuronModel(

92. n_neurons, machine_time_step, i_offset, my_parameter)

93.

94. # TODO: create your synapse type model class (change if required)
95. # create your synapse type model

96. synapse_type = SynapseTypeExponential(

97. n_neurons, machine_time_step, tau_syn_E, tau_syn_1)

98.

99. # TODO: create your input type model class (change if required)
100. # create your input type model
101. input_type = InputTypeCurrent()

102.

103. # TODO: create your threshold type model class (change if required)
104. # create your threshold type model

105. threshold_type = ThresholdTypeStatic(n_neurons, v_thresh)

103.

107. # TODO: create your own additional inputs (change if required).
108. # create your own additional inputs

109. additional_input = None

110.

111. # instantiate the sPyNNaker system by initializing

112. # the AbstractPopulationVertex

113. AbstractPopulationVertex.__init_ (

114.

115. # standard inputs, do not need to change.

116. self, n_neurons=n_neurons, label=label,

117. machine_time_step=machine_time_step,

118. timescale_factor=timescale_factor,

119. spikes_per_second=spikes_per_second,

120. ring_buffer_sigma=ring_buffer_sigma,

121. incoming_spike_buffer_size=incoming_spike_buffer_size,
122.

123. # TODO: Ensure the correct class is used below

124. max_atoms_per_core=MyModelCurrExp._model_based_max_atoms_per_core,
125.

126. # These are the various model types

127. neuron_model=neuron_model, input_type=input_type,
128. synapse_type=synapse_type, threshold_type=threshold_type,
129. additional_input=additional_input,

130.

131. # TODO: Give the model a name (shown in reports)

132. model_name="MyModelCurrExp",

133.

134. # TODO: Set this to the matching binary name

135. binary="my_model_curr_exp.aplx")

Code 4: Subsection of the my_model_curr_exp.py class

Take care to note that the same components are used in the python as are used in the ¢ code’s Makefile.
This means for every new component you build for a neuron build in ¢ which is not originally supported by
the sPyNNaker tools, you need to build a corresponding python component file.

In the new_template folder there are a set of template files within the template directory for each python
component. These are located under python_models -> neuron. These detail the parts of the class that
need to be changed for your model.

Python __init__.py files

Most of the __init__.py files in the template do not contain any code. The one within python_models is the
exception; this file adds the model_binaries module to the executable paths, allowing sPyNNaker to
search this folder for your compiled binary. You can also import your module here to make it easy to use in
other scripts.

Python setup.py file
This file enables you to install the new module. This is set up to install all the modules in the template; if
you add any modules, these also need to be added to this file (it is not recursive; each module has to be

added separately). To add the module to your python environment in such a way that you can still edit it,
you can run:

[sudo] python setup.py develop [--user]
You need to use sudo if you are installing centrally on Linux or Mac OS X; on windows you need to be in an
Administrative console. Add --user instead if you want to install only for your username (you shouldn’t
mix these two options, or you will end up installing it only for the root user).

Using your module

In order to use the new module, you need to import your module in addition to PyNN e.g. for the template
module, you can do the following:

import pyNN.spiNNaker as p

from python models.neuron.builds.my model curr_exp import MyModelCurrExp

pop = p.Population(1l, MyModelCurrExp, {})

A more detailed example is shown in the template in examples/my_example.py.

Task 1: Simple Neuron Model [Easy]

This task will create a simple neural model using the template, and execute it on SpiNNaker.

1. Change the my neuron_model _impl.c and .h templates by adding two parameters, one
representing a decay and one representing a rest voltage. The parameters should be REAL values.

2. Change the model to subtract the difference between the current voltage and the rest voltage
multiplied by the decay from the membrane voltage, before adding the total input i.e.

v_membrane = v_membrane - ((v_membrane - v_rest) * decay) + input
3. Recompile the binary.

4. Update the python code model to accept the new decay and rest voltage parameters, ensuring that
they match the order of the C code (use DataType.S1615). Add getters and setters for the values
and update the number of neuron parameters.

5. Update the python code builds to accept the new parameters with default values of 0.1 for decay
and -65.0 for the rest voltage.

Run the example script and see what happens.

Task 2: Conductance-based Model [Moderate]

This task will build a conductance-based model.
1. Make a copy of the C build folder for my_model_curr_exp to my_model_cond_exp.

2. Change the Makefile so that it uses the conductance input type and ensure that the binary name is
different from the current based model.

3. Build the binary.

4. Copy the python model my_model_curr_exp.py to my_model_cond_exp.py and update the code to
use the conductance input type, including adding the new required parameters for conductance, and
the binary name and model name.

5. Update the example script to use the new model, adjusting the weights to be conductances (usually
much smaller values e.g. 0.1 should be enough)

Run the example script and see what happens.

Task 3: Stochastic Threshold Model [Hard]

This task will create a new threshold model for stochastic thresholds.

1.

8.

Update the template threshold type my_threshold type.c and .h, removing the parameter
my_param, and adding a parameter representing the probability of the neuron firing if it is over the
threshold value. This will be a uint32_t value in C (see later for details).

Add another parameter which is the seed of the random number generator. This is an array of 4
uint32_t values for the simplest random number generator in random. h (from the spinn_common
library - as this should have been installed, you can use #include <random.h>).

Update the threshold calculation so that when the membrane voltage is over the threshold voltage,
the RNG is called with the seed (mars_kiss64_seed(mars_kiss64_seed_t seed)).

Update the threshold calculation to only result in a spike if the value returned from the RNG is
greater than than the probability value.

Rebuild the my_model_curr_exp_my_threshold_type.

Update the my_threshold_type.py python code to include the new parameters, and to generate the
random seed. The probability parameter will be between 0 and 1 in Python (default of 0.5), but as
the random number generator generates an integer value, this should be converted into a uint32_t
value between 0 and 0x7FFFFFFF. The seed can be generated using a PyNN RNG, which can be
provided to the model as a parameter. Once generated, the seed should be validated using:

spynnaker.pyNN.utilities.utility calls.validate mars_kiss 64 seed(seed)
where seed is an array of 4 integer values. Note that seed will be updated in place.

Update the my_model_curr_exp_my_threshold type.py build to include the new parameters and
pass them in to the threshold type. Make rng an optional parameter, which if not set uses a new
NumpyRNG.

Update the example script to decrease the threshold value to ensure that the model fires.

Run the example script and see how the number of spikes differs for different settings of the spike
probability.

Adding new models of synaptic plasticity

August 28, 2015

Contents of package

examples/stdp _triplet.py PyNN script that reproduces experimental pro-
tocol developed by Sjdstrom et al. [2].

neural modelling/src/neuron/Makefile Makefile which lists all the neu-
ron models defined in this module.

neural modelling/src/neuron/builds/Makefile.common Makefile which
lists new STDP components defined by this module.

neural modelling/src/neuron/builds/IF curr exp stdp mad pair_additive/Makefile
Makefile to build SpiNNaker executable with spike-pair STDP rule.

neural modelling/src/neuron/builds/IF curr exp stdp mad triplet additive/Makefile
Makefile to build SpiNNaker executable with Pfister and Gerstner [1]
spike-triplet STDP rule.

neural modelling/src/neuron/plasticity /stdp/timing dependence/timing pair impl.c
C source file containing setup code for spike-pair STDP timing depen-
dence.

neural modelling/src/neuron/plasticity /stdp/timing dependence/timing pair implLh
C header file containing implementation of spike-pair STDP timing depen-
dence discussed in presentation.

neural modelling/src/neuron/plasticity /stdp/timing dependence/timing triplet impl.c
C source file containing setup code for spike-triplet STDP timing depen-
dence.

neural modelling/src/neuron/plasticity /stdp/timing dependence/timing triplet impl.h
C header file containing implementation of spike-triplet STDP rule dis-
cussed in presentation.

workshop 2015 adding synaptic_plasticity/ _ init _ .py Python mod-
ule entry point containing code to hook module into sPyNNaker and im-
port timing dependences sub-module.

workshop 2015 adding synaptic plasticity /spike pair time dependency.py
Python class to instantiate and configure spike-pair timing dependence
from PyNN.

workshop 2015 adding synaptic plasticity /spike triplet time dependency.py
Python class to instantiate and configure spike-triplet timing dependence
from PyNN.

Additional code changes

My presentation covered the code changes that are required to implement the
behaviour spike-triplet rule on SpiNNaker. However there are some other, less
interesting changes that are also required to build a functioning learning rule.
Remaining changes to Python and C are discussed in comments at the following
URL http://tinyurl.com/ouk2gj2.

Exercises

These are all more suggestions than anything else, I'd be interested to help with
any triplet-rule based experimentation.

Exercise 1

As mentioned in the presentation, the SpiNNaker package already comes with an
implementation of the full spike-triplet rule developed by Pfister and Gerstner
[1]. This is more computationally expensive than the version developed in this
workshop session, but the extra parameters may potentially allow it to better fit
experimental data. Try switching the stdp triplet.py example in the package
to use this rule, configured with the parameters fitted by Pfister and Gerstner:

timing dependence = sim.PfisterSpikeTripletRule (
tau plus=16.8, tau minus=33.7,
tau_x=101, tau_ y=114)

weight dependence = sim.AdditiveWeightDependence (
w_min=0.0, w_max=max weight,
A plus=bE—10 #* start w, A minus=7E-3 * start w,
A3 plus=6.2e—3 * start w, A3 minus=2.3E—4 x start w)

Does this actually reduce the error compared to the version developed in
this workshop? Why might this be? The talk this morning on ‘Maths & fixed
point libraries’ may give you some clues!

Exercise 2

Pfister and Gerstner [1] also fitted their model to some experimental data by
Wang et al. [3]. These follow the spike-triplet protocol shown in figure 1 which

—- .

(a) Pre-post-pre triplet (b) Post-pre-post triplet

Aty Ato At1Ato

Figure 1: Wang et al. [3] triplet protocol. Each experiment consists of 60 triplets
of spikes, one second apart.

—0.01 +0.04 5 -5 0.33 +0.04 -5 5
0.03 +0.04 10 | -10 0.344+0.04 | -10 10
0.01 £0.03 15 -5 0.22+£0.08 | -15 -5
0.24 4+ 0.06 5 -15 0.294+0.05 | -5 15

(a) Pre-post-pre triplets (b) Post-pre-post triple

Table 1: Weight changes induced by Wang et al. [3] triplet protocol.

resulted in the weight changes shown in table 1. Can you make a version of
stdp_triplet.py that reproduces this protocol?

References

[1] Jean-Pascal Pfister and Wulfram Gerstner. Triplets of spikes in a model
of spike timing-dependent plasticity. The Journal of meuroscience : the
official journal of the Society for Neuroscience, 26(38):9673-82, September
2006. ISSN 1529-2401. doi: 10.1523/JNEUROSCI.1425-06.2006. URL http:
//www.ncbi.nlm.nih.gov/pubmed/16988038.

[2] P J Sjostrom, G G Turrigiano, and S B Nelson. Rate, timing, and coopera-
tivity jointly determine cortical synaptic plasticity. Neuron, 32(6):1149-64,
December 2001. ISSN 0896-6273. URL http://www.ncbi.nlm.nih.gov/
pubmed/11754844.

[3] Huai-Xing Wang, Richard C Gerkin, David W Nauen, and Guo-Qiang Bi.
Coactivation and timing-dependent integration of synaptic potentiation and
depression. Nature neuroscience, 8(2):187-93, February 2005. ISSN 1097-
6256. doi: 10.1038/nn1387. URL http://www.ncbi.nlm.nih.gov/pubmed/
15657596.

