
PACMAN103 – Data Structure
Generator Encodings

Author: Simon Davidson

Version: 2.0

1 Command List
Command
Byte

Name Notes Implemented
In DSG Lib?

Implemented
In Spec Exec?

0x00 BREAK Halts spec execution with
an error

Y Y

0x01 NOP No operation. Can be
used as filler

Y Y

0x02 RESERVE Reserves a block of
memory ready for filling

Y Y

0x03 FREE Releases previously
reserved memory.

0x05 DECLARE_RNG Declares a new random

number generator
Y Y

0x06 DECLARE_RANDOM_DIST Declares a new random
distribution

Y Y

0x07 GET_RANDOM_NUMBER Returns a random number
drawn from the given
distribution

Y Y

0x10 START_STRUCT Begins declaration of new

structure
Y Y

0x11 STRUCT_ELEM Declare single element in
a structure

Y Y

0x12 END_STRUCT Ends declaration of new
structure

Y Y

0x1A START_PACKSPEC Begins definition of a
Packing Specification

0x1B PACK_PARAM Writes one bit field inside
a single parameter from a
bit field of a source
parameter

0x1C END_PACKSPEC Ends definition of a
Packing Specification

0x20 START_CONSTRUCTOR Begins definition of a
function to write data
structures to memory

Y Y

0x25 END_CONSTRUCTOR Ends definition of the
write function

Y Y

0x40 CONSTRUCT Invokes a constructor to
build a data structure

Y Y

0x41 WRITE Perform a simple write or
block write operation

Y Y

0x43 WRITE_STRUCT Performs a write from a
predefined structure

Y Y

0x44 BLOCK_COPY Copies a block of data
from one area to another

0x50 SWITCH_FOCUS Swap between different

reserved memory regions
to work on several at the
same time

Y Y

0x51 LOOP Set-up a loop Y Y
0x52 BREAK_LOOP Early exit from a loop Y Y
0x53 END_LOOP End of loop Y Y
0x55 IF Perform a condition and

execute the following
instructions only if the
condition is True

Y Y

0x56 ELSE Else clause for associated
IF statement

Y Y

0x57 END_IF Close block of instructions
begun with the IF
instruction

Y Y

0x60 MV Place a value in a register,

from an immediate or
another register

Y Y

0x63 GET_WR_PTR Copy current write
address to a register

Y Y

0x64 SET_WR_PTR Move the write pointer to
a new location, either
relative to the start of this
reserved memory area or
relative to the current
write pointer

Y Y

0x65 ALIGN_WR_PTR Moves the write pointer
so that it points to the
next block with a given
address granularity

Y Y

0x67 ARITH_OP Perform arithmetic
operation with operand 2
coming from a register

Y Y

0x68 LOGIC_OP Perform logical operation
with operand 2 coming
from a register

Y Y

0x6A REFORMAT Reformats a value in an
internal register

0x70 COPY_STRUCT Create an identical copy Y Y

of a structure
0x71 COPY_PARAM Copy a parameter from

one structure to another
Y Y

0x72 WRITE_PARAM Modify a single parameter
in a structure using an
immediate value or
register-held value

0x73 WRITE_PARAM_
COMPONENT

Modify a single parameter
in a structure

Y Y

0x80 PRINT_VAL Output the value of a

register to the screen
Y Y

0x81 PRINT_TXT Print a text string to the
screen

0x82 PRINT_STRUCT Prints the current state of
one structure to the
screen

Y Y

0xFF END_SPEC Cleanly ends the parsing

of the Data Spec
Y Y

Table 1- Data Spec Commands (opcodes)

1.1 Command Structure
In the version 2.0 command structure, each command is one or more 32-bit words. The format is as

follows:

Bits 29:28 Bits 27:20 Bits 18:16 Bits:15:12 Bits 11:8 Bits 7:4 Bits 3:0

Command
length

Command
code
(see table 1)

Field usage
bits

DEST_REG SRC1_REG SRC2_REG Unused

The command length field is used to indicate how many 32-bit words are required for this

command:

0b00 = 1 32-bit command word

0b01 = 2 words (command word + single data word)

0b10 = 3 words (command word + two data words)

0b11 = 4 words (command word + three data words)

Field usage bits indicate which of the three register fields are actually used by the command. These

are one-hot encoded, and are ORed together:

0b100 = Destination register

0b010 = Source 1 register

0b001 = source 2 register

The command code is an 8-bit field that follows table 1. The three register fields encoded a 4-bit

register number.

Note that when a particular register field is not used, the bits can be re-used for some command-

specific purpose (see the descriptions of the individual commands for details).

1.2 Table of Data Types
Currently, a 5-bit encoding is used for all data types. The encoding is as follows:

Text Label Meaning Encoding (5-bit)

uint8 8-bit unsigned 0x00
uint16 16-bit unsigned 0x01
uint32 32-bit unsigned 0x02
uint64 64-bit unsigned 0x03
int8 8-bit signed 0x04
int16 16-bit signed 0x05
int32 32-bit signed 0x06
int64 64-bit signed 0x07
u88 Unsigned 8.8 fixed point 0x08
u1616 Unsigned 16.16 fixed point 0x09
u3232 Unsigned 32.32 fixed point 0x0A
s87 Signed 8.7 fixed point 0x0B
s1615 Signed 16.15 fixed point 0x0C
s3231 Signed 32.31 fixed point 0x0D
u08 Unsigned 0.8 fixed point 0x10
u016 Unsigned 0.16 fixed point 0x11
u032 Unsigned 0.32 fixed point 0x12
u064 Unsigned 0.64 fixed point 0x13
s07 Signed 0.7 fixed point 0x14
s015 Signed 0.15 fixed point 0x15
s031 Signed 0.31 fixed point 0x16
s063 Signed 0.63 fixed point 0x17

Table 2 - Valid data types (5-bit encoding)

2 Detailed Command Structure

2.1 Command code 0x00: BREAK
Causes execution of the spec to halt. This will prevent a spec from containing to execute if it

accidentally finds itself in areas of zeroed memory.

Bit Range Field Name Value Notes

29:28 LENGTH 0b00 Single command word – no data
27:20 CMD_CODE 0x00 Command to halt execution of the Data Spec
18:16 FIELD_USE 0b000 No registers used

2.2 Command code 0x01: NOP
Performs no action. Can be used as a filler code.

Bit Range Field Name Value Notes

29:28 LENGTH 0b00 Single command word – no data
27:20 CMD_CODE 0x01 Command to perform no operation
18:16 FIELD_USE 0b000 No registers used

2.3 Command Code 0x02: RESERVE (memory space)
This command reserves memory in SDRAM that will be subsequently used to hold data structures for

the application. Reserved data is always in multiples of one word (32-bit) and so a request at a lower

granularity will lead to a rounding up the next 32-byte boundary.

 Reserved data is not modified, this must be done separately.

Bit Range Field Name Value Notes

29:28 LENGTH 0b01 Single command word + 32 bit data word
27:20 CMD_CODE 0x20 Reserve memory command
18:16 FIELD_USE 0b000 No registers required
7 LEAVE_UNFILLED 0b0 or 0b1 If set, space is reserved but not written to.
4:0 SLOT Any up to max

(32)
Entry number in the reserved memory table,
used to refer to this region during filling.

The second word is the size of the reserved memory region in bytes, rounded up to the next whole

word (32-bit chunk).

2.4 Command Code 0x03: FREE (memory space)
Not yet implemented. May not be required.

2.5 Command Code 0x05: DECLARE_RNG
This command declares a new source of random numbers. This allows an implementation to have

several sources (e.g. Mersenne twister) and select between them for a given random distribution.

Up to sixteen different RNGs can be defined (this should be sufficient for any network). The source

field of the RNG allows different underlying generators to be declared. By default we use source =0.

Bit Range Field Name Value Notes

29:28 LENGTH 0b01 Single command word + 32 bit data word (seed)
27:20 CMD_CODE 0x05 Indicates that we are declaring a new Random

Number Generator (RNG)
18:16 FIELD_USE 0b000 No registers required
15:12 RNG_ID Any 4-bit

(0→15)
The slot ID for this RNG source. This is used in the
declaration of Random Distributions to indicate
the source RNG from which numbers will be
drawn.

11:8 RNG_SOURCE Any 4-bit
(0→15)

Indicates the source of the random numbers. 0x0
by default. This allows for different source types
in future.

The following 32-bit word is a 32-bit unsigned (u32) value, giving the starting seed for the RNG.

2.6 Command Code 0x06: DECLARE_RANDOM_DIST
This command creates a random distribution that is used to generate random parameter values.

Each such distribution requires three pieces of information:

1. The Specific distribution (uniform, Gaussian, exponential, etc.)

2. The range of valid values (max and min)

3. The previously-defined Random Number Generator (RNG) that will be used to supply the

basic random numbers

This information is passed to the command using a parameter list with the following format:

{

 uint32 distType; // 0 = uniform, others = RESERVED

 s1615 param1; // For uniform distribution, the min value of the random number

 s1615 param2; // For uniform distribution, the max value of the random number

 uint32 rngId // The index (identifier) for the previously defined RNG

} randDistParams

This parameter list is passed to the command as follows:

Bit Range Field Name Value Notes

29:28 LENGTH 0b00 Single command word
27:20 CMD_CODE 0x06 Indicates that we are declaring a new Random

Distribution
18:16 FIELD_USE 0b000 No registers required

13:8 DIST_ID Any 6-bit

(0→63)
The slot ID for this random distribution. Up to 64
distributions are allowed.

5:0 PARAM_LIST Any 6-bit
(0→63)

List of parameters defining the random
distribution (see above)

2.7 Command Code 0x07: GET_RANDOM_NUMBER
This function returns a random value from a previously defined random distribution (defined using

command code 0x06). Values are 32-bit and are encoded as s1615 values. (In future, we might

support different return formats for random numbers, using spare bits in the command word to

encode this).

This value is written into a register.

Bit Range Field Name Value Notes

29:28 LENGTH 0b00 Single command word
27:20 CMD_CODE 0x07 Indicates that we are executing a

get_random_number command
18:16 FIELD_USE 0b100 Destination register specified
15:12 DEST_REG Any 4-bit

(0→15)
The register into which the new random value is
written

5:0 DIST_ID Any 6-bit
(0→63)

The slot ID for this random distribution. Up to 64
distributions are allowed.

2.8 Command Code 0x10: START_STRUCT
Begins the definition of data structure (equivalent to a Class definition in C++) that will be

instantiated one or more times to create a more complex data structure in memory.

As a minimum, a valid Struct block consists of a START_STRUCT command, one or more ELEM

commands and a END_STRUCT command.

Structure definitions CANNOT be embedded. To define hierarchical (nested) data structures, the leaf

nodes should be defined first, so that they can be referenced by branch nodes in the data tree (see

ELEM for details).

The START_STRUCT command has the following syntax:

Bit Range Field Name Value Notes

29:28 LENGTH 0b00 Single command word
27:20 CMD_CODE 0x10 Indicates that we are defining a new structure
18:16 FIELD_USE 0b000 No registers are required
4:0 STUCT_ID Any 5-bit

(0→31)
Handle by which this structure will be referenced.
Also, its slot number in struct table

2.9 Command Code 0x11: STRUCT_ELEM
This command declares one constituent of a structure.

There can be one or more ELEM commands between the opening START_STRUCT and the closing

END_STRUCT commands. The format of one command is as follows:

Bit Range Field Name Value Notes

29:28 LENGTH 0b00 or 0b01 Single command word (+ optional 32-bit
data word)

27:20 CMD_CODE 0x11 Indicates that we are defining a new
element for the currently open structure
definition

18:16 FIELD_USE 0b000 No registers specified
12:8 ELEM_ID 5-bit type field Slot number within this struct
4:0 ELEM_TYPE 5-bit type field Identifies the data type (see Table 2)

If an optional data word is specified, the value is supplied in the next 32-bit word. If not, zero is

assumed.

2.10 Command Code 0x12: END_STRUCT
This command closes the definition of the current structure. This structure is added to the table of

structures, in the slot specified in the original START_STRUCT command.

Bit Range Field Name Value Notes

29:28 LENGTH 0b00 Single command word
27:20 CMD_CODE 0x12 Indicates end of structure definition
18:16 FIELD_USE 0b000 No registers specified

2.11 Command Code 0x1A: START_PACKSPEC
This command begins the declaration of a packing specification (packspec), which is used to

assemble parameters that actually contain several bit fields. The pack spec is called using a

WRITE_PACK_PARAM command (code 0x73), which supplies the IDs of up to two source structures

and a single pack spec. These source structures are referred to as src0 and src1 and can each contain

up to 32 parameter values. The pack spec will create a single output parameter by combining pieces

of parameters from these source lists. The output parameter can be of any size and it is left to the

programmer to ensure that the destination of this parameter is matched in size to the pack spec’s

intended output.

A single pack spec is delimited by START_PACKSPEC and END_PACKSPEC commands. Inside, it may

contain any normal operation except a new definition: nesting of declarations is not permitted. Bit

fields of the parameter are specified using the PACK_PARAM command. Any unassigned bit fields

are assumed to be zero.

The format of the START_PACKSPEC command is as follows:

Bit Range Field Name Value Notes

29:28 LENGTH 0b00 Single command word
27:20 CMD_CODE 0x1A Command to define a packing

specification (packspec)
18:16 FIELD_USE 0b000 No registers specified
14:10 PACKSPEC_ID Any 5-bit number (up to 32

constructors allowed)
Identifier for the packspec

2.12 Command Code 0x1B: PACK_PARAM
This command assigns the bit pattern of the output parameter. The command has two command

words. The first specifies the bit range to be changed in the output parameter. The second provides

the source of the new bit pattern.

The first command word has the following format:

Bit Range Field Name Value Notes

29:28 LENGTH 0b01 Two command words
27:20 CMD_CODE 0x1B Command to assign a bit field in

the packed parameter
18:16 FIELD_USE 0b000 No registers specified
15:8 DEST_MSB 0->255 Most significant bit of the bit

field to be modified
7:0 DEST_LSB 0->255 Least significant bit of the bit

field to be modified

The second command word has the following format:

Bit Range Field Name Value Notes

29:28 ZEROES 0b00 Zeroes
27:20 SRC_START_BIT 0->255 LSB of the start of the bit field as

it appears in the source
parameter

18:16 FIELD_USE 0b000 or 0b010 Optional use of SRC1 to provide a
register value instead of a struct
parameter

11:8 SRC_REG 0->15 Optional register value used to
provide source bit pattern, only if
FIELD_USE bit 1 is set.

or
15:10 SRC_PARAM 0->31 ID of the parameter to provide

the source value, used if
FIELD_USE bit 1 is clear

9 SRC_STRUCT 0 = src0 structure,
1 = src1 structure

Choose between two supplied
structures for source values, used
if FIELD_USE bit 1 is clear

2.13 Command Code 0x1C: END_PACKSPEC
This command terminates the declaration of a single packing specification.

Bit Range Field Name Value Notes

29:28 LENGTH 0b00 Single command word
27:20 CMD_CODE 0x1C Command to close the definition

of a pack spec.
18:16 FIELD_USE 0b000 No registers specified

2.14 Command Code 0x20: START_CONSTRUCTOR
Starts the declaration of a CONSTRUCTOR, which is a sequence of instructions that generates a data

structure. This constructor can embed other constructors to permit hierarchical data structures to

be created.

A constructor is assigned a slot number that is referenced when it is invoked (using a CONSTRUCT

command). The invocation will also typically include a parameters list to customise the generation of

the data.

Bit Range Field Name Value Notes

29:28 LENGTH 0b00 Command word
27:20 CMD_CODE 0x60 Command to define a

CONSTRUCTOR
18:16 FIELD_USE 0b000 No registers specified
15:11 CONSTRUCTOR_ID Any 5-bit number (up to 32

constructors allowed)
Identifier for the constructor

10:8 ARG_COUNT 0->5 Indicates number of structures
passed into the constructor as
arguments.

4:0 READ_ONLY 5-bit bit-mask For each argument, indicates if it
is passed as read-only to the
constructor.

The constructor ID is stored in a table so that it can be called later using a CONSTRUCTOR command.

Up to five arguments (in the form of previously defined structures) may be passed into the

constructor. There is no type-checking so the constructor will assume that a correctly formatted

structure has been provided.

Instructions inside the constructor can refer only to structures that have been passed in explicitly.

The numbering scheme for these structures is then given by their ordering in the call (CONSTRUCT

instruction).

Structures flagged as read-only in the START_CONSTRUCTOR declaration can be changed inside the

constructor, but their new values are not passed back when the constructor terminates. Conversely,

changed values in structures not marked as read-only are passed back from the constructor.

2.15 Command Code 0x25:END_CONSTRUCTOR
This command closes the definition of a constructor block. Constructor definitions cannot be nested.

Bit Range Field Name Value Notes

29:28 LENGTH 0b00 Single command word
27:20 CMD_CODE 0x25 Close definition of constructor

2.16 Command code 0x40: CONSTRUCT
This command invokes a constructor to build a data structure beginning at the current write pointer

in the currently open memory region. Constructors may call other constructors.

Bit
Range

Field Name Value Notes

29:28 LENGTH 0b00 or 0b01 Command word + optional parameters
27:20 CMD_CODE 0x70 Indicates that we are constructing a data

block
18:16 FIELD_USE 0b000 No registers specified
12:8 CONSTRUCTOR_ID Any up to max (0→31) Indicates which previously defined

constructor to use.

If parameters are required, the second word has the following format, consisting of a list of structure

IDs:

Bit
Range

Field Name Value Notes

28:24 ARG4 Any valid struct_ID, 0->15
22:18 ARG3 Any valid struct_ID, 0->15
16:12 ARG2 Any valid struct_ID, 0->15
10:6 ARG1 Any valid struct_ID, 0->15
4:0 ARG0 Any valid struct_ID, 0->15

. Inside the constructor, any reference to a structure will use copies of these structures, indexed

using the arg number (0->4) given here. Whether or not the values in each of these structures can be

modified inside the constructor is defined in the READ_ONLY bit mask in the constructor definition.

2.17 Command code 0x41: WRITE
Writes one or more data values (either immediate values or the contents of a register) to the

currently open memory region, beginning at an address given by the current write pointer for that

region. It is intended for filling blocks of up to 256 data words.

Bit
Range

Field Name Value Notes

29:28 LENGTH Any of 0b00, 0b01,
0b10

Single command word + zero, one or two
32-bit data words

27:20 CMD_CODE 0x41 Indicates that we are executing a write
immediate command

18:16 FIELD_USE 0b000 or 0b010 or Either additional data word(s) or

0b011 src1_reg provides data. Src2 (if used)
provides the number of repeats

13:12 DATA_LEN 0b00 = 8-bit
0b01 = 16-bit
0b10 = 32-bit
0b11 = 64-bit

Length of the data item to write (the
exact format of the data is ignored by
this command)

11:8 SRC1_REG Any (0->15) Register providing the value (if
FIELD_USE == 0b010, indicating register
use)

7:4
or

SRC2_REG Any Num repeats

7:0 NUM_COPIES 0->255 How many copies of the data item to be
written

A register value always has priority over an immediate. The number of repeats is limited to an

immediate value of 255. A register can contain any 32-bit number.

The following 32-bit word is the data value to be written. If the DATA_LEN field is 16-bits, the upper

16-bits are ignored. Similarly, if the DATA_LEN field is 8-bit, the upper 24-bits are ignored. If the data

value is 64-bit, the two following 32-bit words are used, with the first being the lower 32-bits and

the second being the upper 32-bits of the 64-bit value.

2.18 Command code 0x43: WRITE_STRUCT
Writes one or more previously assigned structures to the currently open memory region, beginning

at an address given by the current write pointer for that region. The block size for multiple copies is

taken as the size of the source parameter list.

Bit
Range

Field Name Value Notes

29:28 LENGTH 0b00 Single command word
27:20 CMD_CODE 0x43 Indicates that we are executing a write

structure command
18:16 FIELD_USE 0b000 or 0b010 Zero or one register specified (bits 11:8)
11:8
or

REG_COPIES 0→15 Register specifies how many copies of
the data item to be written (if FIELD_USE
is 0b010)

11:8 IMM_COPIES 0->15 Immediate indicating how many copies
to be written (if FIELD_USE is 0b000)

3:0 SRC_STRUCT 0→15 Immediate to specify the structure to
use.

2.19 Command code 0x44: BLOCK_COPY
This command performs a memory copy from one region to another. For flexibility, the source,

target and block size must all be held in registers. Any memory region (ITCM, DTCM or SDRAM) can

be the source or target of the copy.

Bit
Range

Field Name Value Notes

29:28 LENGTH 0b00 Single command word
27:20 CMD_CODE 0x79 Indicates that we are executing a

memory copy operation
18:16 FIELD_USE 0b111 Destination plus two sources specified
15:12 REG_DEST 0→15 Register specifies the target address for

the start of the block copy
11:8
or

REG_SIZE 0→15 Register specifies how many bytes are
being transferred (if FIELD_USE bit 1 is
set)

11:8 IMM_SIZE 0->15 Immediate value of how many bytes to
transfer (if FIELD_USE is clear)

7:4 REG_SRC 0→15 Register specifies the source address for
the start of block copy

2.20 Command code 0x50: SWITCH_FOCUS
Change the focus of future writes to the specified memory region. Each region retains its own write

pointer, so further writes continue where the last write to that region occurred.

Bit
Range

Field Name Value Notes

29:28 LENGTH 0b00 Single command word
27:20 CMD_CODE 0x70 Indicates that we are executing a

switch_focus command
18:16 FIELD_USE 0b010 or 0b000 Can optionally place the new region

number in a register (src1 field) or an
immediate

11:8
or

SRC1_REG 0->15 Register holding memory region ID

11:8 MEM_SLOT_ID Any up to max (0→15) Indicates which memory region to switch
to, used when FIELD_USE is 0b000.

2.21 Command code 0x51: LOOP
Begins a loop. Requires a start counter, end counter and increment, all given in registers. Loop will

exit when the counter is greater than the end value.

Bit
Range

Field Name Value Notes

29:28 LENGTH 0b00 (may be longer,
see text)

Single command word + plus immediates
for values not passed in registers

27:20 CMD_CODE 0x51 Indicates a START_LOOP command.
18:16 FIELD_USE Any 3-bit value. Any set bit indicates use of register. Any

clear bit indicates that value is given in
extra 32-bit word.

15:12 START_REG Any register (0→15) Start value from this register (used if
FIELD_USE bit 2 is set, if not second 32-
bit word is used)

11:8 END_REG Any register (0→15) End value from this register (used if
FIELD_USE bit 1 is set, if not then the
following 32-bit word is used)

7:4 INC_REG Any register (0→15) Increment value from this register (used
if FIELD_USE bit 0 is set, if not then the
following 32-bit word is used)

3:0 COUNT_REG Any register (0→15) This register is used as a counter for the
loop index

There can be zero, one or two trailing 32-bit words, to provide immediate values for any of the three

required parameters that are not specified in registers. Note that there are three immediate values

and no destination register (the START_REG value takes the place of a destination register, in fact).

2.22 Command code 0x52: BREAK_LOOP
Causes the program to jump to the end of the current loop.

Bit
Range

Field Name Value Notes

29:28 LENGTH 0b00 Single command word
27:20 CMD_CODE 0x52 Indicates a BREAK_LOOP command.
18:16 FIELD_USE 0b000 No registers specified

2.23 Command code 0x53: END_LOOP
Signals the end of the current loop, triggering the increment of the loop counter register, a check on

the exit condition and (if the condition is still true) a return to the instruction following the

associated START_LOOP instruction.

Bit
Range

Field Name Value Notes

29:28 LENGTH 0b00 Single command word
27:20 CMD_CODE 0x53 Indicates an END_LOOP command.
18:16 FIELD_USE 0b000 No registers specified

2.24 Command Code 0x55: IF (condition check)
This command loads performs a check on a register (or registers), changing the flow of execution

depending on the result. This is the classic IF-THEN-ELSE construct, with the instructions following

the If executed if the condition is TRUE and the instructions following any ELSE instruction executed

if the condition is FALSE. If statements can be nested.

Bit Range Field Name Value Notes

29:28 LENGTH 0b00 or 0b01 Single command word with optional
immediate data value

27:20 CMD_CODE 0x55 Indicates a condition check instruction (IF)
18:16 FIELD_USE 0b010 or 0b011 One or two registers specified
11:8 SRC1_REG 0->15 Source 1 register (if FIELD_USE bit 1 is set)
7:4 SRC2_REG 0->15 Source 2 register (if FIELD_USE bit 1 is set)

3:0 CONDITION 0->15 (see table below) Specifies the condition to check for.

Currently, only 32-bit, signed comparisons can be made. The supported 4-bit conditions are as

follows:

Bit Value ([3:0]) Name Notes

0000 IS_EQUAL
0001 IS_NOT_EQUAL
0010 LESS_THAN_OR_EQUAL Currently a signed 32-bit op
0011 LESS_THAN Currently a signed 32-bit op
0100 GREATER_THAN_OR_EQUAL Currently a signed 32-bit op
0101 GREATER_THAN Currently a signed 32-bit op
0110 IS_ZERO Source 2 not used
0111 IS_NON_ZERO Source 2 not used
1xxx RESERVED May include unsigned variants in future

2.25 Command Code 0x60: MV (immediate or register to register)
This command loads a value into a register, either from an immediate value or another register.

Bit Range Field Name Value Notes

29:28 LENGTH 0b00 or 0b01 Single command word with optional
immediate data value

27:20 CMD_CODE 0x60 Indicates a register-to-register or
immediate-to-register move command

18:16 FIELD_USE 0b110 or 0b100 One or two registers specified
15:12 DEST_REG_ID 0->15 Destination register
11:8 SRC_REG_ID 0->15 Source register (if FIELD_USE bit 1 is set)

If the FIELD_USE value is 0b100 then the value to load is given in a separate 32-bit word.

2.26 Command Code 0x63: GET_WR_PTR
Loads a register with the current value of the write pointer (byte aligned). This is command is useful

to allow a value to be written to a table in one region that is the pointer in another. Note that the

write pointer value is relative to the base address for its region.

Bit Range Field Name Value Notes

29:28 LENGTH 0b00 Single command word
27:20 CMD_CODE 0x63 Indicates a get-write-pointer command
18:16 FIELD_USE 0b100 Destination register specified
15:12 DEST_REG 0->15 Target internal register

2.27 Command Code 0x64: SET_WR_PTR
Sets the current write pointer to the value given in the register or immediate value. This value is

assumed to be a 32-bit unsigned number (‘uint32’).

This is command is useful to allow a value to be written to a table in one region that is the pointer in

another. Note that the write pointer value is relative to the base address for its region.

Bit Range Field Name Value Notes

29:28 LENGTH 0b00 or 0b01 Single command word + optional 32-bit
immediate

27:20 CMD_CODE 0x64 Indicates a set-write-pointer command
18:16 FIELD_USE 0b010 or 0b000 Either single source register or none
11:8 SRC1_REG 0->15 Source register if FIELD_USE bit 1 is set
0 REL_ADDR 1 = Relative address

0 = Absolute address

If a register is not specified, the following 32-bit word is used to provide the new pointer value.

2.28 Command Code 0x65: ALIGN_WR_PTR
Writes a block of zeroes to pad out the current region from the current write pointer to a boundary

defined by the source register or immediate, whose value is used as a power of 2. For example, if the

boundary register value is 10, writes are performed until the current write pointer is a multiple of

1,024 (= 210).

Bit Range Field Name Value Notes

29:28 LENGTH 0b00 Single command word
27:20 CMD_CODE 0x65 Indicates an align-write-pointer command
18:16 FIELD_USE 0b?00 or 0b?10 Optional dest register to return new

pointer, plus optional register with block
size (in bits)

15:12 DEST_REG 0->15 Register to return the new write pointer
(only valid if FIELD_USE bit 2 is set)

11:8
or

BLOCK_SZ_REG 0->15 Register supplying the size of the block
boundary (if FIELD_USE bit 1 is set)

4:0 BLOC_SZ_IMM 0->31 Immediate value of block boundary, in bits
(used if FIELD_USE bit 1 is clear)

2.29 Command Code 0x67: ARITH_OP
Performs one of a number of arithmetic operations, returning the result in a register. The sources

can be either registers or immediates. Currently, operands are always taken as 32-bit values, though

the operation can be selected as signed or unsigned.

Bit Range Field Name Value Notes

29:28 LENGTH 0b00 or 0b01 or 0b10 Single command word + one or two optional
source parameters

27:20 CMD_CODE 0x68 Indicates an arithmetic operation command
19 SIGNED 0 = unsigned, 1 = signed Selects whether the operation will be

unsigned or signed
18:16 FIELD_USE 0b1xy where x=0 or 1,

y=0 or 1
Dest always a register. Sources can be
register or immediate.

15:12 DEST_REG 0->15 Register id for result
11:8 SRC1_REG 0->15 Register ID for source 1, used if FIELD_USE bit

1 is set
7:4 SRC2_REG 0->15 Register Id for source 2, used if FIELD_USE bit

0 is set
3:0 OP_SELECT 0b0 = ADD

0b1 = SUB
0b2 = MUL
Others reserved

Selects the operation to perform, 32-bit
signed quantities are assumed

Since source 1 and source 2 can each be either a register number or an immediate, the length of the

command can be extended to two or three words to add these extra parameters. When both are

provided, source 1 is given first.

2.30 Command Code 0x68: LOGIC_OP
Performs one of a number of logical operations, returning the result in a register. The sources can be

either registers or immediates. Currently operands are always taken as 32-bit values.

Bit Range Field Name Value Notes

29:28 LENGTH 0b00 or 0b01 or 0b10 Single command word + one or two optional
source parameters

27:20 CMD_CODE 0x68 Indicates a logical operation command
18:16 FIELD_USE 0b1xy where x=0 or 1,

y=0 or 1
Dest always a register. Sources can be
register or immediate

15:12 DEST_REG 0->15 Register id for result
11:8 SRC1_REG 0->15 Register ID for source 1, used if FIELD_USE bit

1 is set
7:4 SRC2_REG 0->15 Register Id for source 2, used if FIELD_USE bit

0 is set
3:0 OP_SELECT 0b0= LSL src1 by src2

0x1 = LSR src1 by src2
0x2 = src1 OR src2
0x3 = src1 AND src2
0x4 = src1 XOR src2
0x5 = NOT src1

Selects the operation to perform

Since source 1 and source 2 can each be either a register number or an immediate, the length of the

command can be extended to two or three words to add these extra parameters. When both are

provided, source 1 is given first.

2.31 Command code 0x6A: REFORMAT
Xxx TODO xxx

Do this when we have clarity on what formatting options are required.

2.32 Command Code 0x70: COPY_STRUCT
This command creates a new copy of a pre-existing structure. The user provides the Id for the

existing and new structures (this can overwrite a pre-existing structure).

The source and target structure IDs can be passed either as immediate or given in registers.

Bit Range Field Name Value Notes

29:28 LENGTH 0b00 or 0b01 or 0b10 Single command word + one or two
optional source parameters

27:20 CMD_CODE 0x70 Indicates a command to copy one
structure into another

18:16 FIELD_USE 0b000 (could set bit 1
or bit 2)

No registers are required, but could be
used to provide the structure number for
source or destination.

15:12
or

DEST_STRUCT_REG 0->15 Optional register to specify the
destination struct ID (used if FIELD_USE
bit 2 is set)

15:12 DEST_STRUCT_ID 0->15 Optional register to specify the
destination struct ID (used if FIELD_USE
bit 2 is clear)

11:8
or

SRC_STRUCT_REG 0->15 Optional register used to specify the
source struct ID (used if FIELD_USE bit 1
is set)

11:8

SRC_STRUCT_ID 0->15 Optional register used to specify the
source struct ID (used if FIELD_USE bit 1
is clear)

2.33 Command Code 0x71: COPY_PARAM
This command copies the value of one parameter directly from one structure to another without

having to go via an intermediate register first. This is a time saving command when creating new

structures that are similar (but not identical) to existing ones. If the lengths of the two parameters

are not the same an error will occur. Due to the number of parameters this takes, the syntax is more

restrictive, requiring the structure IDs and parameter IDs for both the source and target structures to

be immediate values. This command is unusual in that it has two compulsory command words, the

second being used to specify the source and destination element indices.

The command word has the following syntax:

Bit Range Field Name Value Notes

29:28 LENGTH 0b01 Two command words
27:20 CMD_CODE 0x71 Indicates a command to copy a

parameter value from one structure into
another

18:16 FIELD_USE 0b000 No registers are permitted
15:12 DEST_STRUCT_ID 0->15 Specifies the destination structure ID

11:8 SRC_STRUCT_ID 0->15 Specifies the source structure ID

The second command word has the following syntax:

Bit Range Field Name Value Notes

15:8 DEST_PARAM_ID 0->255 Specifies the parameter to be written in
the destination structure

7:0

SRC_PARAM_ID 0->255 Specifies the parameter to be copied
from the source structure

2.34 Command Code 0x72: WRITE_PARAM
Assigns a value to one parameter of a given parameter list.

Bit Range Field Name Value Notes

29:28 LENGTH 0b00 or 0b01 Single command word + optional parameter
value

27:20 CMD_CODE 0x72 Indicates assignment to a parameter
18:16 FIELD_USE 0b000 or 0b010 Optional register for source 1
15:12 STRUCT_ID 0->15 ID of the structure in which the parameter is

to be changed
11:8 VAL_REG 0->15 Register holding the new value (used if

FIELD_USE bit 1 is set)
7:0 PARAM_ID 0→255 Element index within the structure

If FIELD_USE is 0b000, then the length field is 0b01 and a following 32-bit word is used to provide

the value.

Note that the value is cut to fit the size of the parameter – so a 16-bit parameter that is assigned a

32-bit data word will proceed by chopping off the upper 16-bits of the data word. No sign extension

occurs.

2.35 Command Code 0x73: WRITE_PARAM_COMPONENT
This command assigns a value to a field within one parameter of a structure. It requires two

command words. The first specifies the source of the data, the second specifies the destination. The

first command word has this format:

Bit Range Field Name Value Notes

29:28 LENGTH 0b01 Two command words
27:20 CMD_CODE 0x73 Indicates assignment to a parameter
18:16 FIELD_USE 0b1xx = data value in a

register
0bx1x = register holds
source struct ID
0bxx1 = register holds
source param ID

Different sources of the value: either
register or structure parameter. In the
latter case, the choice of a particular
structure or parameter can be given in a
register.

15:12 DATA_REG 0->15 Register holding data value to be used
11:8
or

SRC_STRUCT_ID 0->15 Id of a parameter structure that will
provide the data value

11:8 SRC_STRUCT_REG 0->15 Register index for structure that holds the
data value (used if FIELD_USE is 0bx1x)

7:0
or

SRC_PARAM_ID 0->255 Index of the parameter within the source
structure that provides the data value

7:4
or

SRC_PARAM_REG 0->255 Register that is holding the index of the
parameter within the source structure
that provides the data value (used if
FIELD_USE is 0bxx1

If a data register is provided as a source, any information about source structures is ignored.

The second command word gives the Id of the destination structure to be written to, the chosen

parameter within that structure and the bit range (LSB and number of bits) to which the value

should be written.

Bit Range Field Name Value Notes

31:26 INSERTION_LEN 0->32 Number of bits to inserts from the data
word. Overspills are dropped without
error

24:20 INSERTION_LSB 0->31 Bit position in target where LSB of new
data is to be placed

18:16 FIELD_USE 0b000 No registers specified
11:8 DEST_STRUCT_ID 0->15 ID of the target structure
7:0 DEST_PARAM_ID 0->15 ID of the target parameter

A block of bits from the source data is copies to the bit range in the destination. If the number of

inserted bits overruns the end of the word, the extra bits are dropped without flagging an error.

2.36 Command Code 0x80: PRINT_VAL
Displays a value (either from a register or immediate) to the screen. Used for debugging purposes.

The format of the data is given in the 5-bit FORMAT field, using table 2 for the enumeration. For data

words of 64-bit, two 32-bit immediates would be required, with the first being the upper 32-bits of

the final value.

Bit Range Field Name Value Notes

29:28 LENGTH 0b00 or 0b01 or 0b10 Singe command word or with data value
(32-bit or 64-bit)

27:20 CMD_CODE 0x80 Indicates the print register command
18:16 FIELD_USE 0b000 or 0b010 Zero or one registers specified
11:8 SRC1_REG 0->15 The register whose value is to be printed
4:0 FORMAT 0->31 Format of the data to be printed (see

table 2)

2.37 Command Code 0x81: PRINT_TXT
Prints a series of 8-bit ASCII characters to the screen, given in immediate data. The immediates

follow the command word, with the upper 8-bits representing one symbol, the next 8-bits the

second, etc. The NUM_CHARS field in the command word indicates how many characters are valid.

The encoded value is one less than the true value.

Bit Range Field Name Value Notes

29:28 LENGTH 0b01, 0b10 or 0b11 Command word plus 1->3 data words
27:20 CMD_CODE 0x73 Indicates that we’re printing text
18:16 FIELD_USE 0b000 No registers specified
3:0

NUM_CHARS 0->11 Number of characters to print minus one
(from 1 to 12 characters)

2.38 Command Code 0x82: PRINT_STRUCT
This is typically a debug aid. It prints the contents of one structure to the screen/set to tubotron.

Bit Range Field Name Value Notes

29:28 LENGTH 0b01, 0b10 or 0b11 Command word plus 1->3 data words
27:20 CMD_CODE 0x73 Indicates that we’re printing the contents

of a structure
18:16 FIELD_USE 0b000 or 0b010 Zero or one registers specified
11:8 SRC1_REG 0->15 The structure whose content is to be

printed
3:0

STRUCT_ID 0->15 Immediate value of ID of the structure to
be printed (used if no register specified)

The print format shows the Structure index, then one line per entry in the structure, with fields

representing the entries index, size (in bytes) and current value.

This command could be extended in the future to allow greater control over how the individual

elements are displayed.

2.39 Command Code 0xFF: END_SPEC
This command signals the end of the specification process. At this point all data structures required

by the application should be in place. The Spec Executor releases any memory reserved for itself and

shuts down. In the current host-based Spec Executor model control passes back to the

output_generator and thence back to the controller.

Bit Range Field Name Value Notes

29:28 LENGTH 0b00 Single command word
27:20 CMD_CODE 0xFF Indicates that we are recording the current write

pointer for later access.
18:16 FIELD_USE 0b000 No registers specified
23:00 RESERVED 0x000000

3 Required Supported formats

S87 S1615 S3231

U88 U1616 U3232

