
Running PyNN Simulations on SpiNNaker 

Introduction 

This manual will introduce you to the basics of using the PyNN neural network language on SpiNNaker                 
neuromorphic hardware. 

Installation 

The PyNN toolchain for SpiNNaker (sPyNNaker), can be installed by following the instructions available              
from here: 

http://spinnakermanchester.github.io/latest/spynnaker_install.html 

Matplotlib is marked as optional, but you will also need to install this dependency to complete some of the                   
forthcoming exercises. 

Spiking Neural Networks 

Biological neurons have been observed to produce sudden and short increases in voltage, commonly              
referred to as spikes. The spike causes a charge to be transferred across the synapse between neurons.                 
The charge from all the presynaptic neurons connected to a postsynaptic neuron builds up, until that                
neuron releases the charge itself in the form of a spike. The spike travels down the axon of the neuron                    
which then arrives after some delay at the synapses of that neuron, causing charge to be passed forward to                   
the next neuron, where the process repeats. 

Artificial spiking neural networks tend to model the membrane voltage of the neuron in response to the                 
incoming charge over time. The voltage is described using a differential equation over time, and the                
solution to this equation is usually computed at fixed time-steps within the simulation. In addition to this, the                  
charge or current flowing across the synapse can also be modelled over time, depending on the model in                  
use. 



The charge can result in either an excitatory response, in which the membrane voltage of the postsynaptic                 
neuron increases or an inhibitory response, in which the membrane voltage of the postsynaptic neuron               
decreases as a result of the spike. 

The PyNN Neural Network Description Language 

PyNN is a language for building neural network models. PyNN models can then be run on a number of                   
simulators without modification (or with only minor modifications), including SpiNNaker. The basic steps of              
building a PyNN network are as follows: 

1. Setup the simulator 
2. Create the neural ​populations 
3. Create the ​projections​ between the populations 
4. Setup data recording 
5. Run the simulation 
6. Retrieve and process the recorded data 

An example of this is as follows: 
try: 
import pyNN.spiNNaker as p 
except: 
import spynnaker.pyNN as p 
 
p.setup(timestep=1.0) 
pop_1 = p.Population(1, p.IF_curr_exp, {}, label="pop_1") 
input = p.Population(1, p.SpikeSourceArray,  
        {'spike_times': [[0]]}, label="input") 
input_proj = p.Projection(input, pop_1, p.OneToOneConnector( 
    weights=5.0, delays=1), target="excitatory") 
pop_1.record() 
pop_1.record_v() 
p.run(10) 
 
spikes = pop_1.get_spikes() 
v = pop_1.get_v() 
 
import pylab 
time = [i[1] for i in v if i[0] == 0] 
membrane_voltage = [i[2] for i in v if i[0] == 0] 
pylab.plot(time, membrane_voltage) 
pylab.xlabel("Time (ms)") 
pylab.ylabel("Membrane Voltage") 
pylab.axis([0, 10, -75, -45]) 
pylab.show() 
 
spike_time = [i[1] for i in spikes] 
spike_id = [i[0] for i in spikes] 
pylab.plot(spike_time, spike_id, ".") 
pylab.xlabel("Time (ms)") 
pylab.ylabel("Neuron ID") 
pylab.axis([0, 10, -1, 1]) 
pylab.show() 

This example runs using a 1.0ms timestep. It creates a single input source (A ​SpikeSourceArray​) sending                
a single spike at time 0, connected to a single neuron (with model ​IF_curr_exp​). The connection is                 
weighted, so that a spike in the presynaptic neuron sends a current of 5 nanoamps (nA) to the excitatory                   
synapse of the postsynaptic neuron, with a delay of 1 millisecond. The spikes and the membrane voltage                 
are recorded, and the simulation is then run for 10 milliseconds. Graphs are then created of the membrane                  
voltage and the spikes produced.  



PyNN provides a number of standard neuron models. One of the most basic of these is known as the                   
Leaky Integrate and Fire (LIF) model, and this is used above (​IF_curr_exp​). This models the neuron as a                  
resistor and capacitor in parallel; as charge is received, this builds up in the capacitor, but then leaks out                   
through the resistor. In addition, a ​threshold voltage is defined; if the voltage reaches this value, a spike is                   
produced. For a time after this, known as the ​refractory period​, the neuron is not allowed to spike again.                   
Once this period has passed, the neuron resumes operation as before. Additionally, the synapses are               
modelled using an exponential decay of the received current input (5 nA in the above example); the weight                  
of the current is added over a number of timesteps, with the current decaying exponentially between each.                 
A longer decay rate will result in more charge being added overall per spike that crosses the synapse. 

In the above example, the default parameters of the ​IF_curr_exp​ are used.  These are: 

'cm': 1.0,         # The capacitance of the LIF neuron in nano-Farads 

'tau_m': 20.0,     # The time-constant of the RC circuit, in milliseconds 

'tau_refrac': 0.1, # The refractory period, in milliseconds 

'v_reset': -65.0,  # The voltage to set the neuron at immediately after a spike 

'v_rest': -65.0,   # The ambient rest voltage of the neuron 

'v_thresh': -50.0, # The threshold voltage at which the neuron will spike 

'tau_syn_E': 5.0,  # The excitatory input current decay time-constant 

'tau_syn_I': 5.0,  # The inhibitory input current decay time-constant 

'i_offset': 0.0,   # A base input current to add each timestep 

PyNN supports both current-based models and conductance-based models. In conductance models, the            
input is measured in microSiemens, and the effect on the membrane voltage also varies with the current                 
value of the membrane voltage; the higher the membrane voltage, the more input is required to cause a                  
spike. This is modelled as the ​reversal potential of the synapse; when the membrane potential equals the                 
reversal potential, no current will flow across the synapse. A conductance-based version of the LIF model                
is provided, which, in addition to the above parameters, also supports the following: 

'e_rev_E': 0.,    # The reversal potential of the exponential synapse 

'e_rev_I': -80.0  # The reversal potential of the inhibitory synapse 

The initial value of the state variables of the neural model can also be set (such as the membrane voltage).                    
This is done via the ​initialize function of the population, which takes the name of the state variable as a                    
string (e.g. “v” for the membrane voltage), and the value to be assigned e.g. to set the voltage to -65.0mV: 

pop.initialize(“v”, -65.0) 

In PyNN, the neurons are declared in terms of a ​population of a number of neurons with similar properties.                   
The ​projection between populations therefore has a ​connector​, which describes the connectivity between             
the individual neurons in the populations.  Some common connectors include: 

● OneToOneConnector - each presynaptic neuron connects to one postsynaptic neuron (there should            
be the same number of neurons in each population) with weight ​weights​ and delay ​delays​. 

● AllToAllConnector - all presynaptic neurons connect to all postsynaptic neurons with weight ​weights             
and delay ​delays​. 

● FixedProbabilityConnector - each presynaptic neuron connects to each postsynaptic neuron with a            
given fixed probability ​p_connect​, with weight ​weights​ and delay ​delays​. 

● FromListConnector - the exact connectivity is described by ​conn_list​, which is a list of              
(​pre_synaptic_neuron_id, post_synaptic_neuron_id, weight, delay​) 

Commonly, random weights and/or delays are used. To specify this, the value of the ​weights or ​delays of                  
the connector are set to a ​RandomDistribution (note that the FromListConnector requires the specification              
of explicit weights and delays, and so does not support this; instead the ​next() method of the random                  
distribution can be called to give random values for this connector). This supports several parameters via                



the ​parameters argument, depending on the value of the ​distribution argument which identifies the              
distribution type. The supported distributions include a ‘uniform’ distribution, with parameters of [minimum             
value, maximum value]; and a ‘normal’ distribution with parameters of [mean, standard deviation]. A              
boundary can also be specified as [​minimum, maximum​] to constrain the values generated (where an               
unbounded end can make use of -numpy.inf or numpy.inf); this is often useful for keeping the delays within                  
range allowed by the simulator. The ​RandomDistribution can also be used when specifying neural              
parameters, or when initialising state variables. 

In addition to neuron models, the PyNN language also supports some utility models, which can be used to                  
simulate inputs into the network with defined characteristics.  These include: 

● SpikeSourceArray - this sends spikes at predetermined intervals defined by ​spike_times​. In            
general, PyNN forces each of the neurons in the population to spike at the same time, and so                  
spike_times is an array of times, but sPyNNaker also allows ​spike_times to be an array of arrays,                 
each defining the the times at which each neuron should spike e.g. ​spike_times​=[[0], [1]] means that                
the first neuron will spike at 0ms and the second at 1ms. 

● SpikeSourcePoisson - this sends spikes at random times with a mean rate of ​rate spikes per                
second, starting at time ​start (0.0ms by default) for a duration of ​duration milliseconds (the whole                
simulation by default). 

Using PyNN with SpiNNaker 

In addition to the above steps, sPyNNaker requires the additional step of configuration via the               
.spynnaker.cfg file to indicate which physical SpiNNaker machine is to be used. This file is located in your                  
home directory, and the following properties must be configured: 

[Machine] 
machineName     = None 
version         = None 
 
The ​machineName refers to the host or IP address of your SpiNNaker board. For a 4-chip board that you                   
have directly connected to your machine, this is ​usually (but not always) set to ​192.168.240.253​, and the                 
version is set to ​3​, indicating a “SpiNN-3” board (often written on the board itself). Most 48-chip boards are                   
given the IP address of ​192.168.240.1​ with a ​version​ of ​5​. 

The range of delays allowed when using sPyNNaker depends upon the timestep of the simulation. The                
range is 1 to 144 timesteps, so at 1ms timesteps, the range is 1.0ms to 144.0ms, and at 0.1ms, the range is                      
0.1ms to 14.4ms. 

The default number of neurons that can be simulated on each core is 256; larger populations are split up                   
into 256-neuron chunks automatically by the software. Note though that the cores are also used for other                 
things, such as input sources, and delay extensions (which are used when any delay is more than 16                  
timesteps), reducing the number of cores available for neurons. 

Spike-Time-Dependent Plasticity 

STDP plasticity is a form of learning that depends upon the timing between the spikes of two neurons                  
connected by a synapse. It is believed to be the basis of learning and information storage in the human                   
brain.  

In the case where a presynaptic spike is followed closely by a postsynaptic spike, then it is presumed that                   
the presynaptic neuron caused the spike in the postsynaptic neuron, and so the weight of the synapse                 
between the neurons is increased.  This is known as potentiation. 



If a postsynaptic spike is emitted shortly before a presynaptic spike is emitted, then the presynaptic spike                 
cannot have caused the postsynaptic spike, and so the weight of the synapse between the neurons is                 
reduced.  This is known as depression. 

The size of the weight change depends on the relative timing of the presynaptic and postsynaptic spikes; in                  
general, the change in weight drops off exponentially as the time between the spikes gets larger, as shown                  
in the following figure [Sjöström and Gerstner (2010), Scholarpedia]. However, different experiments have             
highlighted different behaviours depending on the conditions (e.g. [Graupner and Brunel (2012), PNAS]).             
Other authors have also suggested a correlation between triplets and quadruplets of presynaptic and              
postsynaptic spikes to trigger synaptic potentiation or depression. 

 

STDP in PyNN 

The steps for creating a network using STDP are much the same as previously described, with the main                  
difference being that some of the projections are given an ​synapse_dynamics ​argument to describe the               
plasticity.  Here is an example of the creation of a projection with STDP: 

timing_rule = p.SpikePairRule(tau_plus=20.0, tau_minus=20.0) 
weight_rule = p.AdditiveWeightDependence( 
    w_max=5.0, w_min=0.0, A_plus=0.5, A_minus=0.5) 
 
stdp_model = p.STDPMechanism( 
    timing_dependence=timing_rule, weight_dependence=weight_rule) 
 
stdp_projection = p.Projection( 
    pre_pop, post_pop, p.OneToOneConnector(weights=0.0, delays=5.0), 
    synapse_dynamics=p.SynapseDynamics(slow=stdp_model)) 

In this example, firstly the timing rule is created. In this case, it is a ​SpikePairRule​, which means that the                    
relative timing of the spikes that will be used to update the weights will be based on pairs of presynaptic                    
and postsynaptic spikes. This rule has two required parameters, ​tau_plus and ​tau_minus which describe              
the respective exponential decay of the size of the weight update with the time between presynaptic and                 
postsynaptic spikes. Note that the decay can be different for potentiation (defined by ​tau_plus​) and               
depression (defined by ​tau_minus​). This rule also accepts a parameter of ​nearest (by default this is ​False​).                 
If set to true, only the nearest pairs of spikes are considered when looking at weight updates.  

The next thing defined is the weight update rule. In this case it is a ​AdditiveWeightDependence​, which                 
means that the weight will be updated by simply adding to the current weight. This rule requires the                  
parameters ​w_max and ​w_min​, which define the maximum and minimum weight of the synapse              



respectively, and the parameters ​A_plus and ​A_minus which define the maximum weight to respectively              
add during potentiation or subtract during depression. Note that the actual amount added or subtracted will                
depend additionally on the timing of the spikes, as determined by the timing rule.  

In addition, there is also a ​MultiplicativeWeightDependence supported, which means that the weight             
change depends on the difference between the current weight and w_max for potentiation, and w_min for                
depression. The value of ​A_plus and ​A_minus are then respectively multiplied by this difference to give the                 
maximum weight change; again the actual value depends on the timing rule and the time between the                 
spikes. 

The timing and weight rules are combined into a single ​STDPMechanism object which describes the overall                
desired mechanism. This is finally specified as the ​slow argument of a ​SynapseDynamics object, and then                
added to the ​Projection using the ​synapse_dynamics argument. Note that the projection still requires the               
specification of a ​Connector which includes ​weights and ​delays​. This connector is still used to describe the                 
overall connectivity between the neurons of the pre- and post-populations, as well as the delay values                
which are unchanged by the STDP rules, and the initial weight values. It is preferable that the initial                  
weights fall between ​w_min and ​w_max​; it is not an error if they do not, but when the first update is                     
performed, the weight will be changed to fall within this range. 

Note: In the implementation of STDP on SpiNNaker, the plasticity mechanism is only activated when the                
second presynaptic spike is received at the postsynaptic neuron. Thus at least two presynaptic spikes are                
required for the mechanism to be activated. 

Task 1.1: A simple neural network [Easy] 

This task will create a very simple network from scratch, using some of the basic features of PyNN and                   
SpiNNaker. 

Write a network with a 1.0ms time step, consisting of two input source neurons connected to two                 
current-based LIF neurons with default parameters, on a one-to-one basis, with a weight of 5.0 nA and a                  
delay of 2ms. Have the first input neuron spike at time 0.0ms and the second spike at time 1.0ms. Run the                     
simulation for 10 milliseconds.  Record and plot the spikes received against time. 

Task 1.2: Changing parameters [Easy] 

This task will look at the parameters of the neurons and how changing the parameters will result in different                   
network behaviour. 

Using your previous script, set tau_syn_E to 1.0 in the IF_curr_exp neurons. Record the membrane               
voltage in addition to the spikes. Print the membrane voltage out after the simulation (you can plot it if you                    
prefer, but you should note that the array returned from get_v() contains a list of [neuron_id, time, voltage]                  
and so you will need to separate out the voltages of the individual neurons). 

1. Did any of the neurons spike? 
2. What was the peak membrane voltage of any of the neurons, compared to the default threshold                

voltage of -50mV? 

Try increasing the weight of the connection and see what effect this has on the spikes and membrane                  
voltage. 

Task 2.1: Synfire Chain [Moderate] 

This task will create a network known as a Synfire chain, where a neuron or set of neurons spike and cause                     
activity in an ongoing chain of neurons or populations, which then repeats. 

1. Setup the simulation to use 1ms timesteps.  



2. Create an input population of 1 source spiking at 0.0ms.  
3. Create a synfire population with 100 neurons.  
4. With a FromListConnector, connect the input population to the first neuron of the synfire population,               

with a weight of 5nA and a delay of 1ms.  
5. Using another FromListConnector, connect each neuron in the synfire population to the next             

neuron, with a weight of 5nA and a delay of 5ms.  
6. Connect the last neuron in the synfire population to the first.  
7. Record the spikes produced from the synfire populations.  
8. Run the simulation for 2 seconds, and then retrieve and plot the spikes from the synfire population. 

Task 2.2: Random Values [Easy] 

Update the network above so that the delays in the connection between the synfire population and itself are                  
generated from a uniform random distribution with values between 1.0 and 15.0. Update the run time to be                  
5 seconds.  

Task 3.1: Balanced Random Cortex-like Network [Hard] 

This task will create a network that this similar to part of the Cortex in the brain. This will take some input                      
from outside of the network, representing other surrounding neurons in the form of poisson spike sources.                
These will then feed into an excitatory and an inhibitory network set up in a balanced random network. This                   
will use distributions of weights and delays as would occur in the brain. 

1. Set up the simulation to use 0.1ms timesteps. 
2. Choose the number of neurons to be simulated in the network. 
3. Create an excitatory population with 80% of the neurons and an inhibitory population with 20% of                

the neurons. 
4. Create excitatory poisson stimulation population with 80% of the neurons and an inhibitory poisson              

stimulation population with 20% of the neurons, both with a rate of 1000Hz. 
5. Create a one-to-one excitatory connection from the excitatory poisson stimulation population to the             

excitatory population with a weight of 0.1nA and a delay of 1.0ms. 
6. Create a similar excitatory connection from the inhibitory poisson stimulation population to the             

inhibitory population. 
7. Create an excitatory connection from the excitatory population to the inhibitory population with a              

fixed probability of connection of 0.1, and using a normal distribution of weights with a mean of 0.1                  
and standard deviation of 0.1 (remember to add a boundary to make the weights positive) and a                 
normal distribution of delays with a mean of 1.5 and standard deviation of 0.75 (remember to add a                  
boundary to keep the delays within the allowed range on SpiNNaker). 

8. Create a similar connection between the excitatory population and itself. 
9. Create an inhibitory connection from the inhibitory population to the excitatory population with a              

fixed probability of connection of 0.1, and using a normal distribution of weights with a mean of -0.4                  
and standard deviation of 0.1 (remember to add a boundary to make the weights negative) and a                 
normal distribution of delays with a mean of 0.75 and standard deviation of 0.375 (remember to add                 
a boundary to keep the delays within the allowed range on SpiNNaker). 

10. Create a similar connection between the inhibitory population and itself. 
11. Initialize the membrane voltages of the excitatory and inhibitory populations to a uniform random              

number between -65.0 and -55.0. 
12. Record the spikes from the excitatory population. 
13. Run the simulation for 1 or more seconds. 
14. Retrieve and plot the spikes. 



The graph should show what is known as Asynchronous Irregular spiking activity - this means that the                 
neurons in the population don’t spike very often and when they do, it is not at the same time as other                     
neurons in the population.  

Task 3.2: Network Behavior [Moderate] 

Note in the above network that the weight of the inputs is the same as the mean weight of the excitatory                     
connections (0.1nA) and that the mean weight of the inhibitory connections is 4 times this value (-0.4nA).                 
Try setting the excitatory connection mean weight and input weights to 0.11nA and the inhibitory mean                
weight to -0.44nA, and see how this affects the behavior. What other behavior can you get out of the                   
network by adjusting the weights? 

Task 4.1: STDP Network [Easy] 

This task will create a simple network involving STDP learning rules. 

Write a network with a 1.0ms time step consisting of two single-neuron populations connected with an                
STDP synapse using a spike pair rule and additive weight dependency, and initial weights of 0. Stimulate                 
each of the neurons with a spike source array with times of your choice, with the times for stimulating the                    
first neuron being slightly before the times stimulating the second neuron (e.g. 2ms or more), ensuring the                 
times are far enough apart not to cause depression (compare the spacing in time with the tau_plus and                  
tau_minus settings); note that a weight of 5.0 should be enough to force an IF_curr_exp neuron to fire with                   
the default parameters. Add a few extra times at the end of the run for stimulating the first neuron. Run the                     
network for a number of milliseconds and extract the spike times of the neurons and the weights. 

You should be able to see that the weights have changed from the starting values, and that by the end of                     
the simulation, the second neuron should spike shortly after the first neuron. 

Task 4.2: STDP Parameters [Easy] 

Alter the parameters of the STDP connection, and the relative timing of the spikes. Try starting with a large                   
initial weight and see if you can get the weight to reduce using the relative timing of the spikes. 

Task 5: STDP Curve [Hard] 

This task will attempt to plot an STDP curve, showing how the weight change varies with timing between                  
spikes. 

1. Set up the simulation to use a 1ms time step. 
2. Create a population of 100 presynaptic neurons. 
3. Create a spike source array population of 100 sources connected to the presynaptic population. Set               

the spikes in the arrays so that each spikes twice 200ms apart, and that the first spike for each is                    
1ms after the first spike of the last e.g. [[0, 200], [1, 201], …] (hint: you can do this with a list                      
comprehension). 

4. Create a population of 100 postsynaptic neurons. 
5. Create a spike source array connected to the postsynaptic neurons all spiking at 50ms. 
6. Connect the presynaptic population to the postsynaptic population with an STDP projection with an              

initial weight of 0.5 and a maximum of 1 and minimum of 0. 
7. Record the presynaptic and postsynaptic populations. 
8. Run the simulation for long enough for all spikes to occur, and get the weights from the STDP                  

projection. 
9. Draw a graph of the weight changes from the initial weight value against the difference in                

presynaptic and postsynaptic neurons (hint: the presynaptic neurons should spike twice but the             



postsynaptic should only spike once; you are looking for the first spike from each presynaptic               
neuron). 

 


