
Running​ ​PyNN​ ​Simulations​ ​on​ ​SpiNNaker 

Introduction 

This manual will introduce you to the basics of using the PyNN neural network language on SpiNNaker                 
neuromorphic​ ​hardware. 

Installation 

The PyNN toolchain for SpiNNaker (sPyNNaker), can be installed by following the instructions available              
from​ ​here: 

http://spinnakermanchester.github.io/latest/spynnaker_install.html 

Please install for PyNN version 0.8. Although PyNN version 0.7 is supported, this is only for backwards                 
compatibility​ ​with​ ​existing​ ​scripts.​ ​​ ​New​ ​users​ ​are​ ​advised​ ​to​ ​learn​ ​the​ ​newer​ ​syntax​ ​of​ ​PyNN​ ​0.8. 

Spiking​ ​Neural​ ​Networks 

Biological neurons have been observed to produce sudden and short increases in voltage, commonly              
referred to as spikes. The spike causes a charge to be transferred across the synapse between neurons.                 
The charge from all the presynaptic neurons connected to a postsynaptic neuron builds up, until that                
neuron releases the charge itself in the form of a spike. The spike travels down the axon of the neuron                    
which then arrives after some delay at the synapses of that neuron, causing charge to be passed forward to                   
the​ ​next​ ​neuron,​ ​where​ ​the​ ​process​ ​repeats. 

Artificial spiking neural networks tend to model the membrane voltage of the neuron in response to the                 
incoming charge over time. The voltage is described using a differential equation over time, and the                
solution to this equation is usually computed at fixed time-steps within the simulation. In addition to this, the                  
charge or current flowing across the synapse can also be modelled over time, depending on the model in                  
use. 



The charge can result in either an excitatory response, in which the membrane voltage of the postsynaptic                 
neuron increases or an inhibitory response, in which the membrane voltage of the postsynaptic neuron               
decreases​ ​as​ ​a​ ​result​ ​of​ ​the​ ​spike. 

The​ ​PyNN​ ​Neural​ ​Network​ ​Description​ ​Language 

PyNN is a language for building spiking neural network models. PyNN models can then be run on a                  
number of simulators without modification (or with only minor modifications), including SpiNNaker. The             
basic​ ​steps​ ​of​ ​building​ ​a​ ​PyNN​ ​network​ ​are​ ​as​ ​follows: 

1. Setup​ ​the​ ​simulator 
2. Create​ ​the​ ​neural​ ​​populations 
3. Create​ ​the​ ​​projections​​ ​between​ ​the​ ​populations 
4. Setup​ ​data​ ​recording 
5. Run​ ​the​ ​simulation 
6. Retrieve​ ​and​ ​process​ ​the​ ​recorded​ ​data 

An​ ​example​ ​of​ ​this​ ​is​ ​as​ ​follows: 
import​ ​pyNN.spiNNaker​ ​as​ ​sim 
import​ ​pyNN.utility.plotting​ ​as​ ​plot 
import​ ​matplotlib.pyplot​ ​as​ ​plt 
 
sim.setup(timestep=1.0) 
sim.set_number_of_neurons_per_core(sim.IF_curr_exp,​ ​100) 
 
pop_1​ ​=​ ​sim.Population(1,​ ​sim.IF_curr_exp(),​ ​label="pop_1") 
input​ ​=​ ​sim.Population(1,​ ​sim.SpikeSourceArray(spike_times=[0]),​ ​label="input") 
input_proj​ ​=​ ​sim.Projection(input,​ ​pop_1,​ ​sim.OneToOneConnector(), 
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​synapse_type=sim.StaticSynapse(weight=5,​ ​delay=1)) 
pop_1.record(["spikes",​ ​"v"]) 
simtime​ ​=​ ​10 
sim.run(simtime) 
 
neo​ ​=​ ​pop_1.get_data(variables=["spikes",​ ​"v"]) 
spikes​ ​=​ ​neo.segments[0].spiketrains 
print​ ​spikes 
v​ ​=​ ​neo.segments[0].filter(name='v')[0] 
print​ ​v 
sim.end() 
 
plot.Figure( 
​ ​​ ​​ ​​ ​#​ ​plot​ ​voltage​ ​for​ ​first​ ​([0])​ ​neuron 
​ ​​ ​​ ​​ ​plot.Panel(v,​ ​ylabel="Membrane​ ​potential​ ​(mV)", 
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​data_labels=[pop_1.label],​ ​yticks=True,​ ​xlim=(0,​ ​simtime)), 
​ ​​ ​​ ​​ ​#​ ​plot​ ​spikes​ ​(or​ ​in​ ​this​ ​case​ ​spike) 
​ ​​ ​​ ​​ ​plot.Panel(spikes,​ ​yticks=True,​ ​markersize=5,​ ​xlim=(0,​ ​simtime)), 
​ ​​ ​​ ​​ ​title="Simple​ ​Example", 
​ ​​ ​​ ​​ ​annotations="Simulated​ ​with​ ​{}".format(sim.name()) 
) 
plt.show() 

This example runs using a 1.0ms timestep. It creates a single input source (A ​SpikeSourceArray​) sending                
a single spike at time 0, connected to a single neuron (with model ​IF_curr_exp​). The connection is                 
weighted, so that a spike in the presynaptic neuron sends a fixed (or Static) current of 5 nanoamps (nA) to                    
the excitatory synapse of the postsynaptic neuron, with a delay of 1 millisecond. The spikes and the                 
membrane voltage are recorded, and the simulation is then run for 10 milliseconds. Graphs are then                
created​ ​of​ ​the​ ​membrane​ ​voltage​ ​and​ ​the​ ​spikes​ ​produced.  



Populations​ ​and​ ​Neuron​ ​Models 

In PyNN, the neurons are declared in terms of a ​population of a number of neurons with similar properties.                   
PyNN provides a number of standard neuron models. One of the most basic of these is known as the                   
Leaky Integrate and Fire (LIF) model, and this is used above (​IF_curr_exp​). This models the neuron as a                  
resistor and capacitor in parallel; as charge is received, this builds up in the capacitor, but then leaks out                   
through the resistor. In addition, a ​threshold voltage is defined; if the voltage reaches this value, a spike is                   
produced. For a time after this, known as the ​refractory period​, the neuron is not allowed to spike again.                   
Once this period has passed, the neuron resumes operation as before. Additionally, the synapses are               
modelled using an exponential decay of the received current input (5 nA in the above example); the weight                  
of the current is added over a number of timesteps, with the current decaying exponentially between each.                 
A​ ​longer​ ​decay​ ​rate​ ​will​ ​result​ ​in​ ​more​ ​charge​ ​being​ ​added​ ​overall​ ​per​ ​spike​ ​that​ ​crosses​ ​the​ ​synapse. 

In​ ​the​ ​above​ ​example,​ ​the​ ​default​ ​parameters​ ​of​ ​the​ ​​IF_curr_exp​​ ​are​ ​used.​ ​​ ​These​ ​are: 

'cm':​ ​1.0,​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​#​ ​The​ ​capacitance​ ​of​ ​the​ ​LIF​ ​neuron​ ​in​ ​nano-Farads 
'tau_m':​ ​20.0,​ ​​ ​​ ​​ ​​ ​#​ ​The​ ​time-constant​ ​of​ ​the​ ​RC​ ​circuit,​ ​in​ ​milliseconds 
'tau_refrac':​ ​0.1,​ ​#​ ​The​ ​refractory​ ​period,​ ​in​ ​milliseconds 
'v_reset':​ ​-65.0,​ ​​ ​#​ ​The​ ​voltage​ ​to​ ​set​ ​the​ ​neuron​ ​at​ ​immediately​ ​after​ ​a​ ​spike 
'v_rest':​ ​-65.0,​ ​​ ​​ ​#​ ​The​ ​ambient​ ​rest​ ​voltage​ ​of​ ​the​ ​neuron 
'v_thresh':​ ​-50.0,​ ​#​ ​The​ ​threshold​ ​voltage​ ​at​ ​which​ ​the​ ​neuron​ ​will​ ​spike 
'tau_syn_E':​ ​5.0,​ ​​ ​#​ ​The​ ​excitatory​ ​input​ ​current​ ​decay​ ​time-constant 
'tau_syn_I':​ ​5.0,​ ​​ ​#​ ​The​ ​inhibitory​ ​input​ ​current​ ​decay​ ​time-constant 
'i_offset':​ ​0.0,​ ​​ ​​ ​#​ ​A​ ​base​ ​input​ ​current​ ​to​ ​add​ ​each​ ​timestep 

PyNN supports both current-based models and conductance-based models. In conductance models, the            
input is measured in microSiemens, and the effect on the membrane voltage also varies with the current                 
value of the membrane voltage; the higher the membrane voltage, the more input is required to cause a                  
spike. This is modelled as the ​reversal potential of the synapse; when the membrane potential equals the                 
reversal potential, no current will flow across the synapse. A conductance-based version of the LIF model                
is​ ​provided,​ ​which,​ ​in​ ​addition​ ​to​ ​the​ ​above​ ​parameters,​ ​also​ ​supports​ ​the​ ​following: 

'e_rev_E':​ ​0.,​ ​​ ​​ ​​ ​#​ ​The​ ​reversal​ ​potential​ ​of​ ​the​ ​exponential​ ​synapse 
'e_rev_I':​ ​-80.0​ ​​ ​#​ ​The​ ​reversal​ ​potential​ ​of​ ​the​ ​inhibitory​ ​synapse 

The initial value of the state variables of the neural model can also be set (such as the membrane voltage).                    
This is done via the ​initialize function of the population, which takes the name of the state variable (e.g. v                    
for​ ​the​ ​membrane​ ​voltage),​ ​and​ ​the​ ​value​ ​to​ ​be​ ​assigned​ ​e.g.​ ​to​ ​set​ ​the​ ​voltage​ ​to​ ​-65.0mV: 

pop.initialize(v=-65.0) 

In addition to neuron models, the PyNN language also supports some utility models, which can be used to                  
simulate​ ​inputs​ ​into​ ​the​ ​network​ ​with​ ​defined​ ​characteristics.​ ​​ ​These​ ​include: 

● SpikeSourceArray - this sends spikes at predetermined intervals defined by ​spike_times​. In            
general, PyNN forces each of the neurons in the population to spike at the same time, and so                  
spike_times is an array of times, but sPyNNaker also allows ​spike_times to be an array of arrays,                 
each defining the the times at which each neuron should spike e.g. ​spike_times​=[[0], [1]] means that                
the​ ​first​ ​neuron​ ​will​ ​spike​ ​at​ ​0ms​ ​and​ ​the​ ​second​ ​at​ ​1ms. 

● SpikeSourcePoisson - this sends spikes at random times with a mean rate of ​rate spikes per                
second, starting at time ​start (0.0ms by default) for a duration of ​duration milliseconds (the whole                
simulation​ ​by​ ​default). 



Projections​ ​and​ ​Connectors 

Populations of neurons are joined together using a ​Projection​. This is a directed connection where spikes                
are sent from the source, or pre-population and the target, or post-population. The projection between               
populations of neurons has a ​connector​, which describes the connectivity between the individual neurons in               
the​ ​populations.​ ​​ ​Some​ ​common​ ​connectors​ ​include: 

● OneToOneConnector - each presynaptic neuron connects to one postsynaptic neuron (there should            
be​ ​the​ ​same​ ​number​ ​of​ ​neurons​ ​in​ ​each​ ​population). 

● AllToAllConnector​ ​-​ ​all​ ​presynaptic​ ​neurons​ ​connect​ ​to​ ​all​ ​postsynaptic​ ​neurons. 
● FixedProbabilityConnector - each presynaptic neuron connects to each postsynaptic neuron with a            

given​ ​fixed​ ​probability​ ​​p_connect​. 
● FromListConnector - the exact connectivity is described by ​conn_list​, which is a list of tuples               

(​pre_synaptic_neuron_id, post_synaptic_neuron_id, weight, delay​) or just (​pre_synaptic_neuron_id,       
post_synaptic_neuron_id​). Note: All tuples must be the same length. If ​weight, delay ​are included              
the​ ​ones​ ​supplied​ ​through​ ​the​ ​synapse_type​ ​parameter​ ​of​ ​the​ ​Projection​ ​are​ ​ignored. 

● FixedTotalNumberConnector - an exact number of connections ​n_synapses are made, drawn at            
random from the possible connections, with replacement. Note that this means that connections             
can​ ​be​ ​repeated. 

As well as a connector the Projection must also have a synapse_type which determines how the synapse                 
behaves when spikes are received. For example a StaticSynapse which has fixed weights and delays is                
specified​ ​as​ ​follows: 

synapse_type=sim.StaticSynapse(weight=0.75,​ ​delay=1.0) 

Random​ ​Parameters 

Commonly, random weights and/or delays are used. To specify this, the value of the ​weight or ​delay of the                   
synapse type are set to a ​RandomDistribution​; note that the FromListConnector should then be specified               
with tuples of only (​pre_synaptic_neuron_id, post_synaptic_neuron_id​). The RandomDistribution supports         
several parameters via the ​parameters argument, depending on the value of the ​distribution argument              
which identifies the distribution type. The supported distributions include a ‘uniform’ distribution, with             
parameters of ​low (the minimum value) and ​high (the maximum value); and a ‘normal’ distribution with                
parameters of ​mu (the mean) and ​sigma (the standard deviation); as well as a ‘normal_clipped’ distribution,                
which takes the same parameters as ‘normal’ but with the addition of boundary parameters of ​low and ​high                  
- this is often useful for keeping the delays within range allowed by the simulator. The ​RandomDistribution                 
can​ ​also​ ​be​ ​used​ ​when​ ​specifying​ ​neural​ ​parameters,​ ​or​ ​when​ ​initialising​ ​state​ ​variables. 

Recording​ ​Data 

All the Populations in a simulation can be recorded; the data which can be recorded is dependent on the                   
simulation model. In general, all of the neuron models in PyNN allow the recording of the times at which                   
each neuron spikes, ​spikes​, and the membrane potential, ​v​. In contrast, the input models (i.e.               
SpikeSourceArray and SpikeSourcePoisson) only allow the recording of spikes. On SpiNNaker, our neuron             
models additionally allow the recording of the neuron input using ​gsyn​; technically, PyNN reserves this for                
the recording of synaptic conductance in models which support this (e.g. IF_cond_exp) but we also allow                
the​ ​recording​ ​of​ ​the​ ​synaptic​ ​currents​ ​in​ ​models​ ​such​ ​as​ ​IF_curr_exp. 

Running​ ​the​ ​Simulation 

Once the network has been described and the data to be recorded has been selected, the simulation can                  
be started by calling ​run with the duration that the simulation is to be executed for. The ​run method can be                     
called multiple times in sequence to run for further durations. In between each run, it is possible to change                   
parameters of the network; at present SpiNNaker simulations only support the changing of the parameters               



of the populations, such as changing the ​i_offset to adjust the input to the neurons. It is also possible to                    
retrieve​ ​recorded​ ​data​ ​(see​ ​below)​ ​in​ ​between​ ​runs. 

If you want to reset the simulation back to time 0 this can also be done using the ​reset call. At this point, it                        
is now possible to make further changes in SpiNNaker simulations, such as adding Populations and               
Projections; note that these changes will result in a full remapping which takes longer than changes to the                  
parameters. 

Retrieving​ ​and​ ​Plotting​ ​Data 

Once the simulation has been run, the Population ​get_data method can be used to retrieve the recorded                 
data in the form of a Neo object (see ​http://neuralensemble.org/neo/​). Each Neo object has a list of                 
segments, one per reset-run cycle (so there will only be one if you never call reset). The content of each of                     
the​ ​segments​ ​depends​ ​on​ ​the​ ​data​ ​recorded​ ​and​ ​requested.  

Spike data is accessible via the .spiketrains property; there is one SpikeTrain for each neuron in the                 
population. Each SpikeTrain can be treated as a numpy array of the times during the simulation at which                  
the​ ​neuron​ ​spiked. 

Other data is accessible via the ​.filter(name=<signal_name>) method, where ​<signal_name> is the name of              
the data item to retrieve (i.e. ​v for the membrane voltage). This returns an array of AnalogSignalArray                 
objects; in the case of SpiNNaker there will only be one element in this array as all data is gathered                    
together into a single array, thus the 0th element can always be used (e.g. ​.filter(name=’v’)[0])​. The                
AnalogSignalArray in turn contains a list of AnalogSignalArray objects, one for each neuron. Each of these                
sub-arrays contains the list of values of the signal, one per time-step. Both SpikeTrain and               
AnalogSingnalArray objects extend Quanties arrays; this means that they come with the unit of the values                
as well. The SpikeTrain values are all in milliseconds, and the membrane voltages are in millivolts. These                 
objects​ ​also​ ​hold​ ​additional​ ​metadata. 

The results of Neo.segements[0].spiketrains and Neo.segements[0]..filter(name=)[0] can be passed to the           
pyNN.utility.plotting.Panel as shown in the example above. The module ​spynnaker8.spynakker_plotting           
contains a ​SpynakkerPanel object can also be used in the same way for slightly faster spike plots and to                   
display​ ​heatmap-style​ ​plots​ ​for​ ​analog​ ​signal​ ​data.  

Using​ ​PyNN​ ​with​ ​SpiNNaker 

In addition to the above steps, sPyNNaker requires the additional step of configuration via the               
.spynnaker.cfg file to indicate which physical SpiNNaker machine is to be used. This file is located in your                  
home​ ​directory,​ ​and​ ​the​ ​following​ ​properties​ ​must​ ​be​ ​configured: 

[Machine] 
machineName​ ​​ ​​ ​​ ​​ ​=​ ​None 
version​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​=​ ​None 
 
The ​machineName refers to the host or IP address of your SpiNNaker board. For a 4-chip board that you                   
have directly connected to your machine, this is ​usually (but not always) set to ​192.168.240.253​, and the                 
version is set to ​3​, indicating a “SpiNN-3” board (often written on the board itself). Most 48-chip boards are                   
given​ ​the​ ​IP​ ​address​ ​of​ ​​192.168.240.1​​ ​with​ ​a​ ​​version​​ ​of​ ​​5​. 

The range of delays allowed when using sPyNNaker depends upon the timestep of the simulation. The                
range is 1 to 144 timesteps, so at 1ms timesteps, the range is 1.0ms to 144.0ms, and at 0.1ms, the range is                      
0.1ms​ ​to​ ​14.4ms. 

The default number of neurons that can be simulated on each core is 255; larger populations are split up                   
into 255-neuron chunks automatically by the software. Note though that the cores are also used for other                 

http://neuralensemble.org/neo/


things, such as input sources, and delay extensions (which are used when any delay is more than 16                  
timesteps),​ ​reducing​ ​the​ ​number​ ​of​ ​cores​ ​available​ ​for​ ​neurons. 

Spike-Time-Dependent​ ​Plasticity 

STDP plasticity is a form of learning that depends upon the timing between the spikes of two neurons                  
connected by a synapse. It is believed to be the basis of learning and information storage in the human                   
brain.  

In the case where a presynaptic spike is followed closely by a postsynaptic spike, then it is presumed that                   
the presynaptic neuron caused the spike in the postsynaptic neuron, and so the weight of the synapse                 
between​ ​the​ ​neurons​ ​is​ ​increased.​ ​​ ​This​ ​is​ ​known​ ​as​ ​potentiation. 

If a postsynaptic spike is emitted shortly before a presynaptic spike is emitted, then the presynaptic spike                 
cannot have caused the postsynaptic spike, and so the weight of the synapse between the neurons is                 
reduced.​ ​​ ​This​ ​is​ ​known​ ​as​ ​depression. 

The size of the weight change depends on the relative timing of the presynaptic and postsynaptic spikes; in                  
general, the change in weight drops off exponentially as the time between the spikes gets larger, as shown                  
in the following figure [Sjöström and Gerstner (2010), Scholarpedia]. However, different experiments have             
highlighted different behaviours depending on the conditions (e.g. [Graupner and Brunel (2012), PNAS]).             
Other authors have also suggested a correlation between triplets and quadruplets of presynaptic and              
postsynaptic​ ​spikes​ ​to​ ​trigger​ ​synaptic​ ​potentiation​ ​or​ ​depression. 

 

STDP​ ​in​ ​PyNN 

The steps for creating a network using STDP are much the same as previously described, with the main                  
difference being that some of the projections use a ​STDPMechanism ​to describe the plasticity. Here is an                 
example​ ​of​ ​the​ ​creation​ ​of​ ​a​ ​projection​ ​with​ ​STDP: 

timing_rule​ ​=​ ​sim.SpikePairRule(tau_plus=20.0,​ ​tau_minus=20.0, 
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​A_plus=0.5,​ ​A_minus=0.5) 
weight_rule​ ​=​ ​sim.AdditiveWeightDependence(w_max=5.0,​ ​w_min=0.0) 
 
stdp_model​ ​=​ ​sim.STDPMechanism(timing_dependence=timing_rule, 
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​weight_dependence=weight_rule, 
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​weight=0.0,​ ​delay=5.0) 
 
stdp_projection​ ​=​ ​sim.Projection(pre_pop,​ ​post_pop,​ ​sim.OneToOneConnector(), 
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​synapse_type=stdp_model) 



 
In this example, firstly the timing rule is created. In this case, it is a ​SpikePairRule​, which means that the                    
relative timing of the spikes that will be used to update the weights will be based on pairs of presynaptic                    
and postsynaptic spikes. This rule has four parameters. The parameters ​tau_plus and ​tau_minus describe              
the respective exponential decay of the size of the weight update with the time between presynaptic and                 
postsynaptic spikes. Note that the decay can be different for potentiation (defined by ​tau_plus​) and               
depression (defined by ​tau_minus​). The parameters ​A_plus and ​A_minus which define the maximum             
weight​ ​to​ ​respectively​ ​add​ ​during​ ​potentiation​ ​or​ ​subtract​ ​during​ ​depression. 

The next thing defined is the weight update rule. In this case it is a ​AdditiveWeightDependence​, which                 
means that the weight will be updated by simply adding to the current weight. This rule requires the                  
parameters ​w_max and ​w_min​, which define the maximum and minimum weight of the synapse              
respectively, Note that the actual amount added or subtracted will depend additionally on the timing of the                 
spikes,​ ​as​ ​determined​ ​by​ ​the​ ​timing​ ​rule.  

In addition, there is also a ​MultiplicativeWeightDependence supported, which means that the weight             
change depends on the difference between the current weight and w_max for potentiation, and w_min for                
depression. The value of ​A_plus and ​A_minus are then respectively multiplied by this difference to give the                 
maximum weight change; again the actual value depends on the timing rule and the time between the                 
spikes. 

The timing and weight rules are combined with ​weight and ​delay into a single ​STDPMechanism object                
which describes the overall desired mechanism. Note that the projection still requires the specification of a                
connector. This connector is still used to describe the overall connectivity between the neurons of the pre-                 
and post-populations. It is preferable that the initial weights fall between ​w_min and ​w_max​; it is not an                  
error if they do not, but when the first update is performed, the weight will be changed to fall within this                     
range. 

Note that on SpiNNaker, although multiple projections to the same target population can be specified with                
STDP, the restrictions on the current software are that all those projections must use the same rules with                  
the exact same parameters. This is due to the restrictions of the local memory available on each core,                  
reducing​ ​the​ ​amount​ ​of​ ​data​ ​that​ ​can​ ​be​ ​held​ ​for​ ​the​ ​parameters. 

Note: In the implementation of STDP on SpiNNaker, the plasticity mechanism is only activated when the                
second presynaptic spike is received at the postsynaptic neuron. Thus at least two presynaptic spikes are                
required​ ​for​ ​the​ ​mechanism​ ​to​ ​be​ ​activated. 

Getting​ ​Synaptic​ ​Data 

The weights and delays assigned to a projection can be retrieved using the Projection’s ​get method,                
specifying the data items to get, including ‘weight’, ‘delay’ and the parameters of the STDP Mechanism, and                 
the format they are retrieved using. The data formats supported are ‘list’ format, where the return value                 
consists of a list of tuples of the selected values; and ‘array’ where each value is returned in a                   
two-dimensional matrix indexed by the source neurons in the pre-population, and the target neurons in the                
post-populations. In the ‘list’ result, each tuple additionally contains the source and target neuron ids as the                 
0th and 1st values in the tuple. In the ‘array’ result, missing connections are represented as ‘NaN’ (not a                   
number)​ ​and​ ​positions​ ​where​ ​there​ ​are​ ​multiple​ ​connections​ ​have​ ​their​ ​values​ ​summed. 

Note that on SpiNNaker, it is possible to retrieve the projection data before calling the PyNN run function,                  
but that this data cannot be examined until after run has been called. This is because the individual                  
connectivity​ ​data​ ​is​ ​not​ ​generated​ ​until​ ​the​ ​run​ ​function​ ​is​ ​called. 

   



Task​ ​1.1:​ ​A​ ​simple​ ​neural​ ​network​ ​[Easy] 

This task will create a very simple network from scratch, using some of the basic features of PyNN and                   
SpiNNaker. 

Write a network with a 1.0ms time step, consisting of two input source neurons connected to two                 
current-based LIF neurons with default parameters, on a one-to-one basis, with a weight of 5.0 nA and a                  
delay of 2ms. Have the first input neuron spike at time 0.0ms and the second spike at time 1.0ms. Run the                     
simulation​ ​for​ ​10​ ​milliseconds.​ ​​ ​Record​ ​and​ ​plot​ ​the​ ​spikes​ ​received​ ​against​ ​time. 

Task​ ​1.2:​ ​Changing​ ​parameters​ ​[Easy] 

This task will look at the parameters of the neurons and how changing the parameters will result in different                   
network​ ​behaviour. 

Using your previous script, set tau_syn_E to 1.0 in the IF_curr_exp neurons. Record the membrane               
voltage in addition to the spikes. Print the membrane voltage out after the simulation (you can plot it if you                    
prefer). 

1. Did​ ​any​ ​of​ ​the​ ​neurons​ ​spike? 
2. What was the peak membrane voltage of any of the neurons, compared to the default threshold                

voltage​ ​of​ ​-50mV? 

Try increasing the weight of the connection and see what effect this has on the spikes and membrane                  
voltage. 

Task​ ​2.1:​ ​Synfire​ ​Chain​ ​[Moderate] 

This task will create a network known as a Synfire chain, where a neuron or set of neurons spike and cause                     
activity​ ​in​ ​an​ ​ongoing​ ​chain​ ​of​ ​neurons​ ​or​ ​populations,​ ​which​ ​then​ ​repeats. 

1. Setup​ ​the​ ​simulation​ ​to​ ​use​ ​1ms​ ​timesteps.  
2. Create​ ​an​ ​input​ ​population​ ​of​ ​1​ ​source​ ​spiking​ ​at​ ​0.0ms.  
3. Create​ ​a​ ​synfire​ ​population​ ​with​ ​100​ ​neurons.  
4. With a FromListConnector, connect the input population to the first neuron of the synfire population,               

with​ ​a​ ​weight​ ​of​ ​5nA​ ​and​ ​a​ ​delay​ ​of​ ​1ms.  
5. Using another FromListConnector, connect each neuron in the synfire population to the next             

neuron,​ ​with​ ​a​ ​weight​ ​of​ ​5nA​ ​and​ ​a​ ​delay​ ​of​ ​5ms.  
6. Connect​ ​the​ ​last​ ​neuron​ ​in​ ​the​ ​synfire​ ​population​ ​to​ ​the​ ​first.  
7. Record​ ​the​ ​spikes​ ​produced​ ​from​ ​the​ ​synfire​ ​populations.  
8. Run​ ​the​ ​simulation​ ​for​ ​2​ ​seconds,​ ​and​ ​then​ ​retrieve​ ​and​ ​plot​ ​the​ ​spikes​ ​from​ ​the​ ​synfire​ ​population. 

Task​ ​2.2:​ ​Random​ ​Values​ ​[Easy] 

Update the network above so that the delays in the connection between the synfire population and itself are                  
generated from a uniform random distribution with values between 1.0 and 15.0. Update the run time to be                  
5​ ​seconds.  

Task​ ​3.1:​ ​Balanced​ ​Random​ ​Cortex-like​ ​Network​ ​[Hard] 

This task will create a network that this similar to part of the Cortex in the brain. This will take some input                      
from outside of the network, representing other surrounding neurons in the form of poisson spike sources.                
These will then feed into an excitatory and an inhibitory network set up in a balanced random network. This                   
will​ ​use​ ​distributions​ ​of​ ​weights​ ​and​ ​delays​ ​as​ ​would​ ​occur​ ​in​ ​the​ ​brain. 

1. Choose​ ​the​ ​number​ ​of​ ​neurons​ ​to​ ​be​ ​simulated​ ​in​ ​the​ ​network. 



2. Set​ ​up​ ​the​ ​simulation​ ​to​ ​use​ ​0.1ms​ ​timesteps. 
3. Create an excitatory population with 80% of the neurons and an inhibitory population with 20% of                

the​ ​neurons. 
4. Create excitatory poisson stimulation population with 80% of the neurons and an inhibitory poisson              

stimulation​ ​population​ ​with​ ​20%​ ​of​ ​the​ ​neurons,​ ​both​ ​with​ ​a​ ​rate​ ​of​ ​1000Hz. 
5. Create a one-to-one excitatory connection from the excitatory poisson stimulation population to the             

excitatory​ ​population​ ​with​ ​a​ ​weight​ ​of​ ​0.1nA​ ​and​ ​a​ ​delay​ ​of​ ​1.0ms. 
6. Create a similar excitatory connection from the inhibitory poisson stimulation population to the             

inhibitory​ ​population. 
7. Create an excitatory connection from the excitatory population to the inhibitory population with a              

fixed probability of connection of 0.1, and using a normal distribution of weights with a mean of 0.1                  
and standard deviation of 0.1 (remember to add a boundary to make the weights positive) and a                 
normal distribution of delays with a mean of 1.5 and standard deviation of 0.75 (remember to add a                  
boundary​ ​to​ ​keep​ ​the​ ​delays​ ​within​ ​the​ ​allowed​ ​range​ ​on​ ​SpiNNaker). 

8. Create​ ​a​ ​similar​ ​connection​ ​between​ ​the​ ​excitatory​ ​population​ ​and​ ​itself. 
9. Create an inhibitory connection from the inhibitory population to the excitatory population with a              

fixed probability of connection of 0.1, and using a normal distribution of weights with a mean of -0.4                  
and standard deviation of 0.1 (remember to add a boundary to make the weights negative) and a                 
normal distribution of delays with a mean of 0.75 and standard deviation of 0.375 (remember to add                 
a​ ​boundary​ ​to​ ​keep​ ​the​ ​delays​ ​within​ ​the​ ​allowed​ ​range​ ​on​ ​SpiNNaker). 

10. Create​ ​a​ ​similar​ ​connection​ ​between​ ​the​ ​inhibitory​ ​population​ ​and​ ​itself. 
11. Initialize the membrane voltages of the excitatory and inhibitory populations to a uniform random              

number​ ​between​ ​-65.0​ ​and​ ​-55.0. 
12. Record​ ​the​ ​spikes​ ​from​ ​the​ ​excitatory​ ​population. 
13. Run​ ​the​ ​simulation​ ​for​ ​1​ ​or​ ​more​ ​seconds. 
14. Retrieve​ ​and​ ​plot​ ​the​ ​spikes. 

The graph should show what is known as Asynchronous Irregular spiking activity - this means that the                 
neurons in the population don’t spike very often and when they do, it is not at the same time as other                     
neurons​ ​in​ ​the​ ​population.  

Task​ ​3.2:​ ​Network​ ​Behavior​ ​[Moderate] 

Note in the above network that the weight of the inputs is the same as the mean weight of the excitatory                     
connections (0.1nA) and that the mean weight of the inhibitory connections is 4 times this value (-0.4nA).                 
Try setting the excitatory connection mean weight and input weights to 0.11nA and the inhibitory mean                
weight to -0.44nA, and see how this affects the behavior. What other behavior can you get out of the                   
network​ ​by​ ​adjusting​ ​the​ ​weights? 

Task​ ​4.1:​ ​STDP​ ​Network​ ​[Easy] 

This​ ​task​ ​will​ ​create​ ​a​ ​simple​ ​network​ ​involving​ ​STDP​ ​learning​ ​rules. 

Write a network with a 1.0ms time step consisting of two single-neuron populations connected with an                
STDP synapse using a spike pair rule and additive weight dependency, and initial weights of 0. Stimulate                 
each of the neurons with a spike source array with times of your choice, with the times for stimulating the                    
first neuron being slightly before the times stimulating the second neuron (e.g. 2ms or more), ensuring the                 
times are far enough apart not to cause depression (compare the spacing in time with the tau_plus and                  
tau_minus settings); note that a weight of 5.0 should be enough to force an IF_curr_exp neuron to fire with                   
the default parameters. Add a few extra times at the end of the run for stimulating the first neuron. Run the                     
network​ ​for​ ​a​ ​number​ ​of​ ​milliseconds​ ​and​ ​extract​ ​the​ ​spike​ ​times​ ​of​ ​the​ ​neurons​ ​and​ ​the​ ​weights. 



You should be able to see that the weights have changed from the starting values, and that by the end of                     
the​ ​simulation,​ ​the​ ​second​ ​neuron​ ​should​ ​spike​ ​shortly​ ​after​ ​the​ ​first​ ​neuron. 

Task​ ​4.2:​ ​STDP​ ​Parameters​ ​[Easy] 

Alter the parameters of the STDP connection, and the relative timing of the spikes. Try starting with a large                   
initial​ ​weight​ ​and​ ​see​ ​if​ ​you​ ​can​ ​get​ ​the​ ​weight​ ​to​ ​reduce​ ​using​ ​the​ ​relative​ ​timing​ ​of​ ​the​ ​spikes. 

Task​ ​5:​ ​STDP​ ​Curve​ ​[Hard] 

This task will attempt to plot an STDP curve, showing how the weight change varies with timing between                  
spikes. 

1. Set​ ​up​ ​the​ ​simulation​ ​to​ ​use​ ​a​ ​1ms​ ​time​ ​step. 
2. Create​ ​a​ ​population​ ​of​ ​100​ ​presynaptic​ ​neurons. 
3. Create a spike source array population of 100 sources connected to the presynaptic population. Set               

the spikes in the arrays so that each spikes twice 200ms apart, and that the first spike for each is                    
1ms after the first spike of the last e.g. [[0, 200], [1, 201], …] (hint: you can do this with a list                      
comprehension). 

4. Create​ ​a​ ​population​ ​of​ ​100​ ​postsynaptic​ ​neurons. 
5. Create​ ​a​ ​spike​ ​source​ ​array​ ​connected​ ​to​ ​the​ ​postsynaptic​ ​neurons​ ​all​ ​spiking​ ​at​ ​50ms. 
6. Connect the presynaptic population to the postsynaptic population with an STDP projection with an              

initial​ ​weight​ ​of​ ​0.5​ ​and​ ​a​ ​maximum​ ​of​ ​1​ ​and​ ​minimum​ ​of​ ​0. 
7. Record​ ​the​ ​presynaptic​ ​and​ ​postsynaptic​ ​populations. 
8. Run the simulation for long enough for all spikes to occur, and get the weights from the STDP                  

projection. 
9. Draw a graph of the weight changes from the initial weight value against the difference in                

presynaptic and postsynaptic neurons (hint: the presynaptic neurons should spike twice but the             
postsynaptic should only spike once; you are looking for the first spike from each presynaptic               
neuron). 

 


