
Simple Data Input and Output with Spinnaker -

Lab Manual

Introduction

This manual will introduce you to the basics of live retrieval and injection of data (in the form
of spikes) for PyNN scripts that are running on SpiNNaker neuromorphic hardware.

PyNN Support

This section discusses the standard support from PyNN related to spike injection and
retrieval.

Output

The standard support for data output for a platform such as SpiNNaker, through the PyNN
language, is to use the ​record method to declare the need to record, and the ​get_data
method, for retrieval of the specific data. In the current implementation of sPyNNaker, all of
the data declared to be recorded via record() is stored on the SDRAM of the chips that the
corresponding populations were placed on. By writing the data to SDRAM, the data is stored
locally and therefore is guaranteed to be available at some point in the future. In the current
implementation, if the memory requirements for recording cannot be met, the model will be
run for less time, paused whilst the data is extracted, and then resumed. This may be
repeated a number of times until the whole simulation is finished.

The issue with the get functions are that they are called after run() completes, and therefore
are not live, and so not able to interact with an external device running in real-time. When
used with an external simulation, it is possible to call run a number times, extracting the data
between each run and passing it to an external simulation. This mode of operation will not
work if the external device or simulation cannot also be paused.

Input

The standard support for data input for a platform such as SpiNNaker, through the PyNN
language, is to use the neural models SpikeSourceArray and SpikeSourcePoisson. The
issue with both of these models is that they are either random rate based (the
SpikeSourcePoisson) or have to be supplied in advance with all the spikes to be sent
(SpikeSourceArray). As with the output of spikes, it is possible to change the input spikes of
a SpikeSourceArray, or the rate of the SpikeSourcePoisson between successive calls to
run(). Again, this will only work if the external device or simulation can be paused.

Live I/O Support

PyNN currently doesn’t have any support for live interaction with simulations. It is worth
noting that future releases of PyNN may use the MUSIC interface to support live injection
and retrieval of spikes, but this has not yet been integrated into our software. To
compensate for this, sPyNNaker includes an external_devices module that contains support
for live injection and retrieval of spikes during a running PyNN simulation, whilst still
maintaining the real-time operation of the simulation.

1

Live Event Database

When live input and output are used in the simulation, a database of the network is created
with additional data, such as which SpiNNaker multicast keys are assigned to which
neurons. This database can then be used by external receivers and/or senders to work out
how to work out which neurons have spiked given the keys received as live output from
SpiNNaker, or which keys to inject into SpiNNaker to send a spike into a simulation from
outside.

During the mapping process within the software, the database is created, and a message is
sent to the external receivers and/or senders that may want to read this database, to let
them know that it is ready to be read. In addition, the software will then listen to be told that
the database has been read, and that the external receiver or sender is ready for the
simulation to start. Just after starting the simulation, the external receivers and senders are
again notified so that they can start their activity. This helps to keep these systems in
synchronization with the simulation.

Figure 1: communication between SpiNNaker and an external device

Once the simulation has completed, it will pause. At this point the software will send a
message to the senders and receivers that the simulation has paused or stopped (it isn’t
specified which at this point). The receiver or sender can then wait for a new cycle of
messages, again starting with the message indicating that the database is ready. This will
allow for any changes that have been made to the simulation. The process then goes
around the loop again, from database ready, to notify ready to start, to start simulation to
pause simulation and so on until all cycles are complete.

Live Output

To activate live retrieval from a given population, the command
p.external_devices.activate_live_output_for(​<Population_object>​)

2

is used (assuming pyNN.spiNNaker has been imported as p). This informs the sPyNNaker
backend to send data out of the SpiNNaker system during the execution of the simulation.
Note that this uses an additional core on the board. Other optional parameters for the
activate_live_output_for() ​function are defined below:

Parameter Description

port The UDP port number to which the SpiNNaker machine will
send packets. By default, the port specified as live_spike_port
in the [Recording] section of your .spynnaker.cfg file will be used
(17895 by default).

host The host to which the SpiNNaker machine will send packets. By
default, the IP address of the machine executing the script is
used, but this can be changed if the spikes are to be sent to a
different machine.

Live Input

To activate the live injection functionality, you need to instantiate a new ​SpikeInjector neural
model to be used. The SpikeInjector is considered to be similar to a SpikeSourceArray, so
you can build a population with a number of neurons etc. in the normal way, as shown
below:

injector_forward = p.Population(

5, p.external_devices.SpikeInjector(),

label='spike_injector_forward')

Additional Parameters

As two or more programs cannot listen to the same UDP port for notification, the following
additional parameters can be provided to the ​activate_live_output_for() function or as
parameters to the SpikeInjector.

database_notify_host The host to which to send the notification that the database is
ready to read. By default, the IP address of the machine
executing the script is used. The same IP address can be used
multiple times if the same host is running multiple senders or
receivers or the same program is used for both sending and
receiving.

database_notify_port_num The UDP port number to which to send the notification that the
database is ready to read. By default, port 19999 is used. This
should be different for each sender or receiver; the same port
can be used if the sender or receiver is the same as that used
for other I/O.

notify By default this is set to True, but if set to False, the above
parameters are ignored and no notifications will be sent about
the database for this sender or receiver. This can be useful to
avoid sending messages to devices that can’t be made to

3

support the protocol.

Python Live Receiver / Injector

A SpynnakerLiveSpikesConnection is provided to perform the operation of sending or
receiving spikes.

Receiver

The following block of code creates a live packet receiver to receive spikes from a live
simulation:

1​ # declare python code when received spikes for a timer tick
2 def receive_spikes(label, time, neuron_ids):
3 for neuron_id in neuron_ids:
4 print “Received spike at time {} from {}-{}”.format(
5 time, label, neuron_id)
6
7​ # set up python live spike connection
8 live_spikes_connection =
9 p.external_devices.SpynnakerLiveSpikesConnection(
10 receive_labels=[“receiver”])
11
12 ​ # register python receiver with live spike connection
13 live_spikes_connection.add_receive_callback(“​receiver​”, receive_spikes)

1. Lines 2 to 5 creates a function that takes as its input all the neuron ids that fired at a
specific time, from the population with the given label. From here, it generates a print
message for each neuron.

2. Lines 8 to 10 instantiates the SpynnakerLiveSpikesConnection, and informs the
connection that it will receive data under the label “receiver”.

3. Line 13 informs the connection that any packets being received with the “receiver”
label need to be forwarded to the function receive_spikes defined on lines 1 to 5.

This script must be run in advance of the script that sets up the simulation. The
SpynnakerLiveSpikesConnection will listen for the simulation script to complete the setup
operations and so starts synchronized with the simulation. It is possible to run the reception
of spikes within the same script as the simulation; to do this, ensure that the above code is
placed before the call to run().

Sender

The following block of code creates a live packet injector:

1​ # create python injector
2 def send_spike(label, sender):
3 sender.send_spike(label, 0, send_full_keys=True)
4
5​ # set up python injector connection
6 live_spikes_connection =
7 p.external_devices.SpynnakerLiveSpikesConnection(
8 send_labels=[“spike_sender”])
9
10​ # register python injector with injector connection
11 live_spikes_connection.add_start_callback(“​spike_sender​”, send_spike)

4

1. Lines 2 to 3 create a function that will be called when the simulation starts, allowing
the synchronized sending of spikes.

2. Lines 6 to 8 instantiates the SpynnakerLiveSpikesConnection, and informs the
connection it will inject data via the label spike_sender.

3. Line 11 informs the connection that when the simulation starts it should call the
send_spike function defined on lines 1 to 3.

As with the live receiver script, this must be called before the simulation script, or before
run() in the simulation script.

Multiple Senders and Receivers

If you need more than one SpynnakerLiveSpikesConnection on the same host, the
connection can take an additional parameter specifying the local port to listen on for
notifications from the simulation, by specifying the local_port parameter in the constructor
e.g.:

live_spikes_connection_1 =

 p.external_devices.SpynnakerLiveSpikesConnection(

 receive_labels=[“receiver”], local_port=19996)
live_spikes_connection_2 =

 p.external_devices.SpynnakerLiveSpikesConnection(

 send_labels=[“sender”], local_port=19997)

Note that you must then also tell the simulation side that these ports are in use as described
previously. This can be done when calling activate_live_output_for for the population or
when creating a SpikeInjector by specifying the database_notify_port_num parameter e.g.

activate_live_output_for(receiver, database_notify_port_num=19996)
injector = p.Population(1, p.external_devices.SpikeInjector(

 database_notify_port_num=19997), label=“sender”)

Caveats

Using the live injection and retrieval functionality only supports the use of the Ethernet
connection, which means that there is a limited bandwidth of a maximum of approximately
30 MB/s. This bandwidth is shared between both types of functionality, as well as system
support for certain types of neural models, such as the SpikeSourceArray.

Furthermore, this functionality depends upon the lossy communication fabric of the
SpiNNaker machine. This means that even though a neuron fires a spike you may not see it
via the live retrieval functionality. If you need to ensure you receive every packet that has
been transmitted, we recommend using the standard PyNN functionality.

By using this functionality, you are making your script non portable between different
simulators. The activate_live_output_for(<pop_object>) and SpikeInjector models are not
supported by other PyNN backends (such as Nest, Brian etc).

Finally, this functionality uses a number of additional SpiNNaker cores. Therefore a network
which would just fit onto your SpiNNaker machine beforehand would likely fail to fit on the
machine when these functionalities are added in.

5

Tasks

Note that you may need to add a new spynnaker.cfg file to the folder where you are running
the script, with the following contents:

[Database]

create_database = True

This is to overcome a bug in the detection of when the database needs to be created.

Task 1.1: A synfire chain with live output [Easy]

This task will create a synfire chain which displays live output. Start with the synfire chain
from PyNN8Examples.

1. Call activate_live_output_for(<pop_object>) on the synfire population.
2. Build a python receiver function that prints out the neuron ids for the population.
3. Import and instantiate a SpynnakerLiveSpikesConnection connection.
4. Link a receive callback to the python receiver function and print when a spike is

received.

Task 1.2: A synfire chain with live input [Easy]

This task will create a synfire chain which is stimulated from a spike generated on the host
and then injected into the simulation. Start with the synfire chain from PyNN8Examples.

1. Remove the spike source array population.
2. Replace it with the SpikeInjector population.
3. Build a python injector function which sends a spike when called.
4. Import and instantiate a SpynnakerLiveSpikesConnection.
5. Link a start callback to the python injector function.

Task 1.3: A synfire chain with live input and output [Easy]

Take the code from the previous 2 tasks and integrate them together to produce one that
injects and streams the packets back to the terminal.

1. Remember that you can use both the recieve_labels and send_labels of the same
SpynnakerLiveSpikesConnection.

Task 2: 2 co-operative live synfire chains [Medium]

This task will create a 2 synfire chains which activate each other, but via python I/O.
1. Create a synfire chain activated by the first neuron of a SpikeInjector with 2 neurons.
2. Create a second synfire chain activated by the second neuron of the same

SpikeInjector.
3. Activate live output for the two synfire chains.
4. Create a function that will run on start that will send a spike from the first neuron of

the SpikeInjector.
5. Create a function to receive spikes from the first synfire chain; when a spike is

received from the last neuron of this synfire chain, send a spike from the second
neuron of the SpikeInjector.

6

6. Create a function to receive spikes from the second synfire chain; when a spike is
received from the last neuron of this synfire chain, send a spike from the first neuron
of the SpikeInjector.

7. Create a SpynnakerLiveSpikesConnection instance for the SpikeInjector and the two
synfire chains.

8. Add each of the above functions as callbacks to the appropriate events.
9. Run the network and display the results.

Task 3: Synfire chain with multiple I/O scripts [Hard]

This task will work similarly to the previous tasks, but will split the parts into multiple scripts,
which then need to be started in the correct order for it to work. This will be similar to having
an external visualiser or external device which needs to be started before the simulation
starts.

1. Create a script which uses the SpynnakerLiveSpikesConnection to receive spikes
from a population specified on the command line, using a database port number
specified on the command line and prints the spikes to the terminal (hint: use
sys.argv[1] to get the first argument to a Python script).

2. Create a script which uses the SpynnakerLiveSpikesConnection to send spikes to a
population specified on the command line, using a database port number specified
on the command line, sending a spike with a neuron id specified on the command
line after a random interval after the simulation starts.

3. Create a script which sets up a SpikeInjector connected to a synfire population, and
which produces live output. This should set up two database notification ports each
of which are specified on the command line, one for the SpikeInjector and one for the
live output.

4. Run the scripts in the correct order specifying the correct parameters.

7

