MANCHESTER
1824

SpiNNaker API
and event-driven simulation

e
-—a - » - -
z TR
P . _. ; . " e
. o L P . -
e . * . - .
. s N e * - Y
i AN AT I s\
g ..-“.”) '_;.u.l".. - ‘
- > ':"‘:4' -~ - - m.
P -
. . P . - »
. . . .
L . .
& . . A 'f'.i
R — y L
.“ L] % . i -4"
b . + &
- &
- -
- :_ e

SpiNNaker Workshop, September 2016

Human Brain Project

€PSRC

SpiNNaker

MANCHESTER
1824

SARK: low-level software

application

SARK

hardware

application control

core control

memory management

peripheral management

event management

SDP messaging

MANCHESTER
1824

hardware resources

off-die SDRAM

tem RAM
system dma.

timer

i

ITCM| DTCM
vic

application

core

hardware

comms

comms NoC

MANCHESTER
1824

API: run-time environment

application

event-driven
programming model

API

SARK

run-time
environment

SARK functionality

hardware

still available

MANCHESTER event-driven model MANCHESTER events and callbacks

event trigger
; ; . timer tick periodic event has occurred
‘ appllcatlons do not control execution flow multicast packet received |multicast packet has arrived
DMA transfer done scheduled DMA transfer completed successfully
applications indicate functions to be SDP packet received SDP packet has arrived
executed when events of interest occur user event application-triggered event has occurred
API COHtI’O|S exeCUtion and SChedU|eS event first argument second argument
application functions when appropriate timer tick simulation time (ticks) null
MCP w/o payload received key 0
application functions are known as callbacks MCP with payload received key payload
DMA transfer done transfer ID tag
SDP packet received *mailbox destination port
user event arg0 argl

MANCHESIER priorities BIEHCEE IR first program

Tubogrid [=F
. . ; Clear | Colour Fill Clear OFF - Colour White
priority level = -1 Fig £ [[]
only one callback thread 52 first
cannot be pre-empted &
// circle sequence
uint circle pos[] =
{
1, 2, 3, 4, 8, 12, 16, 15,
priority level = 0 _‘ l).14, 13, 9, 5,6, 7, 11, 10
can only be pre-empted Scheduler 4 = KT oo ;
b riority -1 callback e E v §§% // iterate over 16 positions
y p y : =° . for (uint i = 0; i < 16; i++)
; {
i —I // update display,
v&- . print_circle (circle_pos[i]);
riority level > 0 fiz)
cgn be)ll)re-empted it 5 f Dispacher el ddh 1/ snd delay nent olrcle s 3o
P 78 = k- [e -
by priority <= 0 callbacks ﬁ%g i 48 ¢ continue;
scheduled in priority order = . Er=rr ,)
-------- »
data fow

MANCHESTER
1824

distributed program

Tubogrid | —ox

Clear | Colour [Fill | Clear OFF - Colour White

13(14|15(16
9 |10/11(12
6 |7 8
2 3 4

// circle sequence

uint circle_pos[] =

{

i, 2, 3, 4, 8, 12, 16, 15,
14, 13, 9, 5, 6, 7, 11, 10
}i

// this core's id
id = spinl_get_core_ id();

// delay my circle,

continue;

}

// and update display
print_circle (circle_pos[id]);

each core

for (uint j = 0; j < (id * BIG_NUM); j++)

event-driven program

C_main

packet callback

// 0.125s tick period (in microseconds)
#define TIMER TICK_PERIOD 125000

void c_main()
{
// initialize variables and state

//

id = spinl_get_core id();
my_state = OFF;
old_state = my_state;

// prepare for execution

/7
// set timer tick value
spinl_set_timer_tick (TIMER_TICK_PERIOD);

// register callbacks
spinl_callback on (
MC_PACKET_RECEIVED, packet, -1);

spinl_callback_on (
TIMER_TICK, timer, 0);

// go
//

spinl_start(SYNC_WAIT);

void packet (uint pkt_key, uint pkt_ payload)
{

// update my state

my_state = ON;
}

timer callback

void timer (uint ticks, uint b)
{
// check if state changed
if (my_state != old_state)
{
// update display,
print_circle (circle_pos[id]);

// send a packet to next core in the chain,
spinl_send_mc_packet(my_key, 0, NO_PAYLOAD);

// and remember state
old_state = my_state;

MANCHESTER
1824

additional support

MANCHESTER
1824

function

use

start/stop execution

start and stop simulation

set timer period

real-time or periodic callback

send multicast packet

inter-core communications

send SDP packet

host or I/O peripheral communications

start DMA transfer

software-managed cache

trigger user event

start a callback with priority <=0

schedule callback

start a callback with priority > 0

enable/disable interrupts

critical section access (inter-thread control)

provide chip address and core ID

find out who you are

configure multicast routing table

setup routing entries

see APl documentation for complete list

program structure

c_main starts

initialization phase
application in control
no events/callbacks

c_main calls
spinl_start ()

execution phase
APl in control
callbacks operate

callback calls
spinl_exit ()

exit phase
application in control
no events/callbacks

C_main exits

MANCHESTER synchronization barrier

C_main starts

application initializes variables
and may set up routing table

Cc_main calls spinl_start ()

core goes to sleep and
waits for syncoO signal

host can check
that cores are

host sends syncO signal

waiting!

core receives signal
and starts execution

WY example: spiking neural network

incoming pack et buffer |
(spiking neuron ID's) DMA

data flow

igger update
Dﬁn o "syﬁapss

DM A transfer results
(synaptic data copy)

v
(b ;—e—t—e—J
Amer }__‘ update -

event newons [

synaptic inputs|

what is a sensible choice of priorities?

to think about: pitfalls

asynchronous operation
and communications

UDP-based I/0

multicast packets
can be dropped due
to congestion

not guaranteed!

no floating-point support
use fixed-point arithmetic ‘

no globally-shared resources
use message passing

