

External​ ​Devices​ ​on​ ​SpiNNaker​ ​-​ ​Lab​ ​Manual

Introduction

This manual will discuss the connection of external devices to SpiNNaker and how to tell the software that
they​ ​are​ ​in​ ​use.

Physical​ ​Connection

The SpiNNaker boards have a number of places to which external devices can be connected. The first of
these​ ​is​ ​the​ ​SpiNNakerLink​ ​connections.​ ​​ ​These​ ​are​ ​shown​ ​below.

Additionally, the 48-node boards have FPGAs which are linked to the SATA connectors. These are shown
below.

The FPGAs are connected internally to a subset of the border chips on the board as shown above; the links
at​ ​the​ ​edges​ ​of​ ​the​ ​board​ ​are​ ​coded​ ​as​ ​F<fpga-id>-L<fpga-link-id>,​ ​so​ ​F1-L04​ ​is​ ​FPGA​ ​1,​ ​FPGA​ ​link​ ​id​ ​4.

The FPGA id and FPGA link ids, or the SpiNNakerLink ids are used to tell the software where a device has
been connected. When a SpiNNakerLink is specified, the device is connected directly to this link. When an
FPGA id is used, this indicates the FPGA to which the device is connected and which link of the FPGA it is
connected to. The tools do not currently do any reprogramming of the FPGAs themselves, so the FPGA
must have been configured in advance to forward packets between this link of the FPGA and the SATA link
to​ ​which​ ​the​ ​device​ ​is​ ​connected.

When a multi-board system is in use, it is important that you do not connect your device to the
SpiNNakerLink unless you know that the FPGA has been disabled for that link. If you don’t do this, you
could damage the board. Devices can be connected to the FPGA SATA connectors as you wish, but
without​ ​reconfiguring​ ​the​ ​FPGA,​ ​it​ ​is​ ​unlikely​ ​that​ ​any​ ​communication​ ​will​ ​occur.

When using a multi-board system, you must also be able to tell the software which board you are
connecting your device to. This is done using the IP address of the ethernet-connected chip on the board.
The board which contains chip 0, 0 will generally have the same IP address as the one you use to contact
the board; if you don’t specify a board address, it will be assumed that you want to use this board in any
case,​ ​so​ ​unless​ ​you​ ​have​ ​multiple​ ​devices​ ​to​ ​connect,​ ​you​ ​may​ ​want​ ​to​ ​choose​ ​this​ ​board​ ​first.

Ethernet​ ​Connection

If you have a device that connects over Ethernet or some other means using the host machine, the
software can also be configured to act as an intermediary between the device and SpiNNaker. No special
connections​ ​are​ ​required​ ​in​ ​this​ ​case.

Software​ ​Connection​ ​for​ ​SpiNNaker​ ​Link​ ​and​ ​FPGA​ ​Devices

Device​ ​Specification

Once you have physically connected the device to the machine, the software needs to be told that that you
want to add the device to a neural network. This is generally done by extending one of the models
provided​ ​for​ ​external​ ​devices.​ ​​ ​These​ ​are:

● pacman.model.graphs.application.ApplicationFPGAVertex - this is used when the device is
connected to an FPGA. You need to provide the ​fpga_id​, the ​fpga_link_id and optionally the
board_address when you are using a multi-board system, and the board connected to is not the
first​ ​board.

● pacman.model.graphs.application.ApplicationSpiNNakerLinkVertex - this is used when the
device is connected to a SpiNNaker Link. You need to provide the ​spinnaker_link_id and
optionally the ​board_address when you are using a multi-board system, and the board connected
to​ ​is​ ​not​ ​the​ ​first​ ​board.

In addition to this, you need to create a second class that extends ​spynnaker8.utilities.DataHolder​. This
will pass the parameters from PyNN to the device you have created above. As an example, you might
have​ ​the​ ​following​ ​to​ ​represent​ ​a​ ​device​ ​connected​ ​to​ ​an​ ​FPGA:

import​ ​pyNN.spiNNaker​ ​as​ ​p
from​ ​spynnaker8.utilities​ ​import​ ​DataHolder
from​ ​pacman.model.graphs.application​ ​import​ ​ApplicationFPGAVertex

class​ ​MyDevice(ApplicationFPGAVertex):
​ ​​ ​​ ​​ ​def​ ​__init__(
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​n_neurons,​ ​fpga_id,​ ​fpga_link_id,​ ​board_address=None,​ ​label=None):
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​ApplicationFPGAVertex(
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​n_neurons,​ ​fpga_id=fpga_id,​ ​fpga_link_id=fpga_link_id,
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​board_address=board_address,​ ​label=label)

class​ ​MyDeviceDataHolder(DataHolder):
​ ​​ ​​ ​​ ​def​ ​__init__(self,​ ​fpga_id,​ ​fpga_link_id,​ ​board_address=None,​ ​label=None):
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​DataHolder.__init__(
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​self,​ ​{“fpga_id”:​ ​fpga_id,​ ​“fpga_link_id”:​ ​fpga_link_id,
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​“board_address”:​ ​board_address,​ ​“label”:​ ​label})

​ ​​ ​​ ​​ ​@staticmethod
​ ​​ ​​ ​​ ​def​ ​build_model():
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​return​ ​MyDevice

Input

If you are using the device as an input device input a PyNN network, you will need to specify the multicast
keys that the device will generate. This is done by creating a Python ​class for the device which extends
one​ ​of​ ​the​ ​aforementioned​ ​interfaces​ ​in​ ​addition​ ​to​ ​the​ ​interface:

spinn_front_end_common.abstract_models.AbstractProvidesOutgoingPartitionConstraints

This​ ​requires​ ​the​ ​addition​ ​of​ ​a​ ​method​ ​called:
def​ ​get_outgoing_partition_constraints(self,​ ​partition)

This takes a parameter called ​partition​; this can be ignored for the purposes of integration in PyNN. This
function should return a ​constraint on the keys that are to be sent from this vertex. In general, you can
return​ ​a​ ​fixed​ ​key​ ​and​ ​mask​ ​pair​ ​from​ ​this​ ​method​ ​indicating​ ​the​ ​base​ ​key​ ​and​ ​range​ ​of​ ​keys​ ​to​ ​use​ ​e.g.:

​ ​​return​ ​[FixedKeyAndMaskConstraint([BaseKeyAndMask(0x12340000,​ ​0xFFFF0000)])]

The example above would indicate that the device will send keys where the first 16 bits have the value
0x1234 and the rest of the bits can be set to any value between 0 and 0xFFFF (thus the range of keys the
device is expected to send is 0x12340000 - 0x1234FFFF). It is not critical that the device uses all these
keys, but it is essential that every key that the device will send is covered, otherwise packets sent by the
device​ ​can​ ​interfere​ ​with​ ​the​ ​operation​ ​of​ ​the​ ​SpiNNaker​ ​system.

You can now use the device ​as a source in a PyNN network by providing it as a model in a Population.
The device will then be treated as a source of spikes, like a SpikeSourceArray or SpikeSourcePoisson.
Thus you can create a projection from the device to other Population objects in the network, where the
device​ ​population​ ​is​ ​the​ ​source​ ​population.

Output

If you would like to send spikes to the device, this is done differently from other objects in the network. This
is because a Projection expects to accept a connection describing the connectivity between the source and
target neurons. Populations of neurons use the connection information to create a synaptic matrix; on
reception of a spike this is used to work out which neurons are targeted by the spike. An external device is
not assumed to have a synaptic matrix, and there is no standard way for the software to communicate the
synaptic matrix to the device. Thus the device is expected to accept all the spikes from all the neurons, and
process them accordingly. For this reason, a separate method is used to send spikes from a PyNN
Population​ ​object​ ​to​ ​a​ ​device.​ ​​ ​This​ ​is:

p.external_devices.activate_live_output_to(<source_population>,​ ​<destination_device>)

where ​<source_population> is a standard PyNN Population object (which can include other devices and
input sources), and ​<destination_device> is the device population, a population created with the device
DataHolder​ ​as​ ​the​ ​model.

The keys that the device will receive in this case are those that have been assigned to the source
population. If the device has a specific set of keys that need to be sent to control it, this will be described in
more​ ​detail​ ​below.

Commands

Commands are SpiNNaker multicast messages with or without payloads that can be sent to a device at the
start and end of a simulation, or at specified times during a simulation. This can be used to set up and

cleanly stop an external device. In these contexts, you can tell a device the multicast keys to use in the
simulation, and you can tell it to start transmitting at the start of the simulation, and stop transmitting at the
end. This can be important when operating SpiNNaker, since if your device is sending data packets into
SpiNNaker,​ ​it​ ​might​ ​not​ ​be​ ​able​ ​to​ ​perform​ ​normal​ ​functions,​ ​such​ ​as​ ​booting​ ​the​ ​system.

If​ ​you​ ​have​ ​a​ ​device​ ​that​ ​supports​ ​commands,​ ​you​ ​can​ ​extend​ ​you​ ​device​ ​class​ ​(​not​​ ​the​ ​DataHolder)​ ​with:
spinn_front_end_common.abstract_models.AbstractSendMeMulticastCommandsVertex

This​ ​requires​ ​the​ ​following​ ​properties​ ​to​ ​be​ ​implemented,​ ​each​ ​of​ ​which​ ​returns​ ​a​ ​list​ ​of:
spinn_front_end_common.utiltiy_models.MultiCastCommand(

key,​ ​payload=None,​ ​time=None)

● start_resume_commands - returns a list of MultiCastCommand instances to send at the start of
the​ ​simulation,​ ​or​ ​when​ ​the​ ​simulation​ ​resumes​ ​after​ ​a​ ​pause.​ ​​ ​The​ ​time​ ​field​ ​is​ ​ignored.

● pause_stop_commands - returns a list of MultiCastCommand instances to send at the end of
simulation,​ ​or​ ​when​ ​the​ ​simulation​ ​pauses.​ ​​ ​The​ ​time​ ​field​ ​is​ ​ignored.

● timed_commands ​- return a list of MultiCastCommand instances to send at specified times during
the​ ​simulation.​ ​​ ​The​ ​time​ ​field​ ​must​ ​be​ ​specified.

Any​ ​of​ ​these​ ​can​ ​return​ ​an​ ​empty​ ​list​ ​of​ ​commands​ ​(most​ ​commonly​ ​the​ ​timed_commands​ ​does​ ​this).

Device​ ​Control​ ​During​ ​Simulation

In addition to the above support for handling direct output of spikes to devices, the software can also be
configured to handle the sending of commands to a device based on the state of the simulation, in terms of
the membrane voltage of a LIF neuron. These commands will consist of multicast messages with a
payload, where the payload is the membrane voltage. The messages can be configured to be sent at
multiples of the timestep of the simulation to reduce the amount of data being sent over the SpiNNaker
network.

The​ ​neuron​ ​model​ ​to​ ​use​ ​to​ ​control​ ​devices​ ​is:
p.external_devices.ExternalDeviceLifControl

This has the parameters of the IF_curr_exp neuron, with the exception of v_thresh (since it has no
threshold​ ​voltage​ ​and​ ​never​ ​spikes).​ ​​ ​Additionally,​ ​the​ ​following​ ​parameters​ ​must​ ​be​ ​specified:

● devices - the list of devices that will be controlled by this population. The length of devices must be
the​ ​same​ ​as​ ​the​ ​number​ ​of​ ​neurons​ ​in​ ​the​ ​population.​ ​​ ​These​ ​are​ ​detailed​ ​below.

● create_edges - indicates whether edges to the devices should be added to the network. This is for
compatibility​ ​with​ ​Ethernet​ ​devices​ ​(see​ ​later).​ ​​ ​Set​ ​to​ ​True​ ​for​ ​SpiNNakerLink​ ​and​ ​FPGA​ ​devices.

Each device specified in the parameter ​devices​, in addition to extending either the
ApplicationSpiNNakerLinkVertex​ ​or​ ​ApplicationFPGAVertex,​ ​should​ ​additionally​ ​extend:

spynnaker.pyNN.external_device_models.AbstractMulticastControllableDevice

This​ ​requires​ ​the​ ​class​ ​to​ ​have​ ​the​ ​following​ ​properties:

● device_control_partition_id ​- the id to give the partition of edges going to this device. This can be
anything​ ​such​ ​as​ ​the​ ​name​ ​of​ ​the​ ​device.

● device_control_key​​ ​-​ ​the​ ​key​ ​to​ ​use​ ​in​ ​the​ ​multicast​ ​packet​ ​to​ ​be​ ​sent​ ​to​ ​the​ ​device.

● device_control_uses_payload - True if the device will take the membrane voltage as a payload,
False if the key will be sent by itself. It is expected that most devices will want to set this to true to
receive​ ​the​ ​membrane​ ​voltage​ ​in​ ​the​ ​payload.

● device_control_min_value - the minimum value of membrane voltage that the device accepts. If
the​ ​voltage​ ​is​ ​below​ ​this​ ​value,​ ​this​ ​value​ ​is​ ​sent​ ​instead.

● device_control_max_value - the maximum value of membrane voltage that the device accepts. If
the​ ​voltage​ ​is​ ​above​ ​this​ ​value,​ ​this​ ​value​ ​is​ ​sent​ ​instead.

● device_control_timesteps_between_sending - the number of timesteps between the sending of
the​ ​packets,​ ​to​ ​reduce​ ​the​ ​bandwidth​ ​used.

This LIF-based model can now be used as a Population in a simulation, and as a target population of a
standard PyNN Projection. Spikes received by the population will increase the membrane voltage of
neurons in the population if they are connected via an excitatory connection, or decrease the membrane
voltage if connected via an inhibitory connection, as normal. It is important to realise though that a
Population object created with this model will never spike. It is not an error to use it as the pre-population in
a Projection, but no spikes will be sent across the projection in that case. Note, that this population, can
now​ ​be​ ​recorded​ ​like​ ​any​ ​other​ ​population,​ ​unlike​ ​the​ ​devices​ ​themselves.

The format of the membrane voltage sent as the payload is S1615 format (this is a 32-bit number with the
first bit being the sign, the next 16-bits are the integer part of the number and the remaining 15-bits are the
fractional part of the number). The default parameters therefore set the rest and reset voltages of the
neuron to 0 (e.g. when using a motor where the membrane voltage is the speed of the motor, this would
mean​ ​the​ ​speed​ ​would​ ​be​ ​0​ ​without​ ​any​ ​input).

Warning​ ​about​ ​Keys

There are two potential sources of keys that can be received by the devices: those sent by commands at
the start and end of simulation, and those sent to the device during simulation containing the membrane
voltage. These two sources of keys must generate distinct keys e.g. if you are using a command at the
start that sets a motor speed to 0, and then you want to set the motor speed using the voltage during
simulation, your device needs to accept different keys for this. This is often done by having your device
ignore part of the key e.g. it might use the bottom 16-bits to identify the command it is being asked to
perform,​ ​but​ ​ignore​ ​the​ ​top​ ​16-bits.

Software​ ​Connection​ ​for​ ​Ethernet​ ​and​ ​Other​ ​Devices

Output

If your device only works over an Ethernet connection, or some other connection via the host machine, this
can be controlled using the Live I/O discussed in another lab. The software does, however, have some
support for using these devices with the aforementioned LIF neuron membrane voltage output. To make
this work, the device is defined as a class which, as described for SpiNNakerLink and FPGA devices,
extends​ ​the​ ​interface:

spynnaker.pyNN.external_device_models.AbstractMulticastControllableDevice

See above for a description of the properties that the implementation must provide. Note that the device
does ​not now have to extend ApplicationSpiNNakerLinkVertex or ApplicationFPGAVertex. However the
device still has to produce keys for the commands. These can be arbitrary values, so long as they don’t
clash​ ​with​ ​other​ ​keys​ ​in​ ​use.

Once​ ​the​ ​device​ ​is​ ​defined,​ ​you​ ​then​ ​need​ ​to​ ​define​ ​a​ ​class​ ​that​ ​extends:
spinnaker.pyNN.external_device_models.AbstractEthernetTranslator

This is the class that will communicate with your device, and so should contain all the mechanisms through
which​ ​you​ ​do​ ​this.​ ​​ ​The​ ​class​ ​requires​ ​the​ ​implementation​ ​of​ ​a​ ​single​ ​method:

def​ ​translate_control_packet(self,​ ​multicast_packet)

This method takes a multicast packet, which will have a properties of ​key and ​payload indicating the key
and payload of the packet received. The key will be the key returned by the device_control_key that you
defined​ ​as​ ​part​ ​of​ ​the​ ​definition​ ​of​ ​your​ ​device.​ ​​ ​The​ ​payload​ ​will​ ​contain​ ​the​ ​membrane​ ​voltage​ ​value.

Note​ ​that​ ​you​ ​can​ ​also​ ​make​ ​your​ ​device​ ​extend​ ​the​ ​class:
spinn_front_end_common.abstract_models.AbstractSendMeMulticastCommandsVertex

This will allow the device to be sent commands at the start and end of simulation. These commands will
also be sent via the above translator instance, so the translator must also recognise these packets. As with
the other devices, the keys used for start and stop commands must be different from those used to control
the​ ​device,​ ​though​ ​with​ ​an​ ​Ethernet​ ​device,​ ​these​ ​keys​ ​are​ ​arbitrary​ ​in​ ​any​ ​case.

Once these parts have been defined, an instance of ​p.external_devices.ExternalDeviceLifControl is
again created, with parameters as previously described, but with ​create_edges set to False, and an
additional​ ​parameter​ ​​translator​,​ ​which​ ​is​ ​an​ ​instance​ ​of​ ​the​ ​translator​ ​created​ ​above.

The final instantiation of the device is via ​p.external_devices.EthernetControlPopulation​. This is used ​in
place​ ​of​​ ​p.Population,​ ​​not​ ​​as​ ​a​ ​model.​ ​​ ​This​ ​method​ ​takes​ ​the​ ​following​ ​parameters:

● n_neurons - the number of neurons in the population. This should be the same as the number of
devices​ ​passed​ ​to​ ​the​ ​ExternalDeviceLifControl​ ​model.

● model​​ ​-​ ​this​ ​is​ ​the​ ​ExternalDeviceLifControl​ ​instance​ ​defined​ ​above.

The result of this call can be used as the target population of a PyNN Projection to send spikes to the
device.​ ​​ ​It​ ​is​ ​valid​ ​to​ ​use​ ​it​ ​as​ ​a​ ​source​ ​population​ ​but​ ​the​ ​Projection​ ​will​ ​then​ ​pass​ ​no​ ​spikes.

Input

For Ethernet Input, again Live I/O can be used as described elsewhere. The software also provides
additional interfaces to link the device more closely to the software and make it easier to use as a single
unit.

To take advantage of this functionality, the Ethernet input device should be defined in a class which
extends:

spynnaker.pyNN.external_device_models.AbstractEthernetSensor

This​ ​class​ ​requires​ ​that​ ​the​ ​following​ ​methods​ ​are​ ​implemented:

● get_n_neurons​​ ​-​ ​return​ ​the​ ​number​ ​of​ ​neurons​ ​the​ ​sensor​ ​provides.
● get_injector_parameters​​ ​-​ ​return​ ​any​ ​parameters​ ​to​ ​pass​ ​to​ ​the​ ​SpikeInjector.
● get_injector_label​​ ​-​ ​return​ ​the​ ​label​ ​to​ ​give​ ​to​ ​the​ ​SpikeInjector.
● get_translator - return an AbstractEthernetTranslator as defined for output. This is used for start

and stop commands, so you can return None if the class doesn’t also extend
AbstractSendMeMulticastCommandsVertex.

● get_database_connection - return a SpynnakerLiveSpikesConnection that is to be used to send
the​ ​spikes​ ​into​ ​SpiNNaker.

If desired, you can write a class which extends SpynnakerLiveSpikesConnection and gathers data from
your device and uses the send_spikes method to inject spikes into the network based on the data. This
can then be returned from get_database_connection. Alternatively, you can create a
SpynnakerLiveSpikesConnection​ ​instance​ ​elsewhere​ ​and​ ​return​ ​this​ ​directly.

Once​ ​this​ ​has​ ​been​ ​implemented,​ ​you​ ​can​ ​instantiate​ ​the​ ​device​ ​using:
p.external_devices.EthernetSensorPopulation

This is again used in place of a pyNN Population object and ​not as a model. This requires a single
paramerter​ ​​device​​ ​which​ ​is​ ​the​ ​device​ ​you​ ​have​ ​defined​ ​above.

The result of this call be be used as the source population of a projection. It is not valid to use this as a
target​ ​population.

Pushbot

The TUM Pushbot is a commonly used robotics platform which is compatible with SpiNNaker over Ethernet
and SpiNNakerLink with an additional SpiNNaker adapter. The Pushbot therefore is a good example of the
use​ ​of​ ​the​ ​various​ ​interfaces​ ​described​ ​above.

The Pushbot has several output devices, including two motors, a laser, two LEDs, and a speaker. These
are each considered to be different devices from the point-of-view of the tools. To help with key allocation,
the pushbot implementation has a MunichIOProtocol instance, which gives the keys for various commands
given​ ​a​ ​base​ ​key.

The Pushbot has several sensors, but so far only the retina has been implemented in the tools. When used
over SpiNNakerLink, the SpiNNaker board protocol will downsample the retina into various formats. The
Ethernet connection to the Pushbot doesn’t support this, so the software is designed to do this on the host
machine​ ​between​ ​receiving​ ​spikes​ ​from​ ​the​ ​retina​ ​and​ ​sending​ ​them​ ​on​ ​to​ ​SpiNNaker.

The tools also include a Pushbot retina visualiser. This can receive spikes from the Pushbot retina and
display​ ​them​ ​in​ ​a​ ​graphical​ ​window.​ ​​ ​This​ ​shows​ ​how​ ​the​ ​retina​ ​works​ ​based​ ​on​ ​the​ ​changes​ ​in​ ​light.

Tasks

These tasks will take you through the process of interacting with external devices. You don’t actually have
to have a device connected to work through this process, or to run some scripts. You may see some
warning​ ​messages​ ​because​ ​of​ ​this,​ ​but​ ​the​ ​scripts​ ​should​ ​still​ ​otherwise​ ​run​ ​correctly.

Task​ ​1.1​ ​[Easy]

Create a network which sends spikes from a Poisson spike source to a device which extends
ApplicationSpiNNakerLinkVertex with a single neuron on spinnaker link 0. Note that when you run the
network,​ ​you​ ​should​ ​get​ ​a​ ​message​ ​like​ ​the​ ​following:

2017-09-22 20:28:28 WARNING: The reinjector on 0, 0 has detected that 76242 packets

were dumped from a outgoing link of this chip's router. This often occurs when

external devices are used in the script but not connected to the communication fabric

correctly. These packets may have been reinjected multiple times and so this number

may​ ​be​ ​a​ ​overestimate.

The reason for this is that there isn’t actually a device connected to your board. However, this message
indicates​ ​that​ ​the​ ​packets​ ​are​ ​correctly​ ​routed​ ​towards​ ​the​ ​spinnaker​ ​link.

Task​ ​1.2​ ​[Easy]

Try changing the spinnaker link to 1. If you have a 4-node board, this should result in a similar message
but referencing chip 1, 0. If you are using a 48-node board, you should get an error since there isn’t a
second​ ​spinnaker​ ​link​ ​on​ ​the​ ​board.

Task​ ​2.1​ ​[Medium]

Create another device class that extends ApplicationSpiNNakerLinkVertex and
AbstractProvidesOutgoingPartitionConstraints. Set up the device up so that it sends with a base key of
0x12340000 and mask 0xFFFF0000. Set up a network with a projection from the device to an IF_curr_exp
population. You will not get any spikes; to verify that the network is working, look inside the folder “reports”
for​ ​the​ ​folder​ ​with​ ​the​ ​latest​ ​date.​ ​​ ​Inside​ ​this​ ​folder,​ ​look​ ​at​ ​the​ ​file:

“run1/virtual_key_space_information_report.rpt”

This​ ​should​ ​show​ ​you​ ​the​ ​key​ ​and​ ​mask​ ​assigned​ ​to​ ​your​ ​device.

Task​ ​2.2​ ​[Medium]

Extend the class further to implement AbstractSendMeMulticastCommandsVertex. Add some start and end
commands.​ ​​ ​Again​ ​look​ ​inside​ ​the​ ​report​ ​and​ ​see​ ​that​ ​the​ ​commands​ ​have​ ​been​ ​added.

Task​ ​3​ ​[Hard]

Create another device class, this time extending ApplicationSpiNNakerLinkVertex and
AbstractMulticastControllableDevice. No DeviceHolder is needed. Create a script with a Population that
uses a ExternalDeviceLifControl as a model, which takes the device you just created. Record the
membrane voltage from the device. Connect a Poisson spike source to the device, run for some number of
milliseconds​ ​and​ ​then​ ​print​ ​or​ ​graph​ ​the​ ​membrane​ ​voltage.

Task​ ​4​ ​[Hard]

Create another device class which extends AbstractMulticastControllableDevice but nothing else. Create a
translator class that extends AbstractEthernetTranslator, and in the implementation prints out the key and
payload of the multicast message. Add the device to an ExternalDeviceLifControl instance along with the
translator. Create an EthernetControlPopulation, and feed this with a Poisson spike source. Record the
membrane voltage of the control population, run the simulation for some number of milliseconds and then
print​ ​or​ ​graph​ ​the​ ​membrane​ ​voltage.

Task​ ​5​ ​[Very​ ​Hard]

Create a class which extends AbstractEthernetSensor and has a single neuron. This class should create
its own SpynnakerLiveSpikes connection, and register a method against this to send a spike to neuron 0 at
start up (probably after a short pause e.g. 0.01 seconds to make sure the simulation is actually running).
Be careful that the label given to the connection is the same as that returned from the sensor
get_injector_label() method, and make sure this same connection is returned from the
get_database_connection() method. The sensor doesn’t send start or stop commands, so it doesn’t need a
translator (i.e. this method can return None), and no additional injector parameters are required. Connect
the sensor to a standard LIF population with a single neuron. Record the voltage from this population and
make​ ​sure​ ​that​ ​it​ ​changes​ ​in​ ​response​ ​to​ ​the​ ​single​ ​injected​ ​spike.

Note you may need to add a new spynnaker.cfg file to the folder where you are running the script, with the
following​ ​contents:

[Database]

create_database​ ​=​ ​True

This​ ​is​ ​to​ ​overcome​ ​a​ ​bug​ ​in​ ​the​ ​detection​ ​of​ ​when​ ​the​ ​database​ ​needs​ ​to​ ​be​ ​created.

