
 

External Devices on SpiNNaker - Lab Manual 

Introduction 

This manual will discuss the connection of external devices to SpiNNaker and how to tell the software that                  
they are in use. 

Physical Connection 

The SpiNNaker boards have a number of places to which external devices can be connected. The first of                  
these is the SpiNNakerLink connections.  These are shown below. 

 
Additionally, the 48-node boards have FPGAs which are linked to the SATA connectors. These are shown                
below. 

 



 

 
The FPGAs are connected internally to a subset of the border chips on the board as shown above; the links                    
at the edges of the board are coded as F<fpga-id>-L<fpga-link-id>, so F1-L04 is FPGA 1, FPGA link id 4. 

The FPGA id and FPGA link ids, or the SpiNNakerLink ids are used to tell the software where a device has                     
been connected. When a SpiNNakerLink is specified, the device is connected directly to this link. When an                 
FPGA id is used, this indicates the FPGA to which the device is connected and which link of the FPGA it is                      
connected to. The tools do not currently do any reprogramming of the FPGAs themselves, so the FPGA                 
must have been configured in advance to forward packets between this link of the FPGA and the SATA link                   
to which the device is connected. 

When a multi-board system is in use, it is important that you do not connect your device to the                   
SpiNNakerLink unless you know that the FPGA has been disabled for that link. If you don’t do this, you                   
could damage the board. Devices can be connected to the FPGA SATA connectors as you wish, but                 
without reconfiguring the FPGA, it is unlikely that any communication will occur. 

When using a multi-board system, you must also be able to tell the software which board you are                  
connecting your device to. This is done using the IP address of the ethernet-connected chip on the board.                  
The board which contains chip 0, 0 will generally have the same IP address as the one you use to contact                     
the board; if you don’t specify a board address, it will be assumed that you want to use this board in any                      
case, so unless you have multiple devices to connect, you may want to choose this board first. 

Ethernet Connection 

If you have a device that connects over Ethernet or some other means using the host machine, the                  
software can also be configured to act as an intermediary between the device and SpiNNaker. No special                 
connections are required in this case. 



 

Software Connection for SpiNNaker Link and FPGA Devices 

 

Device Specification 

Once you have physically connected the device to the machine, the software needs to be told that that you                   
want to add the device to a neural network. This is generally done by extending one of the models                   
provided for external devices.  These are: 

● pacman.model.graphs.application.ApplicationFPGAVertex - this is used when the device is         
connected to an FPGA. You need to provide the fpga_id, the fpga_link_id and optionally the               
board_address when you are using a multi-board system, and the board connected to is not the                
first board. 

● pacman.model.graphs.application.ApplicationSpiNNakerLinkVertex - this is used when the       
device is connected to a SpiNNaker Link. You need to provide the spinnaker_link_id and              
optionally the board_address when you are using a multi-board system, and the board connected              
to is not the first board. 

In addition to this, you need to create a second class that extends spynnaker8.utilities.DataHolder. This               
will pass the parameters from PyNN to the device you have created above. As an example, you might                  
have the following to represent a device connected to an FPGA: 

import pyNN.spiNNaker as p 
from spynnaker8.utilities import DataHolder 
from pacman.model.graphs.application import ApplicationFPGAVertex 
 

class MyDevice(ApplicationFPGAVertex): 
    def __init__( 
            n_neurons, fpga_id, fpga_link_id, board_address=None, label=None): 
        ApplicationFPGAVertex( 
            n_neurons, fpga_id=fpga_id, fpga_link_id=fpga_link_id, 
            board_address=board_address, label=label) 
 

class MyDeviceDataHolder(DataHolder): 
    def __init__(self, fpga_id, fpga_link_id, board_address=None, label=None): 
        DataHolder.__init__( 
            self, {“fpga_id”: fpga_id, “fpga_link_id”: fpga_link_id,  
               “board_address”: board_address, “label”: label}) 
  

    @staticmethod 
    def build_model(): 
        return MyDevice 



 

Input 

If you are using the device as an input device input a PyNN network, you will need to specify the multicast                     
keys that the device will generate. This is done by creating a Python class for the device which extends                   
one of the aforementioned interfaces in addition to the interface: 

spinn_front_end_common.abstract_models.AbstractProvidesOutgoingPartitionConstraints 

This requires the addition of a method called: 
def get_outgoing_partition_constraints(self, partition) 

This takes a parameter called partition; this can be ignored for the purposes of integration in PyNN. This                  
function should return a constraint on the keys that are to be sent from this vertex. In general, you can                    
return a fixed key and mask pair from this method indicating the base key and range of keys to use e.g.: 

 return [FixedKeyAndMaskConstraint([BaseKeyAndMask(0x12340000, 0xFFFF0000)])] 

The example above would indicate that the device will send keys where the first 16 bits have the value                   
0x1234 and the rest of the bits can be set to any value between 0 and 0xFFFF (thus the range of keys the                       
device is expected to send is 0x12340000 - 0x1234FFFF). It is not critical that the device uses all these                   
keys, but it is essential that every key that the device will send is covered, otherwise packets sent by the                    
device can interfere with the operation of the SpiNNaker system. 

You can now use the device as a source in a PyNN network by providing it as a model in a Population.                      
The device will then be treated as a source of spikes, like a SpikeSourceArray or SpikeSourcePoisson.                
Thus you can create a projection from the device to other Population objects in the network, where the                  
device population is the source population. 

Output 

If you would like to send spikes to the device, this is done differently from other objects in the network. This                     
is because a Projection expects to accept a connection describing the connectivity between the source and                
target neurons. Populations of neurons use the connection information to create a synaptic matrix; on               
reception of a spike this is used to work out which neurons are targeted by the spike. An external device is                     
not assumed to have a synaptic matrix, and there is no standard way for the software to communicate the                   
synaptic matrix to the device. Thus the device is expected to accept all the spikes from all the neurons, and                    
process them accordingly. For this reason, a separate method is used to send spikes from a PyNN                 
Population object to a device.  This is: 

p.external_devices.activate_live_output_to(<source_population>, <destination_device>) 

where <source_population> is a standard PyNN Population object (which can include other devices and              
input sources), and <destination_device> is the device population, a population created with the device              
DataHolder as the model. 

The keys that the device will receive in this case are those that have been assigned to the source                   
population. If the device has a specific set of keys that need to be sent to control it, this will be described in                       
more detail below. 

Commands 

Commands are SpiNNaker multicast messages with or without payloads that can be sent to a device at the                  
start and end of a simulation, or at specified times during a simulation. This can be used to set up and                     



 

cleanly stop an external device. In these contexts, you can tell a device the multicast keys to use in the                    
simulation, and you can tell it to start transmitting at the start of the simulation, and stop transmitting at the                    
end. This can be important when operating SpiNNaker, since if your device is sending data packets into                 
SpiNNaker, it might not be able to perform normal functions, such as booting the system. 

If you have a device that supports commands, you can extend you device class (not the DataHolder) with: 
spinn_front_end_common.abstract_models.AbstractSendMeMulticastCommandsVertex 

This requires the following properties to be implemented, each of which returns a list of: 
spinn_front_end_common.utiltiy_models.MultiCastCommand( 

key, payload=None, time=None) 

● start_resume_commands - returns a list of MultiCastCommand instances to send at the start of              
the simulation, or when the simulation resumes after a pause.  The time field is ignored. 

● pause_stop_commands - returns a list of MultiCastCommand instances to send at the end of              
simulation, or when the simulation pauses.  The time field is ignored. 

● timed_commands - return a list of MultiCastCommand instances to send at specified times during              
the simulation.  The time field must be specified. 

Any of these can return an empty list of commands (most commonly the timed_commands does this). 

Device Control During Simulation 

In addition to the above support for handling direct output of spikes to devices, the software can also be                   
configured to handle the sending of commands to a device based on the state of the simulation, in terms of                    
the membrane voltage of a LIF neuron. These commands will consist of multicast messages with a                
payload, where the payload is the membrane voltage. The messages can be configured to be sent at                 
multiples of the timestep of the simulation to reduce the amount of data being sent over the SpiNNaker                  
network. 

The neuron model to use to control devices is: 
p.external_devices.ExternalDeviceLifControl 

This has the parameters of the IF_curr_exp neuron, with the exception of v_thresh (since it has no                 
threshold voltage and never spikes).  Additionally, the following parameters must be specified: 

● devices - the list of devices that will be controlled by this population. The length of devices must be                   
the same as the number of neurons in the population.  These are detailed below. 

● create_edges - indicates whether edges to the devices should be added to the network. This is for                 
compatibility with Ethernet devices (see later).  Set to True for SpiNNakerLink and FPGA devices. 

Each device specified in the parameter devices, in addition to extending either the             
ApplicationSpiNNakerLinkVertex or ApplicationFPGAVertex, should additionally extend: 

spynnaker.pyNN.external_device_models.AbstractMulticastControllableDevice 

This requires the class to have the following properties: 

● device_control_partition_id - the id to give the partition of edges going to this device. This can be                 
anything such as the name of the device. 

● device_control_key - the key to use in the multicast packet to be sent to the device. 



 

● device_control_uses_payload - True if the device will take the membrane voltage as a payload,              
False if the key will be sent by itself. It is expected that most devices will want to set this to true to                       
receive the membrane voltage in the payload. 

● device_control_min_value - the minimum value of membrane voltage that the device accepts. If             
the voltage is below this value, this value is sent instead. 

● device_control_max_value - the maximum value of membrane voltage that the device accepts. If             
the voltage is above this value, this value is sent instead. 

● device_control_timesteps_between_sending - the number of timesteps between the sending of          
the packets, to reduce the bandwidth used. 

This LIF-based model can now be used as a Population in a simulation, and as a target population of a                    
standard PyNN Projection. Spikes received by the population will increase the membrane voltage of              
neurons in the population if they are connected via an excitatory connection, or decrease the membrane                
voltage if connected via an inhibitory connection, as normal. It is important to realise though that a                 
Population object created with this model will never spike. It is not an error to use it as the pre-population in                     
a Projection, but no spikes will be sent across the projection in that case. Note, that this population, can                   
now be recorded like any other population, unlike the devices themselves. 

The format of the membrane voltage sent as the payload is S1615 format (this is a 32-bit number with the                    
first bit being the sign, the next 16-bits are the integer part of the number and the remaining 15-bits are the                     
fractional part of the number). The default parameters therefore set the rest and reset voltages of the                 
neuron to 0 (e.g. when using a motor where the membrane voltage is the speed of the motor, this would                    
mean the speed would be 0 without any input). 

Warning about Keys 

There are two potential sources of keys that can be received by the devices: those sent by commands at                   
the start and end of simulation, and those sent to the device during simulation containing the membrane                 
voltage. These two sources of keys must generate distinct keys e.g. if you are using a command at the                   
start that sets a motor speed to 0, and then you want to set the motor speed using the voltage during                     
simulation, your device needs to accept different keys for this. This is often done by having your device                  
ignore part of the key e.g. it might use the bottom 16-bits to identify the command it is being asked to                     
perform, but ignore the top 16-bits. 

Software Connection for Ethernet and Other Devices 

 



 

Output 

If your device only works over an Ethernet connection, or some other connection via the host machine, this                  
can be controlled using the Live I/O discussed in another lab. The software does, however, have some                 
support for using these devices with the aforementioned LIF neuron membrane voltage output. To make               
this work, the device is defined as a class which, as described for SpiNNakerLink and FPGA devices,                 
extends the interface: 

spynnaker.pyNN.external_device_models.AbstractMulticastControllableDevice 

See above for a description of the properties that the implementation must provide. Note that the device                 
does not now have to extend ApplicationSpiNNakerLinkVertex or ApplicationFPGAVertex. However the           
device still has to produce keys for the commands. These can be arbitrary values, so long as they don’t                   
clash with other keys in use. 

Once the device is defined, you then need to define a class that extends: 
spinnaker.pyNN.external_device_models.AbstractEthernetTranslator 

This is the class that will communicate with your device, and so should contain all the mechanisms through                  
which you do this.  The class requires the implementation of a single method: 

def translate_control_packet(self, multicast_packet) 

This method takes a multicast packet, which will have a properties of key and payload indicating the key                  
and payload of the packet received. The key will be the key returned by the device_control_key that you                  
defined as part of the definition of your device.  The payload will contain the membrane voltage value. 

Note that you can also make your device extend the class: 
spinn_front_end_common.abstract_models.AbstractSendMeMulticastCommandsVertex 

This will allow the device to be sent commands at the start and end of simulation. These commands will                   
also be sent via the above translator instance, so the translator must also recognise these packets. As with                  
the other devices, the keys used for start and stop commands must be different from those used to control                   
the device, though with an Ethernet device, these keys are arbitrary in any case. 

Once these parts have been defined, an instance of p.external_devices.ExternalDeviceLifControl is           
again created, with parameters as previously described, but with create_edges set to False, and an               
additional parameter translator, which is an instance of the translator created above. 

The final instantiation of the device is via p.external_devices.EthernetControlPopulation. This is used in             
place of p.Population, not as a model.  This method takes the following parameters: 

● n_neurons - the number of neurons in the population. This should be the same as the number of                  
devices passed to the ExternalDeviceLifControl model. 

● model - this is the ExternalDeviceLifControl instance defined above. 

The result of this call can be used as the target population of a PyNN Projection to send spikes to the                     
device.  It is valid to use it as a source population but the Projection will then pass no spikes. 



 

Input 

For Ethernet Input, again Live I/O can be used as described elsewhere. The software also provides                
additional interfaces to link the device more closely to the software and make it easier to use as a single                    
unit. 

To take advantage of this functionality, the Ethernet input device should be defined in a class which                 
extends: 

spynnaker.pyNN.external_device_models.AbstractEthernetSensor 

This class requires that the following methods are implemented: 

● get_n_neurons - return the number of neurons the sensor provides. 
● get_injector_parameters - return any parameters to pass to the SpikeInjector. 
● get_injector_label - return the label to give to the SpikeInjector. 
● get_translator - return an AbstractEthernetTranslator as defined for output. This is used for start              

and stop commands, so you can return None if the class doesn’t also extend              
AbstractSendMeMulticastCommandsVertex. 

● get_database_connection - return a SpynnakerLiveSpikesConnection that is to be used to send            
the spikes into SpiNNaker. 

If desired, you can write a class which extends SpynnakerLiveSpikesConnection and gathers data from              
your device and uses the send_spikes method to inject spikes into the network based on the data. This                  
can then be returned from get_database_connection. Alternatively, you can create a           
SpynnakerLiveSpikesConnection instance elsewhere and return this directly. 

Once this has been implemented, you can instantiate the device using: 
p.external_devices.EthernetSensorPopulation 

This is again used in place of a pyNN Population object and not as a model. This requires a single                    
paramerter device which is the device you have defined above. 

The result of this call be be used as the source population of a projection. It is not valid to use this as a                        
target population. 

Pushbot 

The TUM Pushbot is a commonly used robotics platform which is compatible with SpiNNaker over Ethernet                
and SpiNNakerLink with an additional SpiNNaker adapter. The Pushbot therefore is a good example of the                
use of the various interfaces described above. 

The Pushbot has several output devices, including two motors, a laser, two LEDs, and a speaker. These                 
are each considered to be different devices from the point-of-view of the tools. To help with key allocation,                  
the pushbot implementation has a MunichIOProtocol instance, which gives the keys for various commands              
given a base key. 

The Pushbot has several sensors, but so far only the retina has been implemented in the tools. When used                   
over SpiNNakerLink, the SpiNNaker board protocol will downsample the retina into various formats. The              
Ethernet connection to the Pushbot doesn’t support this, so the software is designed to do this on the host                   
machine between receiving spikes from the retina and sending them on to SpiNNaker. 



 

The tools also include a Pushbot retina visualiser. This can receive spikes from the Pushbot retina and                 
display them in a graphical window.  This shows how the retina works based on the changes in light. 

Tasks 

These tasks will take you through the process of interacting with external devices. You don’t actually have                 
to have a device connected to work through this process, or to run some scripts. You may see some                   
warning messages because of this, but the scripts should still otherwise run correctly. 

Task 1.1 [Easy] 

Create a network which sends spikes from a Poisson spike source to a device which extends                
ApplicationSpiNNakerLinkVertex with a single neuron on spinnaker link 0. Note that when you run the               
network, you should get a message like the following: 

2017-09-22 20:28:28 WARNING: The reinjector on 0, 0 has detected that 76242 packets             

were dumped from a outgoing link of this chip's router. This often occurs when              

external devices are used in the script but not connected to the communication fabric              

correctly. These packets may have been reinjected multiple times and so this number             

may be a overestimate. 

The reason for this is that there isn’t actually a device connected to your board. However, this message                  
indicates that the packets are correctly routed towards the spinnaker link. 

Task 1.2 [Easy] 

Try changing the spinnaker link to 1. If you have a 4-node board, this should result in a similar message                    
but referencing chip 1, 0. If you are using a 48-node board, you should get an error since there isn’t a                     
second spinnaker link on the board. 

Task 2.1 [Medium] 

Create another device class that extends ApplicationSpiNNakerLinkVertex and        
AbstractProvidesOutgoingPartitionConstraints. Set up the device up so that it sends with a base key of               
0x12340000 and mask 0xFFFF0000. Set up a network with a projection from the device to an IF_curr_exp                 
population. You will not get any spikes; to verify that the network is working, look inside the folder “reports”                   
for the folder with the latest date.  Inside this folder, look at the file: 

“run1/virtual_key_space_information_report.rpt” 

This should show you the key and mask assigned to your device. 

Task 2.2 [Medium] 

Extend the class further to implement AbstractSendMeMulticastCommandsVertex. Add some start and end            
commands.  Again look inside the report and see that the commands have been added. 

 

 



 

Task 3 [Hard] 

Create another device class, this time extending ApplicationSpiNNakerLinkVertex and         
AbstractMulticastControllableDevice. No DeviceHolder is needed. Create a script with a Population that            
uses a ExternalDeviceLifControl as a model, which takes the device you just created. Record the               
membrane voltage from the device. Connect a Poisson spike source to the device, run for some number of                  
milliseconds and then print or graph the membrane voltage. 

Task 4 [Hard] 

Create another device class which extends AbstractMulticastControllableDevice but nothing else. Create a            
translator class that extends AbstractEthernetTranslator, and in the implementation prints out the key and              
payload of the multicast message. Add the device to an ExternalDeviceLifControl instance along with the               
translator. Create an EthernetControlPopulation, and feed this with a Poisson spike source. Record the              
membrane voltage of the control population, run the simulation for some number of milliseconds and then                
print or graph the membrane voltage. 

Task 5 [Very Hard] 

Create a class which extends AbstractEthernetSensor and has a single neuron. This class should create               
its own SpynnakerLiveSpikes connection, and register a method against this to send a spike to neuron 0 at                  
start up (probably after a short pause e.g. 0.01 seconds to make sure the simulation is actually running).                  
Be careful that the label given to the connection is the same as that returned from the sensor                  
get_injector_label() method, and make sure this same connection is returned from the            
get_database_connection() method. The sensor doesn’t send start or stop commands, so it doesn’t need a               
translator (i.e. this method can return None), and no additional injector parameters are required. Connect               
the sensor to a standard LIF population with a single neuron. Record the voltage from this population and                  
make sure that it changes in response to the single injected spike. 

Note you may need to add a new spynnaker.cfg file to the folder where you are running the script, with the                     
following contents: 

[Database] 

create_database = True 

This is to overcome a bug in the detection of when the database needs to be created. 


