

External Devices on SpiNNaker - Lab Manual

Introduction

This manual will discuss the connection of external devices to SpiNNaker and how to tell the software that
they are in use.

Physical Connection

The SpiNNaker boards have a number of places to which external devices can be connected. The first of
these is the SpiNNakerLink connections. These are shown below.

Additionally, the 48-node boards have FPGAs which are linked to the SATA connectors. These are shown
below.

The FPGAs are connected internally to a subset of the border chips on the board as shown above; the links
at the edges of the board are coded as F<fpga-id>-L<fpga-link-id>, so F1-L04 is FPGA 1, FPGA link id 4.

The FPGA id and FPGA link ids, or the SpiNNakerLink ids are used to tell the software where a device has
been connected. When a SpiNNakerLink is specified, the device is connected directly to this link. When an
FPGA id is used, this indicates the FPGA to which the device is connected and which link of the FPGA it is
connected to. The tools do not currently do any reprogramming of the FPGAs themselves, so the FPGA
must have been configured in advance to forward packets between this link of the FPGA and the SATA link
to which the device is connected.

When a multi-board system is in use, it is important that you do not connect your device to the
SpiNNakerLink unless you know that the FPGA has been disabled for that link. If you don’t do this, you
could damage the board. Devices can be connected to the FPGA SATA connectors as you wish, but
without reconfiguring the FPGA, it is unlikely that any communication will occur.

When using a multi-board system, you must also be able to tell the software which board you are
connecting your device to. This is done using the IP address of the ethernet-connected chip on the board.
The board which contains chip 0, 0 will generally have the same IP address as the one you use to contact
the board; if you don’t specify a board address, it will be assumed that you want to use this board in any
case, so unless you have multiple devices to connect, you may want to choose this board first.

Ethernet Connection

If you have a device that connects over Ethernet or some other means using the host machine, the
software can also be configured to act as an intermediary between the device and SpiNNaker. No special
connections are required in this case.

Software Connection for SpiNNaker Link and FPGA Devices

Device Specification

Once you have physically connected the device to the machine, the software needs to be told that that you
want to add the device to a neural network. This is generally done by extending one of the models
provided for external devices. These are:

● pacman.model.graphs.application.ApplicationFPGAVertex - this is used when the device is
connected to an FPGA. You need to provide the fpga_id, the fpga_link_id and optionally the
board_address when you are using a multi-board system, and the board connected to is not the
first board.

● pacman.model.graphs.application.ApplicationSpiNNakerLinkVertex - this is used when the
device is connected to a SpiNNaker Link. You need to provide the spinnaker_link_id and
optionally the board_address when you are using a multi-board system, and the board connected
to is not the first board.

In addition to this, you need to create a second class that extends spynnaker8.utilities.DataHolder. This
will pass the parameters from PyNN to the device you have created above. As an example, you might
have the following to represent a device connected to an FPGA:

import pyNN.spiNNaker as p
from spynnaker8.utilities import DataHolder
from pacman.model.graphs.application import ApplicationFPGAVertex

class MyDevice(ApplicationFPGAVertex):
 def __init__(
 n_neurons, fpga_id, fpga_link_id, board_address=None, label=None):
 ApplicationFPGAVertex(
 n_neurons, fpga_id=fpga_id, fpga_link_id=fpga_link_id,
 board_address=board_address, label=label)

class MyDeviceDataHolder(DataHolder):
 def __init__(self, fpga_id, fpga_link_id, board_address=None, label=None):
 DataHolder.__init__(
 self, {“fpga_id”: fpga_id, “fpga_link_id”: fpga_link_id,
 “board_address”: board_address, “label”: label})

 @staticmethod
 def build_model():
 return MyDevice

Input

If you are using the device as an input device input a PyNN network, you will need to specify the multicast
keys that the device will generate. This is done by creating a Python class for the device which extends
one of the aforementioned interfaces in addition to the interface:

spinn_front_end_common.abstract_models.AbstractProvidesOutgoingPartitionConstraints

This requires the addition of a method called:
def get_outgoing_partition_constraints(self, partition)

This takes a parameter called partition; this can be ignored for the purposes of integration in PyNN. This
function should return a constraint on the keys that are to be sent from this vertex. In general, you can
return a fixed key and mask pair from this method indicating the base key and range of keys to use e.g.:

 return [FixedKeyAndMaskConstraint([BaseKeyAndMask(0x12340000, 0xFFFF0000)])]

The example above would indicate that the device will send keys where the first 16 bits have the value
0x1234 and the rest of the bits can be set to any value between 0 and 0xFFFF (thus the range of keys the
device is expected to send is 0x12340000 - 0x1234FFFF). It is not critical that the device uses all these
keys, but it is essential that every key that the device will send is covered, otherwise packets sent by the
device can interfere with the operation of the SpiNNaker system.

You can now use the device as a source in a PyNN network by providing it as a model in a Population.
The device will then be treated as a source of spikes, like a SpikeSourceArray or SpikeSourcePoisson.
Thus you can create a projection from the device to other Population objects in the network, where the
device population is the source population.

Output

If you would like to send spikes to the device, this is done differently from other objects in the network. This
is because a Projection expects to accept a connection describing the connectivity between the source and
target neurons. Populations of neurons use the connection information to create a synaptic matrix; on
reception of a spike this is used to work out which neurons are targeted by the spike. An external device is
not assumed to have a synaptic matrix, and there is no standard way for the software to communicate the
synaptic matrix to the device. Thus the device is expected to accept all the spikes from all the neurons, and
process them accordingly. For this reason, a separate method is used to send spikes from a PyNN
Population object to a device. This is:

p.external_devices.activate_live_output_to(<source_population>, <destination_device>)

where <source_population> is a standard PyNN Population object (which can include other devices and
input sources), and <destination_device> is the device population, a population created with the device
DataHolder as the model.

The keys that the device will receive in this case are those that have been assigned to the source
population. If the device has a specific set of keys that need to be sent to control it, this will be described in
more detail below.

Commands

Commands are SpiNNaker multicast messages with or without payloads that can be sent to a device at the
start and end of a simulation, or at specified times during a simulation. This can be used to set up and

cleanly stop an external device. In these contexts, you can tell a device the multicast keys to use in the
simulation, and you can tell it to start transmitting at the start of the simulation, and stop transmitting at the
end. This can be important when operating SpiNNaker, since if your device is sending data packets into
SpiNNaker, it might not be able to perform normal functions, such as booting the system.

If you have a device that supports commands, you can extend you device class (not the DataHolder) with:
spinn_front_end_common.abstract_models.AbstractSendMeMulticastCommandsVertex

This requires the following properties to be implemented, each of which returns a list of:
spinn_front_end_common.utiltiy_models.MultiCastCommand(

key, payload=None, time=None)

● start_resume_commands - returns a list of MultiCastCommand instances to send at the start of
the simulation, or when the simulation resumes after a pause. The time field is ignored.

● pause_stop_commands - returns a list of MultiCastCommand instances to send at the end of
simulation, or when the simulation pauses. The time field is ignored.

● timed_commands - return a list of MultiCastCommand instances to send at specified times during
the simulation. The time field must be specified.

Any of these can return an empty list of commands (most commonly the timed_commands does this).

Device Control During Simulation

In addition to the above support for handling direct output of spikes to devices, the software can also be
configured to handle the sending of commands to a device based on the state of the simulation, in terms of
the membrane voltage of a LIF neuron. These commands will consist of multicast messages with a
payload, where the payload is the membrane voltage. The messages can be configured to be sent at
multiples of the timestep of the simulation to reduce the amount of data being sent over the SpiNNaker
network.

The neuron model to use to control devices is:
p.external_devices.ExternalDeviceLifControl

This has the parameters of the IF_curr_exp neuron, with the exception of v_thresh (since it has no
threshold voltage and never spikes). Additionally, the following parameters must be specified:

● devices - the list of devices that will be controlled by this population. The length of devices must be
the same as the number of neurons in the population. These are detailed below.

● create_edges - indicates whether edges to the devices should be added to the network. This is for
compatibility with Ethernet devices (see later). Set to True for SpiNNakerLink and FPGA devices.

Each device specified in the parameter devices, in addition to extending either the
ApplicationSpiNNakerLinkVertex or ApplicationFPGAVertex, should additionally extend:

spynnaker.pyNN.external_device_models.AbstractMulticastControllableDevice

This requires the class to have the following properties:

● device_control_partition_id - the id to give the partition of edges going to this device. This can be
anything such as the name of the device.

● device_control_key - the key to use in the multicast packet to be sent to the device.

● device_control_uses_payload - True if the device will take the membrane voltage as a payload,
False if the key will be sent by itself. It is expected that most devices will want to set this to true to
receive the membrane voltage in the payload.

● device_control_min_value - the minimum value of membrane voltage that the device accepts. If
the voltage is below this value, this value is sent instead.

● device_control_max_value - the maximum value of membrane voltage that the device accepts. If
the voltage is above this value, this value is sent instead.

● device_control_timesteps_between_sending - the number of timesteps between the sending of
the packets, to reduce the bandwidth used.

This LIF-based model can now be used as a Population in a simulation, and as a target population of a
standard PyNN Projection. Spikes received by the population will increase the membrane voltage of
neurons in the population if they are connected via an excitatory connection, or decrease the membrane
voltage if connected via an inhibitory connection, as normal. It is important to realise though that a
Population object created with this model will never spike. It is not an error to use it as the pre-population in
a Projection, but no spikes will be sent across the projection in that case. Note, that this population, can
now be recorded like any other population, unlike the devices themselves.

The format of the membrane voltage sent as the payload is S1615 format (this is a 32-bit number with the
first bit being the sign, the next 16-bits are the integer part of the number and the remaining 15-bits are the
fractional part of the number). The default parameters therefore set the rest and reset voltages of the
neuron to 0 (e.g. when using a motor where the membrane voltage is the speed of the motor, this would
mean the speed would be 0 without any input).

Warning about Keys

There are two potential sources of keys that can be received by the devices: those sent by commands at
the start and end of simulation, and those sent to the device during simulation containing the membrane
voltage. These two sources of keys must generate distinct keys e.g. if you are using a command at the
start that sets a motor speed to 0, and then you want to set the motor speed using the voltage during
simulation, your device needs to accept different keys for this. This is often done by having your device
ignore part of the key e.g. it might use the bottom 16-bits to identify the command it is being asked to
perform, but ignore the top 16-bits.

Software Connection for Ethernet and Other Devices

Output

If your device only works over an Ethernet connection, or some other connection via the host machine, this
can be controlled using the Live I/O discussed in another lab. The software does, however, have some
support for using these devices with the aforementioned LIF neuron membrane voltage output. To make
this work, the device is defined as a class which, as described for SpiNNakerLink and FPGA devices,
extends the interface:

spynnaker.pyNN.external_device_models.AbstractMulticastControllableDevice

See above for a description of the properties that the implementation must provide. Note that the device
does not now have to extend ApplicationSpiNNakerLinkVertex or ApplicationFPGAVertex. However the
device still has to produce keys for the commands. These can be arbitrary values, so long as they don’t
clash with other keys in use.

Once the device is defined, you then need to define a class that extends:
spinnaker.pyNN.external_device_models.AbstractEthernetTranslator

This is the class that will communicate with your device, and so should contain all the mechanisms through
which you do this. The class requires the implementation of a single method:

def translate_control_packet(self, multicast_packet)

This method takes a multicast packet, which will have a properties of key and payload indicating the key
and payload of the packet received. The key will be the key returned by the device_control_key that you
defined as part of the definition of your device. The payload will contain the membrane voltage value.

Note that you can also make your device extend the class:
spinn_front_end_common.abstract_models.AbstractSendMeMulticastCommandsVertex

This will allow the device to be sent commands at the start and end of simulation. These commands will
also be sent via the above translator instance, so the translator must also recognise these packets. As with
the other devices, the keys used for start and stop commands must be different from those used to control
the device, though with an Ethernet device, these keys are arbitrary in any case.

Once these parts have been defined, an instance of p.external_devices.ExternalDeviceLifControl is
again created, with parameters as previously described, but with create_edges set to False, and an
additional parameter translator, which is an instance of the translator created above.

The final instantiation of the device is via p.external_devices.EthernetControlPopulation. This is used in
place of p.Population, not as a model. This method takes the following parameters:

● n_neurons - the number of neurons in the population. This should be the same as the number of
devices passed to the ExternalDeviceLifControl model.

● model - this is the ExternalDeviceLifControl instance defined above.

The result of this call can be used as the target population of a PyNN Projection to send spikes to the
device. It is valid to use it as a source population but the Projection will then pass no spikes.

Input

For Ethernet Input, again Live I/O can be used as described elsewhere. The software also provides
additional interfaces to link the device more closely to the software and make it easier to use as a single
unit.

To take advantage of this functionality, the Ethernet input device should be defined in a class which
extends:

spynnaker.pyNN.external_device_models.AbstractEthernetSensor

This class requires that the following methods are implemented:

● get_n_neurons - return the number of neurons the sensor provides.
● get_injector_parameters - return any parameters to pass to the SpikeInjector.
● get_injector_label - return the label to give to the SpikeInjector.
● get_translator - return an AbstractEthernetTranslator as defined for output. This is used for start

and stop commands, so you can return None if the class doesn’t also extend
AbstractSendMeMulticastCommandsVertex.

● get_database_connection - return a SpynnakerLiveSpikesConnection that is to be used to send
the spikes into SpiNNaker.

If desired, you can write a class which extends SpynnakerLiveSpikesConnection and gathers data from
your device and uses the send_spikes method to inject spikes into the network based on the data. This
can then be returned from get_database_connection. Alternatively, you can create a
SpynnakerLiveSpikesConnection instance elsewhere and return this directly.

Once this has been implemented, you can instantiate the device using:
p.external_devices.EthernetSensorPopulation

This is again used in place of a pyNN Population object and not as a model. This requires a single
paramerter device which is the device you have defined above.

The result of this call be be used as the source population of a projection. It is not valid to use this as a
target population.

Pushbot

The TUM Pushbot is a commonly used robotics platform which is compatible with SpiNNaker over Ethernet
and SpiNNakerLink with an additional SpiNNaker adapter. The Pushbot therefore is a good example of the
use of the various interfaces described above.

The Pushbot has several output devices, including two motors, a laser, two LEDs, and a speaker. These
are each considered to be different devices from the point-of-view of the tools. To help with key allocation,
the pushbot implementation has a MunichIOProtocol instance, which gives the keys for various commands
given a base key.

The Pushbot has several sensors, but so far only the retina has been implemented in the tools. When used
over SpiNNakerLink, the SpiNNaker board protocol will downsample the retina into various formats. The
Ethernet connection to the Pushbot doesn’t support this, so the software is designed to do this on the host
machine between receiving spikes from the retina and sending them on to SpiNNaker.

The tools also include a Pushbot retina visualiser. This can receive spikes from the Pushbot retina and
display them in a graphical window. This shows how the retina works based on the changes in light.

Tasks

These tasks will take you through the process of interacting with external devices. You don’t actually have
to have a device connected to work through this process, or to run some scripts. You may see some
warning messages because of this, but the scripts should still otherwise run correctly.

Task 1.1 [Easy]

Create a network which sends spikes from a Poisson spike source to a device which extends
ApplicationSpiNNakerLinkVertex with a single neuron on spinnaker link 0. Note that when you run the
network, you should get a message like the following:

2017-09-22 20:28:28 WARNING: The reinjector on 0, 0 has detected that 76242 packets

were dumped from a outgoing link of this chip's router. This often occurs when

external devices are used in the script but not connected to the communication fabric

correctly. These packets may have been reinjected multiple times and so this number

may be a overestimate.

The reason for this is that there isn’t actually a device connected to your board. However, this message
indicates that the packets are correctly routed towards the spinnaker link.

Task 1.2 [Easy]

Try changing the spinnaker link to 1. If you have a 4-node board, this should result in a similar message
but referencing chip 1, 0. If you are using a 48-node board, you should get an error since there isn’t a
second spinnaker link on the board.

Task 2.1 [Medium]

Create another device class that extends ApplicationSpiNNakerLinkVertex and
AbstractProvidesOutgoingPartitionConstraints. Set up the device up so that it sends with a base key of
0x12340000 and mask 0xFFFF0000. Set up a network with a projection from the device to an IF_curr_exp
population. You will not get any spikes; to verify that the network is working, look inside the folder “reports”
for the folder with the latest date. Inside this folder, look at the file:

“run1/virtual_key_space_information_report.rpt”

This should show you the key and mask assigned to your device.

Task 2.2 [Medium]

Extend the class further to implement AbstractSendMeMulticastCommandsVertex. Add some start and end
commands. Again look inside the report and see that the commands have been added.

Task 3 [Hard]

Create another device class, this time extending ApplicationSpiNNakerLinkVertex and
AbstractMulticastControllableDevice. No DeviceHolder is needed. Create a script with a Population that
uses a ExternalDeviceLifControl as a model, which takes the device you just created. Record the
membrane voltage from the device. Connect a Poisson spike source to the device, run for some number of
milliseconds and then print or graph the membrane voltage.

Task 4 [Hard]

Create another device class which extends AbstractMulticastControllableDevice but nothing else. Create a
translator class that extends AbstractEthernetTranslator, and in the implementation prints out the key and
payload of the multicast message. Add the device to an ExternalDeviceLifControl instance along with the
translator. Create an EthernetControlPopulation, and feed this with a Poisson spike source. Record the
membrane voltage of the control population, run the simulation for some number of milliseconds and then
print or graph the membrane voltage.

Task 5 [Very Hard]

Create a class which extends AbstractEthernetSensor and has a single neuron. This class should create
its own SpynnakerLiveSpikes connection, and register a method against this to send a spike to neuron 0 at
start up (probably after a short pause e.g. 0.01 seconds to make sure the simulation is actually running).
Be careful that the label given to the connection is the same as that returned from the sensor
get_injector_label() method, and make sure this same connection is returned from the
get_database_connection() method. The sensor doesn’t send start or stop commands, so it doesn’t need a
translator (i.e. this method can return None), and no additional injector parameters are required. Connect
the sensor to a standard LIF population with a single neuron. Record the voltage from this population and
make sure that it changes in response to the single injected spike.

Note you may need to add a new spynnaker.cfg file to the folder where you are running the script, with the
following contents:

[Database]

create_database = True

This is to overcome a bug in the detection of when the database needs to be created.

