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Breakdown of each day

» Sessions:
« Start at 9am — promptly!
* Run to 5pm,except the last day (1pm)

» Breaks:
» Drinks mid-morning and at 3pm daily (half hour)
* Lunch at 12pm daily (one hour)

» Fire alarm test on Wednesday at 1pm

SpiNNaker

»

MANCHESTER
1824

Sessions and Venues

» Two types of sessions:
» Presentations (some optional!)
« Lab work (with lab books)

» Three venues:
« Collab 1 (here) for labs and some presentations
» Atlas-1 (30m away) for some presentations
* Area outside this room for lunch/drinks breaks

* Don’t leave valuables here overnight!

WI-FI Access

 eduroam is available as normal around the
building

« UoM guest accounts available if you need

one
* Please ask!
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Time
09:00
10:00
10:15
11:00
12:00
13:00
14:00
15:00
15:30
16:30
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Time
09:00
10:00
11:00
12:00
13:00
14:00
14:30
16:30

Session
Registration
Workshop Introduction & logistics
SpiNNaker Hardware & Tools Overview
Introductory Lab
Lunch
SpiNNaker architecture and chip resources
Running PyNN simulations on SpiNNaker
Coffee
Lab time
Close

Session
Simple data I/O and visualisation
Lab time (coffee at 10:30)
Maths & fixed point libraries
Lunch
Adding new neuron models
Connecting SpiNNaker to external devices
Lab time (coffee at 15:00)
Close

Day 1 - Monday 5t

Presenter

SD
SD
AGR

ST
AGR

Day 3 — Wednesday 7t

Presenter

ABS (SD)

MH

AGR/MH
ABS (DRL)
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Time
09:00
10:00
10:30
11:30
12:00
13:00
14:00
15:00
15:30
16:30

MANCHE§[1EI{

09:00
09:45
10:30
11:00
12:00
13:00

13:30
15:30
16:30

Day 2 — Tuesday 6t

NS Presenter
SpiNNaker system software (SARK) ST
Coffee (earlier than usual)
SpiNNaker API + event driven simulation LAP
Writing Applications on SpiNNaker - Overview SD
Lunch
Introduction to Graph Front End (GFE) ABS (AGR)
ybug and gdb walk-through ST
Coffee
Lab time
Close

Day 4 — Thursday 8

Adding new models of synaptic plasticity JK
Graph Front End — further details ABS (AGR)
Coffee

Lab time

Lunch

Using big SpiNNaker machines remotely: AGR
The HBP portal

Lab time (coffee at 15:00)

Demonstration of NENGO language and environment TBC
Close



Day 5 — Friday 9t Loan board requests...

S~ - — * 4-node boarc_als_ca_m be loaned out
, » But supply is limited
09:00 Lab time

10:30 Coffee

Please send an email with your project

11:00 Lab time deta”S to:

12:00 Lunch and close

Steve Temple will allocate and log board loans
* Please don't just take one away....

Feedback. ..

« We'd appreciate some feedback on...
* Your workshop experience

» SpiNNaker hardware

» SpiNNaker software

» I'll email you in the next few weeks

+ We hope that you enjoy the workshop!



SpiNNaker Hardware & Software
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Contents

What is SpiNNaker?
SpiNNaker at different scales
SpiNNaker architecture: chip & system

Using SpiNNaker

How is SpiNNaker Used?

Some key user communities:

« Computational neuroscientists to simulate
large neural models and try to understand the
brain

* Roboticists to build advanced neural sensory
and control systems

« Computer architects to apply neural theories
of computation to non-neural problems
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SpiNNaker System
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Hardware router on each

node

Packets have a routing key

Router has a look-up table
of {key, mask, data} triplets

If address matches a key-
mask pair, the associated
data tells router what to do

with the packet

Multicast Routing

Chip-to-chip communications:

Packet routing

% No memory shared between chips!

< Communicate via simple messages called
packets:

o 40 bit (no data) or
o 72 bit (includes 32-bit data word)

+ Four types of routing, most important (for you)
is multicast

+ Packets used to communicate with the host
and external peripherals:
o Via Ethernet adapter for host comms.
o  Or via chip-to-chip SpiNNaker links for
external devices

Routing Types

Nearest Neighbour
Point-to-Point
Multicast
Fixed Route

SpiNNaker Chip




SpiNNaker Boards SpiNNaker Machines

Scaling to a billion neurons What Next for SpiNNaker?
1,000 neurons 18 cores 48 chips 24 boards

per core. per chip. per board. per rack.

B o o » Five cabinet machine (500K ARM cores)
: il * Now online and available!
» Open to any research project, in principle

» SpiNNaker2 being developed within HBP
* New systems by 20207

* For further information contact:
simon.davidson@manchester.ac.uk

5 racks per cabinet, 10 cabinets.
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Chip Architecture

Chip Resources

% 18 cores on a chip:
o 1 Monitor Processor
o 16 Application processors
o 1 fault-tolerant/yield spare

++ Each core is an ARM968 processor
o 200 MHz clock speed
o No memory management or floating point!

o Local memories:
» 32K local code memory (ITCM), 64K local data (DTCM)
* TCMs are visible only to local processor

% 128MByte SDRAM
o Shared and visible to all processors on same node

«» Router:
— Directs flow of information from core-to-core across the machine

SpiNNaker Node

Inter—chip links

o Jo o Je I

E lo

! !

Ethernet GPIO

MANCHESTER
1824

Using SpiNNaker:

The Software Stack
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P User
d Interface
: % (Host-side)
@
A

Python interface to
‘SpiNNaker
hardware

1 A
Ether:tt itf

Files Required

Eor Each Core (16 per chip):

& Application C executable (32KB}
= Application local data (84KB)
s Application sharsd data (SMB]

For Each Chip:

e Router table
e Any shared data tables

Application code
e.g. LIF neurons, spike
server, finite element
analysis

Support for application
event management and
synchronization

System
management
software

SpiNNaker
hardware

Software Stack

SpiNNaker
Node

What Files are Required for Simulation?

SpiNNaker
Node

‘SpiNNaker
hardware

MANCH E\) [1 ER

MANCH E\) [1 ER

1.

20

2.

Python interface to
SpiNNaker
hardware

Front end interface
(PYNN, graph, etc.)

Mapping Process

Data Generation

v
SpiNNMan

Compile network description

Map graph to machine

Generate data files

Load files

Synchronise the start on all cores!

Simulation runs to completion

Hands back control to host

Read back results and post-process

Graph representation of

network

Breaks down groups
(vertices) into core-
sized chunks

Assigns chunks to
cores

Decide what path
packets follow from
core to core

Creates data files for
each core and routing
tables for each chip

Pass files to block that
interfaces with the
machine

Order of Events (batch mode)



MANCHESTER
1824

21

L]

End of Overview!

Much more detail on all of these topics
* In the sessions to come....

Any questions for now?

Just one more thing to add....

Buying SpiNNaker Hardware

¢ 48-node board now
available for sale

» Non-commercial use only

* 4-node boards can only be
loaned (currently!)

»  For further information contact:
simon.davidson@manchester.ac.uk

22



SIS B ANCIB1E o Overview

SpiNNaker Chip Resources o
Chip Architecture

Core Architecture
Low-level Communication
 Packet formats

* Multicast routing
High-level Communication — SDP

Hardware Limitations
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Steve Temple
SpiNNaker Workshop — Manchester — Sep 2016
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SpiNNaker Chip Outline Chip Interconnect

Inter-chip links
X 3 1

3 2
, A 1,2 b 2,2

o

1 [

Core 0 Core 1 ‘Cc’rez””“ Core 17

System Bus

fam 0,0 “
Peripherals +— Root Chip
Ethernet 8./ l} /

SpiNNaker
> >

SpiNNaker

Ethernet GPIO
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Inter—chip Links

SpiNNaker Chip Details

{0
I

0 0
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Packet Router

Ctd IF PeeliPoke IF
T

| (|

RtrClk T

Comms Ctir Comms Ctir Comms Ctir

Core0 Corel —— Core2

DMA. Ctir DMA Ciir DMA Ctir

[ e |

Comms Ctir

Core3... Corel5 —— Corel7 [
DMA Cilr DMA Ctir

Comms Ctir

i

[ |

System Bus

MemClk

|_ Memory IF | | cdF |

System AHB

RtrClk
CpuClk =

MeenGlk PL340 SDRAM IF |

Ethernet

System Clock

Ctir PLLs

‘ 128MB SDRAM ‘

u

Ethernet

:

GPIO Port

Clock (10MHz)

SpiNNaker Chip Layout

RLAALLLAEE AR L

= » 130nm process
-+ 10x 10 mm

18 ARM cores
with 96K SRAM

Router

SDRAM
controller

Tightly-coupled
EAM JD

Asynchronous
NoC

1 | Core 14

SpiNNaker
>

MANCHESTER
1824
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SpiNNaker Core

' To Router

Y

Comms Ctlr

!

ARM968 CPU

(200 MHz)

DMA Controller

E
==

h_:_J
F 3

‘Dual 32-bit Timers\

PL190 VIC Interrupts
Interrupt Ctir

SpiNNaker

¥ To System Bus (& SDRAM)

»

ARM968 CPU

 ARM9 CPU clocked at 200 MHz

 ARM V5TE architecture
- Supports 32-bit ARM and 16-bit Thumb code

- Some DSP instruction support - saturated arithmetic,
extended multiplies

- No floating point hardware!
» Two Tightly Coupled Memory (TCM) blocks
- Single cycle (5 ns) access time
- 32 KB Instruction TCM (ITCM)
- 64 KB Data TCM (DTCM)

« DMA interface into both TCMs

SpiNNaker
y




SpiNNaker Core

' To Router

SpiNNaker Memory Map

A

Comms Ctlr

PL180 VIC Interrupts
Interrupt Ctir

{

‘Dual 32-bit Timers\

GLOBAL
(SHARED)
MEMORY

0xe0000000

Shared
Peripherals

/ BootROM/SysRAM 0x££000000
Unused

Boot ROM (64K)

Sys RAM (32K)

Ethernet

Watchdog

System Controller

0x£7000000

0x£6000000

0x£5000000

0x£4000000

0x£3000000

0x£2000000

ARM968 CPU Router

SDRAM Ctl (PL340)

0x£1000000

{200 MHz)

DMA Controller :.

0x80000000 0x£0000000

SDRAM (128M)

DMA Ctlr
VIC (PL190)

Timers

0x60000000 0x30000000

Unused

0x50000000 0x1£000000

0x11000000

Core-local Comms Ctir

Peripherals

0x10000000

CORE-LOCAL
MEMORY

] ) g )
SpINNt:;er 0x10000000 - - 0x00400000 SplNNa;er
¥ To System Bus (& SDRAM) 0x00000000 _ 0x00000000

MAN CHFSTER

. . MANCHESTER i i
Zm Communications Controller Monitor Processor & Virtual Cores

Registers #include "spinnaker.h"

void send_mc_pkt (uint key, uint data)
{
while (cc[TCR] & TX FULL)
continue;
cc[TCR] = PKT_MC_PL;
cc[TXDATA] = data;
cc[TXKEY] = key;

—» TXKEY >

Core 7 Core 8 Core 9

Tofirom — | TXDATA
CPU  —p

-+ RXKEY

To/from
Router

TCR (Tx Ctrl)

Application Processors

.

RXDATA Core12 Core 13 Core 14 Core 15

RSR (Rx Status)

#include "spinl_api.h"
spinl_send_mc_pkt (key, data, WITH_PAYLOAD); t

System

-+ Control Logic Controll
ontroller

Interrupts

t Other chips

-

LAN

Mo nitor Processor

SpiNNaker Core 0 SpiNNaker
< <.

Ethernet

yYrYyvy

(Internet)




SpiNNaker Packet Types Nearest-neighbour packets

Multicast (MC) Any core

LS Routing key (Data) I ﬂ I I 1

Type=00

Point-to—paint (P2P) Monitor Processor 0,2 1,2

2,2 —

Header
Type=01

Source ID Destination ID {Data)

Nearest-neighbour (NN) Monitor Processor I I

Header

Address + R'W / Data (Data)
Type=10

Fixed Route (FR)

Header
Type=i1
‘\ 8 bits k"*-f—f_,_‘i_SQ bits 32 bits

A
\

Data (Data)

\\Header T
T

Type Type-dependent info Data | Parity
1

SpiNNaker ) ’ ’ ) SpiNNaker

uint spinl_send mc_pkt (uint key, uint data, uint payload); 5 S

Point-to-point packets Multicast packets
t 1 @ t 1 1 =

1,2 2,2 > ) 0,2 - ¢ ) 2,2 >

I "]

SpiNNaker ) ] ’ ) SpiNNaker

» »




Multicast Packet Router Multicast Packet Routing

F2-LOOF2-L01 F2-L02 F2-L03 F2-L04 F2-L05 F2-L06 F2-L07

8 bits 32 bits 32 bits

5 2 1 % 21 a2 1 %21
[Header| Routing Key Data (optional) F1-L15—34,7 0——{3 5,7 01—|3 6,7 0—{3 7,7 O} F2-Lo8
5

Frtis 4 4 5 4 5 4 5
I | I l

F2-L08

MC Packet in ...

E | 21 % 2 1 221 22 1
v F1-L13—33.6 0 3560 36,60 37,6 O F2-L10

(32)  (B+8 ) FI—IL12 42 4 T 4 T 4 T

F2-L11

Key Route w2 1 2 2 1 22 1
Key Route F1-L11—325 0 3350 37,5 0f— Fo-L12

Kay 3 Route 4 5 4 5 4 5 4 5
o Fi-L10
| I l

F2-L13

2 2 1 w2 1 w2 1
3140 36,40 37,4 01— F2-L14
g a5 4 5 4 5
102_4 Routing RAM 1 | T I F2-L15
Entries 2 2 1 52 1 @2 1

. F1-Lo7 —| 31,30 36,30 37,3 0f— Fo-Loo
a5 4 5 4 5
Parallel Search . F1-Los | | Fu_',_m

: 2 1 5 2 1 2 2 1
(Associative Lookup - F1-L0s —] 31,2 0 3420 36,2 O Fo-Lo2
with Don't Cares) 4 5 4 5 4 5
F1-104 | | l
FO-L03
0 2 1 7 2 1
» p 31,1 9 3410 I— Fo-Lo4
MISS —= Default Route HIT—* Route 45 45

| |
Packet route out ... w21 [F2d1 [F21 [F21
31’00

111111111111111111'llllll SPil Ay il g il SpiNNaker

» »
Core Route (18) Link Route (5) F1-L00 FO-L15 FO-L14 FO-L13 FO-L12 FO-L11 FO-L10 FO-L09 FO-L08 FO-L07

Ternary CAM

MAASEBIRN  SpiNNaker Datagram Protocol RLNCHE T SDP Routing

SDP header

Destination Source
‘ Chip: Chi ‘Chip : Chi
raic |pSCh|p cOmEChlpEChlp
X Y X Y

Flags

SDP packet

SCP Header Data
16 bytes 0-256 bytes Core 8 Core 9

tion Processors

SDP packet in UDP data

Core 13 Core 14

,w'l SDP packet embedded in UDP/IP packet

{

[T T - =
i

Controller

! !

Ethernet Monitor Processor
SpiNNaker (Internet) Core 0

‘SDP packet transported aéﬁeﬁuéﬁm of P2P packets

Other chips

i

LAN

Router

yYrYyvy

uint spinl_send sdp msg (sdp_msg_t *msg, uint timeout);

SpiNNaker
» »




SpiNNaker Hardware Limits

* Processors — 16/17 per chip (but scalable to
thousands of chips)

ARM968 — ARM9 at 200MHz — 220 DMIPS

Local memory — very limited

- Instruction memory — 32K bytes
- Data memory — 64K bytes

Local Memory access time - 5 ns
Per chip memory — 128M bytes (shared)
Shared memory access time

- Individual accesses - > 100 ns (NB write buffer) \
SpiNNaker

- DMA accesses ~ 15ns per word ,

SpiNNaker Arithmetic Limits

« ARM968 has no floating point hardware
* Options
- Soft Floating Point — slow and memory hungry
- Fixed point — uses integer ops
» Limited range before precision lost

* Some GCC compiler support (but slowish)

* Or hand code (C or assembly) for best performance
(some libraries available)

« ARM968 has some DSP extensions
- Saturation, MAC, double operations, CLZ
— Accessible via compiler intrinsics SpiNNaker

y

SpiNNaker Packet Limits

» Packet payload is small — typically 32 bits

» Packet bandwidth is limited

» Chip-to-chip links ~ 250M bit/s (5 or 3 M pkt/s)
- Currently 50% slower via board-to-board links

» CPU packet processing overhead typically 200-
1000ns

» Packets can get lost (dropped) in case of
congestion — can be “re-injected” in some
cases

« Multicast router table is not infinite! sotitia

»

ERSEEES SpiNNaker Bandwidth Limits

* Qverall I/O bandwidth into the machine is
limited

» Currently most external 1/0 is by 100 Mbit/s
Ethernet (and only one interface per board)

» High level I/O via SDP is limited by software
overheads
- Around 10 Mbyte/s to Ethernet-attached chip

- Around 2 Mbyte/s to 'unattached' chips (via P2P
packets)

» Potential for higher I/O bandwidth via SATA
links on FPGAS but currently unexploited  seitnaker

»




Running PyNN Simulations on SpiNNaker Spiking Neural Networks
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Andrew Rowley, Alan Stokes
SpiNNaker Workshop, September 2016
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Human Brain Project

Spiking Neural Networks What is PyNN?

initiative
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A Simple PyNN Network A Simple PyNN Network

import pyNN.spiNNaker as p

A Simple PyNN Network A Simple PyNN Network

import pyNN.spiNNaker as p import pyNN.spiNNaker as p
p.setup(timestep=1.0) p.setup(timestep=1.0)
pop_1 = p.Population(1l, p.IF_curr_exp, {}, label=“pop_1")



A Simple PyNN Network A Simple PyNN Network

import pyNN.spiNNaker as p import pyNN.spiNNaker as p
p.setup(timestep=1.0) p.setup(timestep=1.0)
pop_1 = p.Population(1l, p.IF_curr_exp, {}, label=“pop_1”) pop_1 = p.Population(1l, p.IF_curr_exp, {}, label=“pop_1")

input = p.Population(1, p.SpikeSourceArray, input = p.Population(1, p.SpikeSourceArray,
{“spike_times’: [@]}, label=“input”) - {“spike_times’: [@]}, label=“input”)
input_proj = p.Projection(input, pop_1, p.OneToOneConnector(

weights=5.0, delays=1))

A Simple PyNN Network A Simple PyNN Network

import pyNN.spiNNaker as p import pyNN.spiNNaker as p
p.setup(timestep=1.0) p.setup(timestep=1.0)
pop_1 = p.Population(1l, p.IF_curr_exp, {}, label=“pop_1") pop_1 = p.Population(1l, p.IF_curr_exp, {}, label=“pop_1")
input = p.Population(1, p.SpikeSourceArray, input = p.Population(1, p.SpikeSourceArray,
{‘spike_‘times’: [9]}) labe1=“input”) -_’. {(Spike_times’: [@]}, label=r‘input") -—,.

input_proj = p.Projection(input, pop_1, p.OneToOneConnector( input_proj = p.Projection(input, pop_1, p.OneToOneConnector(

weights=5.0, delays=1)) weights=5.0, delays=1))
pop_1.record() pop_1.record()
pop_1.record_v() pop_1.record_v()

p.run(10)

1" 12



Edit ~/.spynnaker.cfg

[Machine]

# Information about the target SpiNNaker board or machine:

# machineName: The name or IP address of the target board

# version: Version of the Spinnaker Hardware Board (1-5)
# machineTimeStep: Internal time step in simulations in usecs.

# timeScaleFactor: Change this to slow down the simulation time
# relative to real time.

# _______
machineName = None
version = None

#machineTimeStep = 1000
#timeScaleFactor = 1

13

A Simple PyNN Network

import pyNN.spiNNaker as p

p.setup(timestep=1.0)

pop_1 = p.Population(1l, p.IF_curr_exp, {}, label=“pop_1")

input = p.Population(1, p.SpikeSourceArray,

{“spike_times’: [@]}, label=“input”)

input_proj = p.Projection(input, pop_1, p.OneToOneConnector(
weights=5.0, delays=1))

pop_1.record()

pop_1.record_v()

p.run(10)

spikes = pop_1.getSpikes()

v = pop_l.get_v()

15

——@

Edit ~/.spynnaker.cfg

[Machine]

# Information about the target SpiNNaker board or machine:

# machineName: The name or IP address of the target board

# version: Version of the Spinnaker Hardware Board (1-5)
# machineTimeStep: Internal time step in simulations in usecs.

# timeScaleFactor: Change this to slow down the simulation time
# relative to real time.

# _______
machineName = 192.168.240.253
version =3

#machineTimeStep = 1000
#timeScaleFactor = 1

14

Plotting Output

import pylab
time = [i[1] for i in v if i[@] == 0]

membrane_voltage = [i[2] for i in v if i[@] == 0]
pylab.plot(time, membrane_voltage)
pylab.xlabel("Time (ms)") 05
pylab.ylabel("Membrane Voltage")
pylab.axis([@, 10, -75, -45]) -
pylab.show()
@ =55
z
E—m
= .65
_70|
7 2 ) 3 10
16 Time (ms)



Plotting Output Limitations of PyNN on SpiNNaker:

inport pylab Neurons Per Core

spike_time = [i[1] for i in spikes]

spike_id = [1|.:0] ﬂ?r‘ . 1n.sp1I'<es] HittttdHig i g d i g i
pylab.plot(spike_time, spike_id, ".") B ER |V 7 7 i
pylab.xlabel("Time (ms)")
pylab.ylabel("Neuron ID")
pylab.axis([e, 10, -1, 1])
pylab.show()

Maximum of
256 per core

Neuron ID
o
o

o 2 4 6 8 10 I B B,
17 Time (ms) 18 \ =

Wi 1

Limitations of PyNN on SpiNNaker: SpiNNaker-Specific PyNN

Number of cores available inport pyNN.spiNNaker as p

p.setup(timestep=1.0)
p.set_number_of_neurons_per_core(p.IF_curr_exp, 100)
pop_1 = p.Population(1l, p.IF_curr_exp, {}, label=“pop_1")

=@

High =
Connectivity Plasticity

delay > 16

Ak

20 100

10 % CPU
o Average

19 20




Configuration with spynnaker.cfg Configuration with spynnaker.cfg

[Machine]
machineName = None
version = None
timeScaleFactor =1
Real Time (ms) 0
Sim Time (ms) 0
21

Balanced Random Network

23

10
10

20
20

[Machine]
machineName = None
version = None
timeScaleFactor = 10

30 Real Time (ms) 0 10 20 30

30 Sim Time (ms) 0 1 2 3

SpiNNaker SpiNNaker
o y  » y

Balanced Random Network

import pyNN.spiNNaker as p
import pylab
from pyNN.random import RandomDistribution

p.setup(timestep=0.1)

n_neurons = 1000

n_exc = int(round(n_neurons * 0.8))
n_inh = int(round(n_neurons * 0.2))

SpiNNaker SpiNNaker
sy 24 Ly



Balanced Random Network

pop_exc = p.Population(n_exc, p.IF_curr_exp, {},
label="Excitatory")

pop_inh = p.Population(n_inh, p.IF_curr_exp, {},
label="Inhibitory")
stim_exc = p.Population(n_exc, p.SpikeSourcePoisson,

{"rate": 10.0}, label="Stim_Exc")
stim_inh = p.Population(n_inh, p.SpikeSourcePoisson,
{"rate": 10.0}, label="Stim_Inh")

@ o
Q o

25

Balanced Random Network

delays_stim = RandomDistribution("uniform", [1.0, 1.6])
conn_stim = p.OneToOneConnector(weights=2.0,
delays=delays_stim)
p.Projection(stim_exc, pop_exc, conn_stim, target="excitatory")
p.Projection(stim_inh, pop_inh, conn_stim, target="excitatory")

27

SpiNNaker

o

SpiNNaker
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Balanced Random Network

conn_exc = p.FixedProbabilityConnector(0.1, weights=0.2,

delays=2.0)

conn_inh = p.FixedProbabilityConnector(0.1, weights=-1.0,

delays=2.0)

p.Projection(pop_exc, pop_exc, conn_exc, target="excitatory")
p.Projection(pop_exc, pop_inh, conn_exc, target="excitatory")
p.Projection(pop_inh, pop_inh, conn_inh, target="inhibitory")
p.Projection(pop_inh, pop_exc, conn_inh, target="inhibitory")

Q o

SpiNNaker
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asisey Balanced Random Network
pop_exc.initialize("v", RandomDistribution("uniform",

[-65.0, -55.0]))
pop_inh.initialize("v", RandomDistribution("uniform",

[-65.0, -55.0]))
pop_exc.record()
p.run(1000)

28
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Balanced Random Network Spike Time Dependent Plasticity:
spikes = pop_exc.getSpikes() POtent|at|On

pylab.plot([i[1] for i in spikes], [i[@] for i in spikes], ".")
pylab.xlabel("Time (ms)")

pylab.ylabel("Neuron ID") 1 s 2
pylab.axis([@, 1000, -1, n_exc + 1]) W AW
pylab.show() w00

700 .

600
. 500 B ‘. 5 : " . . Aw
P L . -

200f , ’ - & s

100. " ° e d ’ . 1 2

N . o SpiNNaker SpiNNaker
0 L]
29 200 400 Time ) 600 800 1000 'ﬁ 30 'ﬁ

Spike Time Dependent Plasticity: STDP Rules

Depression J
e _plus
2 1

o——o :

1 2 " tau_minus
At e

_I/// A_minus

Aw |

A_plus

pre

SpiNNaker sost SpiNNaker
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STDP in PyNN

STDP, w=0,
w_max=10.0

33

STDP in PyNN

training = p.Population(
n_neurons, p.SpikeSourcePoisson,
{"rate": 10.0, "start": 2000.0, "duration": 1000.0},
label="Training")

p.Projection(pre_noise, pre_pop, p.OneToOneConnector(weights=2.0))
p.Projection(post_noise, post_pop, p.OneToOneConnector(weights=2.0))

p.Projection(training, pre_pop, p.OneToOneConnector(weights=5.0, delays=1.0))
p.Projection(training, post_pop, p.OneToOneConnector(weights=5.0, delays=10.0))

35

SpiNNaker

SpiNNaker

STDP in PyNN

import pyNN.spiNNaker as p
import pylab

p.setup(timestep=1.0)
n_neurons = 100

pre_pop = p.Population(n_neurons, p.IF_curr_exp, {}, label="Pre")
post_pop = p.Population(n_neurons, p.IF_curr_exp, {}, label="Post")
pre_noise = p.Population(

n_neurons, p.SpikeSourcePoisson, {"rate": 10.0}, label="Noise_Pre")
post_noise = p.Population(
n_neurons, p.SpikeSourcePoisson, {"rate": 10.0}, label="Noise_Post")

pre_pop.record()
post_pop.record()

2 0 N

34

STDP in PyNN

timing_rule = p.SpikePairRule(tau_plus=20.0, tau_minus=20.0)
weight_rule = p.AdditiveWeightDependence(
w_max=5.0, w_min=0.08, A_plus=0.5, A_minus=0.5)

stdp_model = p.STDPMechanism(
timing_dependence=timing_rule, weight_dependence=weight_rule)

stdp_projection = p.Projection(
pre_pop, post_pop, p.OneToOneConnector(weights=0.0, delays=5.0),
synapse_dynamics=p.SynapseDynamics(slow=stdp_model))

SpiNNaker

36



STDP in PyNN

p.run(5000)

pre_spikes = pre_pop.getSpikes()

post_spikes =

print stdp_projection.getWeights()

p.end() [
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STDP in PyNN

pylab.
pylab.
pylab.
pylab.
pylab.
pylab.
pylab.

38

figure()

x1lim( (0, 5000))
plot([i[1] for i in
plot([i[1] for i in
xlabel('Time/ms")
ylabel('spikes"')
show()

spikes

pre_spikes],

[i[@] for i in pre_spikes], "r.")

post_spikes], [i[@] for i in post_spikes], "b.")

1000 2000 3000 2000
Time/ms
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Overview

1824
« SpiNNaker applications and their environment
« SC&MP, ybug and application loading

« SARK (SpiNNaker Application Runtime Kernel)

— Application start-up

- SARK function library
- Examples

- Documentation

Please interrupt if you have a question!

SpiNNaker
>

MANCHESIER Building Applications
* Languages — mostly C with bits of assembler

 Toolchain choice
- ARM tools — RVDS 4 and DS-5 (free for academics)
- GCC — GNU ARM Embedded Toochain (free)
* Library support
— Toolchain libraries — C library functions, maths, etc
- SARK — low-level SpiNNaker support library
- Spinl API — event-based application library
* Linking — support libs + application code
- Creates application to be loaded ol
— Application file format is APLX >

Execution Environment (1)

MANCHESTER
1824

FEEEE
olalololo
o) () () (o) ()
() (o7) (some]) e

Network

Eth Monitor Processor

o) (oo

!

!

Interface
|

PEEEE
POEE®
ololololo
() o) soma)
5] (oo

PEEEE
ojojololo
o) () (@) () =
() o) (some)
o) (rmwpooms

SpiNNaker
-




Execution Environment (2)

MANCHESTER
1824

* One application per core
Executable code (instructions) in ITCM (32 KB)
Data (variables, stacks, heap) in DTCM (64 KB)
Bulk and/or shared data in SDRAM (128 MB)
Code/data access from ITCM/DTCM is fast (5 ns)

Data access to SDRAM is slow (> 100 ns) and
subject to contention

 DMA controller in each core can move bulk data
between I/DTCM and SDRAM faster
(~ 15 ns/word) without requiring CPU

SpiNNaker

»

Mapping Program to Memory

DTCM (64 KB)

Stack(s)
/(

APLX File

#include <sark.h>

uint a = 5; Vi RW vars

uint b = 6;
uint e[30];
uint *d; A

void e_main (wvoid)
{ |~ ZI vars

uint e = 7; X BRW vars *
uint £ = 8; }

wint g[30]; ITCM (32 KB)

uint *h;

(Unused)

h = malloc (128);
1

"™ RO Code 4

0x0000 SpiNNaker
»

MANCHESTER
1824

SC&MP

» “SpiNNaker Control & Monitor Program”

» Loaded onto all Monitor Processors during
bootstrap

« Communicates with host computer using SCP
(SpiNNaker Command Protocol) over SDP

» Supervises operation of a single chip
 Allows program loading to Application Cores

 Acts as router for SDP packets between any pair
of cores or with external Internet endpoints

* Flashes the LED!

SpiNNaker
»

MANCHESTER
1824

« SC&MP provides command interface via SCP

- Ver —give S/W version, etc

SC&MP, SCP and ybug

- Read (addr, length) - read SpiNNaker memory
- Write (addr, length, data)— write SpiNNaker memory
- Reset (core mask) —reset Application Cores

» Host (workstation) embeds SCP/SDP in UDP/IP
to talk to SpiNNaker Monitor Processor on the
Root Chip

* ybug is a simple command-line tool which runs
on a workstation and provides an interface to
SC&MP for application loading and debug

SpiNNaker
»




Application Loading (1)

» ybug sends the application APLX to the relevant
SpiNNaker chips.

* The APLX image is copied to a known place in
shared memory

* ybug requests that the relevant Application cores
are reset.

* The reset code is an APLX loader which loads
the image according to instructions in the APLX
header

 This usually results in the application being
copied into ITCM and entered at address ...,
zero (the ARM reset vector) >

MANCHESTER
1824

Workstation

> ybug spin3
spin3:0,0,0 > sp 1 1

spin3:0,1

Application Loading (2)

spin3:1,1

GGG
(2) (7] (&) (¢ (2o)

ooy § )
@ () () () (v
(1) (12] (1e) (1] 6]
[e] () D @

spin3:1,1,0 > app_load t.aplx . 3-6 16 I

DEEHOE
: III ln' : ‘I'
sorat ) (8

spin3:0,0 spin3:1,0

1 0REE
@) (=) () [
DEE

=

OE

g

T

=]

Q

o

w

w

e ] = =
Ed I =)

BEEEE
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SARK

» SpiNNaker Application Runtime Kernel

» Three main functions
1) Application start-up
2) Library of useful functions

3) Communication via SDP with Monitor Processor (and
hence rest of system)

* SARK is automatically linked with applications
when they are built

* Occupies around 3 KB in the image

SpiNNaker
»

MANCHESTER
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Application Start-Up

 Start-up code at start of ITCM is SARK
Configures stacks for 4 ARM execution modes
Initialises Heap and SDP message buffers in DTCM
Initialises shared-memory data structure (VCPU)
Calls a function to do pre-application set-up
Calls the function ¢_main, the application entry point
Calls a function to do post-application clean-up
Goes to sleep!

» Some applications will never terminate

» SARK provides SDP communications with the

SpiNNaker

application >




1824
« CPU control
* Interrupt disabling and enabling

SARK Library (1)

* Entering low power (sleep) mode
* Memory manipulation
» Memory copy and fill (small footprint)
« SDP message copying
» Pseudo-Random number generation (32-bit)

« SDP messaging

» Message allocation in DTCM and shared

memory

SpiNNaker
»

« SDP message transmission

SARK Library (2)

 Text output via “printf”

- Text sent to a host system using SDP packets
- Text buffered in SDRAM

« Hardware locks and semaphores

« Memory management
- malloc/free for DTCM heap

- malloc/free for shared memories (eg SDRAM)
with locking

- malloc/free for router MC routing table

* Environment queries
SpiNNaker

- What is my core ID, chipID, etc ,

MANCHESTER
1824

SARK Library (3)

« Hardware interfaces
- LED control
- Router control — setting MC and P2P table entries

- VIC control — allocating interrupt handlers to specific
hardware interrupts

« Timer management

- Routines to schedule/cancel events at some time in
the future

* Event management

- Routines to associate events with interrupts
- Management of priority event queues SpiNNaker

»

MANCHESIER SARK — Example 1

#include <sark.h>

void c¢_main (void)
{
io_printf (IO_STD, "Hello world (via SDP)!\n");
io_printf (IO_BUF, "Hello world (via SDRAM)!\n");
}

E Tubotron 1.20 (Port 17692) = |

Clear ‘ Save | Open ‘ Close I 1 window (1 open, 0 closed) Quit

202,66 2.81.in-addr.arpa:0,02 O x|

{
{
(
23
rld (v
{
(
{

SpiNNaker
»




SARK - Example 2

MANCHESTER
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#include <sark.h>

INT HANDLER timer int han (void)

{
tc[T1_INT CLR] = (uint) tc; // Clear interrupt in timer
sark led set (LED FLIP (1)); // Flip a LED
vic[VIC_VADDR] = (uint) vic; // Tell VIC we're done

}

void timer setup (uint period)

{
tc[T1_CONTROL] = 0xe2; // Set up count-down mode
tc[T1 _LOAD] = sark.cpu clk * period; // Load time (us)
sark vic_set (SLOT_0, TIMERLl INT, 1, timer_int han);

}

void c_main ()

{
io_printf (IO_STD, "Timer interrupt example\n");
timer setup (500000); // (0.5 secs)

cpu_sleep (); // Send core to sleep \
} SpiNNaker

y_

MANCHESTER
1824

Documentation & Help

SARK — notes in SpiNNaker Tools -
docs/sark.pdf

ybug — user guide in SpiNNaker Tools —
docs/ybug.pdf

“spinnaker.h” - describes the SpiNNaker
hardware — memory maps, peripheral registers...

“sark.h"” describes all SARK data structures
and functions. Commented in Doxygen style.

All source code is provided...
If desperate, talk to us! SpiNNaker

y
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SpiNNaker API
and event-driven simulation
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SARK: low-level software

application

SARK

hardware

application control

core control

memory management

peripheral management

event management

SDP messaging

MANCHESTER
1824

hardware resources

off-die SDRAM

tem RAM
system dma.

timer

i

ITCM| DTCM
vic

application

core

hardware

comms

comms NoC

MANCHESTER
1824

API: run-time environment

application

event-driven
programming model

API

SARK

run-time
environment

SARK functionality

hardware

still available




MANCHESTER event-driven model MANCHESTER events and callbacks

event trigger
; ; . timer tick periodic event has occurred
‘ appllcatlons do not control execution flow multicast packet received |multicast packet has arrived
DMA transfer done scheduled DMA transfer completed successfully
applications indicate functions to be SDP packet received SDP packet has arrived
executed when events of interest occur user event application-triggered event has occurred
API COHtI’O|S exeCUtion and SChedU|eS event first argument second argument
application functions when appropriate timer tick simulation time (ticks) null
MCP w/o payload received key 0
application functions are known as callbacks MCP with payload received key payload
DMA transfer done transfer ID tag
SDP packet received *mailbox destination port
user event arg0 argl

MANCHESIER priorities BIEHCEE IR first program

Tubogrid [=F
. . ; Clear | Colour Fill Clear OFF - Colour White
priority level = -1 Fig £ [ [ ]
only one callback thread 52 first
cannot be pre-empted &
// circle sequence
uint circle pos[] =
{
1, 2, 3, 4, 8, 12, 16, 15,
priority level = 0 _‘ l ).14, 13, 9, 5,6, 7, 11, 10
can only be pre-empted Scheduler 4 = KT oo ;
b riority -1 callback e E v §§% // iterate over 16 positions
y p y : =° . for (uint i = 0; i < 16; i++)
; {
i —I // update display,
v&- . print_circle (circle_pos[i]);
riority level > 0 fiz )
cgn be )ll)re-empted it 5 f Dispacher el ddh 1/ snd delay nent olrcle s 3o
P 78 = k- [ e -
by priority <= 0 callbacks ﬁ%g i 48 ¢ continue;
scheduled in priority order = . Er=rr , )
-------- »
data fow
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distributed program

Tubogrid | —ox

Clear | Colour [ Fill | Clear OFF - Colour White

13(14|15(16
9 |10/11(12
6 |7 8
2 3 4

// circle sequence

uint circle_pos[] =

{

i, 2, 3, 4, 8, 12, 16, 15,
14, 13, 9, 5, 6, 7, 11, 10
}i

// this core's id
id = spinl_get_core_ id();

// delay my circle,

continue;

}

// and update display
print_circle (circle_pos[id]);

each core

for (uint j = 0; j < (id * BIG_NUM); j++)

event-driven program

C_main

packet callback

// 0.125s tick period (in microseconds)
#define TIMER TICK_PERIOD 125000

void c_main()
{
// initialize variables and state

//

id = spinl_get_core id();
my_state = OFF;
old_state = my_state;

// prepare for execution

/7
// set timer tick value
spinl_set_timer_tick (TIMER_TICK_PERIOD);

// register callbacks
spinl_callback on (
MC_PACKET_RECEIVED, packet, -1);

spinl_callback_on (
TIMER_TICK, timer, 0);

// go
//

spinl_start(SYNC_WAIT);

void packet (uint pkt_key, uint pkt_ payload)
{

// update my state

my_state = ON;
}

timer callback

void timer (uint ticks, uint b)
{
// check if state changed
if (my_state != old_state)
{
// update display,
print_circle (circle_pos[id]);

// send a packet to next core in the chain,
spinl_send_mc_packet(my_key, 0, NO_PAYLOAD);

// and remember state
old_state = my_state;

MANCHESTER
1824

additional support

MANCHESTER
1824

function

use

start/stop execution

start and stop simulation

set timer period

real-time or periodic callback

send multicast packet

inter-core communications

send SDP packet

host or I/O peripheral communications

start DMA transfer

software-managed cache

trigger user event

start a callback with priority <=0

schedule callback

start a callback with priority > 0

enable/disable interrupts

critical section access (inter-thread control)

provide chip address and core ID

find out who you are

configure multicast routing table

setup routing entries

see APl documentation for complete list

program structure

c_main starts

initialization phase
application in control
no events/callbacks

c_main calls
spinl_start ()

execution phase
APl in control
callbacks operate

callback calls
spinl_exit ()

exit phase
application in control
no events/callbacks

C_main exits




MANCHESTER synchronization barrier

C_main starts

application initializes variables
and may set up routing table

Cc_main calls spinl_start ()

core goes to sleep and
waits for syncoO signal

host can check
that cores are

host sends syncO signal

waiting!

core receives signal
and starts execution

WY example: spiking neural network

incoming pack et buffer |
(spiking neuron ID's) DMA

data flow

igger update
Dﬁn o "syﬁapss

DM A transfer results
(synaptic data copy)

v
( b ;—e—t—e—J
Amer }__‘ update -

event newons [

synaptic inputs|

what is a sensible choice of priorities?

to think about: pitfalls

asynchronous operation
and communications

UDP-based I/0

multicast packets
can be dropped due
to congestion

not guaranteed!

no floating-point support
use fixed-point arithmetic ‘

no globally-shared resources
use message passing




Contents

Writing an Application for SpiNNaker -

Introduction , o
e » View of an application distributed across parallel processors
ORI NN + SpiNNaker Graph Front End (GFE)
.1 ...g'-.'...-.,’.. '»"
Ve s agiee - DA
WCSEEAR o SPr + Design Considerations:
AN % o et » Managing finite resources (partitioning)
2 : oot + Thinking about data flow (message identifiers/routing keys)

» Process to port a new application to SpiNNaker

Simon DaVidson, Alan Stokes, Andrew ROWley + What the tools will do for you (mapping, routing tables, data generation, etc.)
»  What the designer must supply (binaries, data spec, meta-data)

SpiNNaker Workshop

September 2016 e Summary
AN :
@3 — SpiNNaker
¥ EPSRC .

European Research Council Human Brain Project

View of an application distributed Design Process for New
across parallel processors Applications

» The application designer creates components (nodes and
communication types)

* Two main activities: « These components plug into our tool chain

« Computation

« Communication . .
» A user can then invoke the Graph Front End (GFE) to create and run their

» Think of the problem as a graph: own networks on SpiNNaker
Vertex = computation node

+ Edge = flow of information between nodes Input is textual, like a PyNN script, in which the user instantiates the components created by

the application designer

Node can hold a collections of objects of the
same type, which we call atoms

Graph Front End is NOT a Graphical Interface - No GUI!

* e.g. Many spiking neurons in one population



Example script:
Conway’s Game of Life

import spinnaker_graph_front_end as front_end
import sys

# set up the front end and ask for a machine with 48 chips
front_end.setup()

cell_1 = MyCell()

cell_2 = MyCell()

edge = MachineEdge(cell_1, cell_2)
front_end.add_machine_vertex_instance(cell_1)
front_end.add_machine_vertex_instance(cell_2)
front_end.add_machine_edge_instance(edge, "STATE")

# run the simulation for 5 seconds
front_end.run(5000)

# clean yp the machine for the next application.
front_end.stop()

5

Design Considerations Il:
Dataflow between Vertices

» Consider the pattern of messages flowing from each vertex:

+ Case 1: Messages always go to the same set of targets
« Case 2: Messages go to different targets at different times

+ Case 1: Homogeneous data flow
* e.g. spikes in neural simulation

* One identifier for each machine vertex

vi v4

Design Considerations I:

Finite resources per core

The user’s graph will be mapped to the
cores of the SpiNNaker machine

Each core has finite resource:

Compute power

Local memory

Share of SDRAM capacity & bandwidth

Communications bandwidth for packets (max 200 atoms
per core)

Where each vertex represents many atoms
we partition each one into smaller pieces,
so that one piece fits on one core:

Application graph maps to Machine Graph
Edges also split to maintain correct connectivity

Merging of vertices NOT currently
supported!

Design Considerations Il:

Dataflow between Vertices
Case 2: Data send to different targets at different times:
e.g. multi-layered perceptron, with forward and backward data flow

Useful when there are different modes of operation

Group edges so that those in same mode are together
A grouping is called a partition

Assign a separate identifier for each pre-vertex/partition pair

Six edges [1, 2, .., 6]
Three partitions [red, blue, green] 1




Where do you need to supply new

(Host-side)

User
X Interface

Front end interface

(PYNN, graph, etc.) Visualisation

Python interface to
SpiNNaker
hardware

1 A
Ether:et itf

Tell the partitioner how
much resource a
machine vertex of the
application vertex
requires

Front end interface
(PYNN, graph, etc.)

Python interface to
SpiNNaker
hardware

Software Stack

SpiNNaker
Node

Application code

e.g. LIF neurons, sp

server, finite eleme!
analysis

Support for application
event management and
synchronization

System
management
software

SpiNNaker
hardware

information?

§ Graph representation of
% network

Breaks down groups
(vertices) into core-
sized chunks

Assigns chunks to

Decide what path
packets follow from
core to core

Creates data files for
each core and routing
tables for each chip

A 4
Pass files to block that
SpiNNMan interfaces with the
machine

Data Generation

MANCHESTER
1824

Where do you need to supply new
information?

§ Graph representation of
% network

Data Generation

Breaks down groups
(vertices) into core-
sized chunks

Front end interface
(PyNN, graph, etc.)

Assigns chunks to
cores

Decide what path
packets follow from
core to core

Python interface to
SpiNNaker
hardware

Creates data files for
each core and routing
tables for each chip

A4
Pass files to block that
SpiNNMan interfaces with the
machine

Where do you need to supply new

information?

§ Graph representation of
% network

Breaks down groups
(vertices) into core-
sized chunks

Tell the placer how much
resource each machine
vertex requires

Front end interface
(PyNN, graph, etc.)

Assigns chunks to

Mapping
Decide what path

packets follow from
core to core

Routing

Data Generation

Python interface to
SpiNNaker
hardware

Creates data files for
each core and routing
tables for each chip

A 4
Pass files to block that
SpiNNMan interfaces with the
machine




Where do you need to supply new Data Spec. and Data Generation
information?

Provide a script to » Each core running your application needs to generate its local data before

generate the data Graph representation of it starts simulation

in SDRAM for each network
machine vertex

Front end interface
(PyNN, graph, etc.)

m » We provide a simple virtual machine in which you can execute simple

Trertcas) nt core. programs to generate this data

sized chunks

» This is the Data Spec Executor (DSE)

Assigns chunks to
cores

» The tools run code called the Data Spec Generator (DSG) that create a
packots oiow rom program (the specification or spec) for each core that is run by the DSG to
generate its data

Python interface to
SpiNNaker
hardware

Creates data files for
each core and routing
tables for each chip

A 4
Pass files to block that
SpiNNMan interfaces with the
machine

Data Generation

Ethernet i/f

Summary

* Itis useful to abstract any parallel application into the form of
a graph with:

» Centres of computation (vertices)

» Connected by communication pathways (edges)

+ Application designer must describe the computational elements and the

communication types and plug those into our tools:
Executables to run on SpiNNaker (typically written in C)

Data specification, used to create each nodes data

Describe resource requirements to allow tools to map networks to cores

» User can then specify application networks and run them using the Graph Front

End.The tools handle :
Mapping

Routing table generation
Data generation

Loading

Simulation

Results gathering

And other stuff ...
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GFE structure Skeleton Functionality

~ E1SpiNNakerGraphFrontEnd library root, ~/spinnaker/alpha
= [ spinnaker_graph_front_end
- Mexamples  ——— import spinnaker_graph_front_end as front_end
- B3 Conways
b E1heat_demo fsett upéhe :rorz; end
b 1 hello_world ront_ena.setup
N — Example code
[ template ‘ ]
B _inic__py # run the simulation for 5 seconds
B Makefile front_end.run(5000)
~ [ utilities . v
& PEREHE # clean up the machine for the next application
TR front_end.stop()
W _ init__.py ] ]
@ log.py Code to read config file

[zl spiMMakerGraphFrontEnd. cfg.template

B init_.py
@ _init__.py
& version.py

[ spinnaker.py

[zl spiNNakerGraphFrontEnd.cfg

ConfigurationException:
There needs to be a graph which contains at least one vertex
for the tool chain to map anything.

Main interface

5 6
Main interface functions PACMAN Graph
import spinnaker_graph_front_end as p
p.setup() Sets up the software stack so that it has read the
configuration file and created whatever data a £1
objects are required.

p.run(duration) Runs the simulation for a given time period
(microseconds).
p.stop() Closes down the application that is running on
the SpiNNaker machine and does any
housekeeping needed to allow the next Has a 1:1 ratio between vertices and SpiNNaker core.

application to run correctly.



Basic script to add machine
vertices into the graph

import spinnaker_graph_front_end as front_end

from spinnaker_graph_front_end.examples.Conways.conways_cell import \
ConwayMachineCell

# set up the front end
front_end.setup()

for count in range(0, 800):
front_end.add_machine_vertex_instance(
ConwayMachineCell(label="cell{}".format(count)))

# run the simulation for 5 seconds
front_end.run(5000)

# clean up the machine for the next application
front_end.stop()

9

Adding edges to the machine graph

MachineEdge
pre_vertex post_vertex

1. The main edge type available is MachineEdge.
2. This can be extended to add application specific data into.
3. Most important inputs are:

i. pre_vertex: The source of the edge.

ii. post_vertex: The destination of the edge.

4. Every edge in a graph is associated with a partition_id.

Creating a new type of machine
vertex

from pacman.model.graphs.machine.impl.machine_vertex import MachineVertex
from pacman.model.resources.resource_container import ResourceContainer

class ConwayMachineCell(MachineVertex):
""" Cell which represents a cell within the 2D grid

nn

def __init_ (self, label):

# construct the resources this cell uses and instantiate superclass
resources = ResourceContainer()
MachineVertex.__init__(self, resources, label)

10

BT Basic Script adding edges

import spinnaker_graph_front_end as front_end

# build and add vertices to the graph

vertices = list()

for count in range(0, 100):
vertices.append(ConwayMachineCell("cell{}".format(count)))
front_end.add_machine_vertex_instance(vertices[count])

# build an edge between two vertices
front_end.add_machine_edge_instance(
MachineEdge(verts[0], verts[1]),|"State")

front_end.run(5000) Partition id

front_end.stop()



Adding edges to the application Adding edges to the application
graph: Partitions graph: Partitions

Edge 1 resides in partition A Edge 1 transmits information about hotdogs.
Edges 2,3 and 4 reside in partition B Edges 2,3 and 4 transmits information about cats.
Edges 5 and 6 reside in partition C Edges 5 and 6 transmits information about bacon.
13 14
Conways: partitions. Conways: partitions.

IX
6%(

Edges 1,2’3’4’5,6’7’8 transmits v1’s state data. EdgeS 9,10,1 1 ,12,13,14,15,16 transmits v8’s state data.




Workflow of the GFE

Python GraphFront
Script End

SpiNNFrontEndCommon ]

PACMAN

[ SpiNNFrontEndCommon ]

| Data Specifications

DataSpecification

[ SpiNNFrontEndCommon
aplx Files :
17

Data generation

def generate_machine_data_specification(
self, spec, placement, machine_graph, routing_info, iptags, reverse_iptags,
machine_time_step, time_scale_factor):

# Reserve SDRAM space for memory areas:
spec.reserve_memory_region(

region=0, size=constants.SYSTEM_BYTES_REQUIREMENT, label="system")
spec.reserve_memory_region(

region=1, size=8, label="inputs")

Data generation

1. Converts application data within a vertex into data stored
on the SpiNNaker machine via SDRAM.

2. Supports separating the SDRAM into data regions
3. Supports writing data as scalars, arrays etc.

4. Common commands:
i. reserve_memory_region()
ii. switch_write_focus()
ii. write_value()
iv. write_array()
v. comment()
vi. close_spec()

Data generation

def generate_machine_data_specification(
self, spec, placement, machine_graph, routing_info, iptags, reverse_iptags,
machine_time_step, time_scale_factor):

# Reserve SDRAM space for memory areas:
spec.reserve_memory_region(
region=0, size=constants.SYSTEM BYTES REQUIREMENT, label="system")
spec.reserve_memory_region(
region=1, size=8, label="inputs") Needed for
simulation.c

# add simulation.c interface data

spec.switch_write_focus(0)

spec.write_array(simulation_utilities.get_simulation_header_array(
self.get_binary_file_name(), machine_time_step, time_scale_factor))

20



Data generation Data generation

def generate_machine_data_specification( spec.comment("writing initial state for this conway element \n")
self, spec, placement, machine_graph, routing_info, Iptags, reverse_iptags, spec.write_value(data=self._state)

machine_time_step, time_scale_factor):
# write the routing key needed for my transmission

# Reserve SDRAM space for memory areas: spec.comment("writing the routing key needed to transmit my state \n")
spec.reserve_memory_region( spec.write_value(data=routing_info.get_first_key from_pre_vertex(self, “State”))
region=0, size=constants.SYSTEM_BYTES_REQUIREMENT, label="system")
spec.reserve_memory_region( # close the spec
region=1, size=8, label="inputs") spec.comment(“closing the spec \n")

spec.close_spec()
# add simulation.c interface data
spec.switch_write_focus(0)
spec.write_array(simulation_utilities.get_simulation_header_array(
self.get_binary_file_name(), machine_time_step, time_scale_factor))

# application specific data items
spec.switch_write_focus(region=1)

spec.comment("writing initial state for this conway element \n™)
spec.write_value(data=self._state)

21 22

Conways: partitions. Conways: partitions.

®9

10
11
Edges 1,2,3,4,5,6,7,8 transmits with routing key 0. Edges 9,10,11,12,13,14,15,16 transmit with routing key 1.

23 24



Workflow of the GFE

25

Python GraphFront ; ]
Script SpiNNFrontEndCommon
PACMAN

[ SpiNNFrontEndCommon ]

| Data Specifications

DataSpecification

[ SpiNNFrontEndCommon
aplx Files :

Binary Executables

from spinn_front_end_common.abstract_models.abstract_has_associated_binary\

import AbstractHasAssociatedBinary

from spinn_front_end_common.abstract_models.abstract_binary_uses_simulation_run\

27

import AbstractBinaryUsesSimulationRun

AbstractHasAssociatedBinary,
AbstractBinaryUsesSimulationRun

def get_binary_file_name(self):

# return the binary name of this vertex
return "conways.aplx"

Binary Executables

AbstractHasAssociatedBinary

def get_binary_file_name(self)

AbstractStartsSynchronized
- After loading binary, CPU state will be in SYNCO

AbstractBinaryUsesSimulationRun(AbstractStartsSynchronized)
- The binary uses the simulation environment provided by the tools

26

Linking Aplx files to Python

1. Compiled version of ¢ code.
2. This code runs on SpiNNaker.

3. lIslinked to your python classes through
get_binary_file_name(self) of the vertex

4. How to write event driven C code for SpiNNaker is discussed
in Event Driven Simulations.

5. We will cover the interfaces provided by the
SpiNNFrontEndCommon (SFEC) module for the ¢ code.

28



Example c code

static uint32_t timer_period, simulation_ticks, infinite_run = 0O;
static uint32_t time;
static uint32_t SDP_PRIORITY = 1, TIMER_PRIORITY = 2;

void ¢c_main(void) {

/I get address of simulation data
address_t address = data_specification_get_data_address();

# gets the address where all the data for this core is stored.
address_t data_specification_get data_address();

29

Example ¢ code

static uint32_t timer_period, simulation_ticks, infinite_run = 0;
static uint32_t time;
static uint32_t SDP_PRIORITY =1, TIMER_PRIORITY = 2;

void ¢c_main(void) {

if (!simulation_initialise(
system_region, APPLICATION_NAME_HASH,
&timer_period, &simulation_ticks,
&infinite_run, SDP_PRIORITY,
NULL, NULL)) {
log_error("Error in initialisation - exiting!");
rt_error(RTE_SWERR);
1

bool simulation_initialise(
address_t address, uint32_t expected_application_hash,
uint32_t* timer_period, uint32_t *simulation_ticks_pointer,
uint32_t *infinite_run_pointer, int sdp_packet_callback_priority,

prov_callback_t provenance_function, address_t provenance_data_address)
31

Example c code

static uint32_t timer_period, simulation_ticks, infinite_run = 0;
static uint32_t time;
static uint32_t SDP_PRIORITY =1, TIMER_PRIORITY = 2;

void ¢c_main(void) {

/I get address of simulation data
address_t address = data_specification_get_data_address();

/I get the address of the system region
address_t system_region = data_specification_get_region(0, address);

# gets the address of the start of a given data region
address_t data_specification_get_region(uint32_t region, address_t data_address)

30

Example ¢ code

static uint32_t timer_period, simulation_ticks, infinite_run = 0;
static uint32_t time;
static uint32_t SDP_PRIORITY =1, TIMER_PRIORITY = 2;
void ¢_main(void) {

I/ Set timer_callback period

spin1_set_timer_tick(timer_period);

/I Set timer_callback
spin1_callback_on(TIMER_TICK, timer_callback, TIMER_PRIORITY);

Il Set time to UINT32 MAX to wrap around to 0 on the first timestep
time = UINT32_MAX;

simulation_run();

void simulation_run()

32



Example c code Makefile

// Callbacks MAKEFILE_PATH := $(abspath $(lastword $(MAKEFILE_LIST)))

void timer_callback(uint unusedO, uint unused1) { CURRENT_DIR := $(dir $(MAKEFILE_PATH))

// check if the simulation has run to completion
if ((infinite_run != TRUE) && ((time + 1) >= simulation_ticks)) {
simulation_exit();

}

time++;

void simulation_exit()

33 34
MANCHESTER . MANCHESTER H

Makefile e Makefile
MAKEFILE_PATH := $(abspath $(lastword $(MAKEFILE_LIST))) MAKEFILE_PATH := $(abspath $(lastword $(MAKEFILE_LIST)))
CURRENT_DIR := $(dir $(MAKEFILE_PATH)) CURRENT_DIR := $(dir $(MAKEFILE_PATH))
SOURCE_DIR := $(abspath $(CURRENT_DIR)) SOURCE_DIR := $(abspath $(CURRENT_DIR))
SOURCE_DIRS += $(SOURCE_DIR) SOURCE_DIRS += $(SOURCE_DIR)

APP_OUTPUT_DIR := $(abspath $(CURRENT_DIR))/

BUILD_DIR = build/

35 36



Makefile

MAKEFILE_PATH := $(abspath $(lastword $(MAKEFILE_LIST)))
CURRENT_DIR := $(dir $(MAKEFILE_PATH))

SOURCE_DIR := $(abspath $(CURRENT_DIR))
SOURCE_DIRS += $(SOURCE_DIR)

APP_OUTPUT_DIR := $(abspath $(CURRENT_DIR))/

BUILD_DIR = build/

APP = conways

SOURCES = conways.c

37

Summary

39

How to use the GFE interface.

The machine graph supported by the GFE.

Adding vertices, edges and partitions to the machine graph.

Data Specification for the graph.
Binary Specification.

Building and making basic C code.

Makefile

MAKEFILE_PATH := $(abspath $(lastword $(MAKEFILE_LIST)))
CURRENT_DIR := $(dir $(MAKEFILE_PATH))

SOURCE_DIR := $(abspath $(CURRENT_DIR))
SOURCE_DIRS += $(SOURCE_DIR)

APP_OUTPUT_DIR := $(abspath $(CURRENT_DIR))/
BUILD_DIR = build/

APP = conways

SOURCES = conways.c

include $(SPINN_DIRS)/make/Makefile.SpiNNFrontEndCommon

38
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Standard PyNN support (Summary)

e Supports post execution gathering of certain attributes:
o aka transmitted spikes, voltages etc.

SpiNNaker

mo>— @)

import pyNN.spiNNaker as p
p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp, {}, label="pop_1")
input = p.Population(1, p.SpikeSourceArray,
{'spike_times’: [0]}, label="input”)
input_proj = p.Projection(input, p1, p.OneToOneConnector(
weights=5.0, delays=1))
p1.record()
p1.record_v()

Contents

Summaries
e Standard PyNN support summary.

External Device Plugin
e What is it, why we need it?
e Usage caveats.

Input

e Injecting spikes into a executing PyNN script.
Output

e Live streaming of spikes from a PyNN script.
Visualisation

e Live visualisation.

Standard PyNN support (Summary)

e Supports post execution gathering of certain attributes:
o aka transmitted spikes, voltages etc.

SpiNNaker

o>

Memory reads

import pyNN.spiNNaker as p
p.setup(timestep=1.0)
p1 = p.Population(1, p.IF_curr_exp, {}, label="pop_1")
input = p.Population(1, p.SpikeSourceArray,
{'spike_times’: [0]}, label=“input”)
input_proj = p.Projection(input, p1, p.OneToOneConnector(
weights=5.0, delays=1))
p1.record()

p1.record_v()
p.run(5000)

spikes = p1.getSpikes()
v =pl.get v()




Standard PyNN support (Summary) Standard PyNN support (Summary)

e Supports spike sources of: e Supports spike sources of:
o Spike Source Array, Spike source poisson. o Spike Source Array, Spike source poisson.
SpiNNaker SpiNNaker
import pyNN.spiNNaker as p import pyNN.spiNNaker as p
p.setup(timestep=1.0) - e p.setup(timestep=1.0) - Q
p1 = p.Population(1, p.IF_curr_exp, {}, label=“pop_17) p1 = p.Population(1, p.IF_curr_exp, {}, label=“pop_1") -
input = p.Population(1, p.SpikeSourceArray, input = p.Population(1, p.SpikeSourceArray,
{'spike_times’: [0]}, label="input”) {'spike_times’: [0]}, label="input”)

input2 = p.Population(1, p.SpikeSourcePoisson,
{'rate’:100, ‘duration’:50}, label="input2’)

EESTEY Standard PyNN support (Summary) External Device Plugin  ____

. . Why? what?
Restrictions
1. Recorded data is stored on SDRAM on each chip. 1. Contains functionality for PyNN scripts. E
2. Data to be injected has to be known up-front, or rate based. 2. Not official PyNN!!! SPIKES via
3. No support for closed loop execution with external devices. What does it Includes? I spintink nteriace
.

during execution

1. Live injection of events and 2. Live streaming of events 3. External devices support:
commands into SpiNNaker from populations. Covered at 14:00

http://www.conrad.com/ce/en/product/191516/Arexx-RA1-PRO-Metallic-Robot-Arm

7



External Device Plugin Injecting spikes into PyNN scripts

Caveats: PyNN script changes
e Injection and live output currently only usable only with the import pyNN.spiNNaker as p
. SpiNNaker
ef[he.rnet conngctlon, o setup(timestep=1.0)
e Limited bandwidth of: p1 = p.Population(1, p.IF_curr_exp, {}, label="pop_1") -_.Q
o A small number of spikes per millisecond time step, per ethernet, nput = p.Population(1, p-SpikeSourceArray, o
o Shared with both injection and live output, S fsp"fe_"tme?ilo(])}v 'f'fe('; '”gut) t
. . n roj = p.Fr n s , P.ON n nn r
e Best effort communication, et o dgf:;';;;”p” Pl pOneToOneConector
e Has a built in Iatency, # loop(synfire connection)
e Spinnaker commands not supported by other simulators, S— =t ,
.. . . foriin range(0, n_neurons - 1):
e Loss of cores for injection and live output support, loop_forward.append(i, (i + 1) % n_neurons, weight_to_spike, 3))
[ You can only feed a |ive popu|ation to one place_ Frontend.Projection(pop_forward, pop_forward, Frontend.FromListConnector(loop_forward))
9 10

Injecting spikes into PyNN scripts Injecting spikes into PyNN scripts

PyNN script changes: Declaring an injector population PyNN script changes: Setting up python injector
import pyNN.spiNNakerasp .

import spynnaker_external_devices_plugin.pyNN as ExternalDevices SpiNNaker # create python injector SpiNNaker
p.setup(timestep=1.0) def send_spike(label, sender):

p1 = p.Population(1, p.IF_curr_exp, {}, label="pop_1") “ sender.send_spike(label, 0, send_full_keys=True) M
input_injector = p.Population(1, ExternalDevices.Spikelnjector,

{'port’:95768}, label="injector)

input_proj = p.Projection(input_injector, p1, p.OneToOneConnector(
weights=5.0, delays=1))

# loop(synfire connection)

loop_forward = list()

for i in range(0, n_neurons - 1):

loop_forward.append((i, (i + 1) % n_neurons, weight_to_spike, 3)) Python
Frontend.Projection(pop_forward, pop_forward, Frontend.FromListConnector(loop_forward)) injector

11 12




Injecting spikes into PyNN scripts

PyNN script changes: Setting up python injector

# create python injector
def send_spike(label, sender):
sender.send_spike(label, 0, send_full_keys=True)
# import python injector connection
from spynnaker_external_devices_plugin.pyNN.connections.\
spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection

SpiNNaker

Eo-D

Injecting spikes into PyNN scripts

PyNN script changes: Setting up python injector

# create python injector
def send_spike(label, sender):
sender.send_spike(label, 0, send_full_keys=True)
# import python injector connection
from spynnaker_external_devices_plugin.pyNN.connections.\
spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection
# set up python injector connection
live_spikes_connection = SpynnakerLiveSpikesConnection(

receive_labels=None, local_port=19996, send_labels=["spike_sender"])

# register python injector with injector connection
live_spikes_connection.add_start_callback(“spike_sender”, send_spike)
p.run(500)

SpiNNaker

=0

Injecting spikes into PyNN scripts

PyNN script changes: Setting up python injector

# create python injector
def send_spike(label, sender):
sender.send_spike(label, 0, send_full_keys=True)
# import python injector connection
from spynnaker_external_devices_plugin.pyNN.connections.\
spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection
# set up python injector connection
live_spikes_connection = SpynnakerLiveSpikesConnection(
receive_labels=None, local_port=19996, send_labels=["spike_sender”])

SpiNNaker

0

Injecting spikes into PyNN scripts

PyNN script changes: Setting up c injector

# create c injector
void send_spike(str label, SpynnakerLiveSpikeConnection sender){
sender.send_spike(label, 0, send_full_keys=True) }

SpiNNaker

Zo-D
o>




Injecting spikes into PyNN scripts Injecting spikes into PyNN scripts

PyNN script changes: Setting up c injector PyNN script changes: Setting up c injector
# create c injector SpiNNaker # create c injector SpiNNaker
void send_spike(str label, SpynnakerLiveSpikeConnection sender){ void send_spike(str label, SpynnakerLiveSpikeConnection sender){
sender.send_spike(label, 0, send_full_keys=True) } M sender.send_spike(label, 0, send_full_keys=True) }
# import c injector connection # import c injector connection
#include<SpynnakerLiveSpikeConnection.h> #include<SpynnakerLiveSpikeConnection.h>

# set up c injector connection
SpynnakerLiveSpikesConnection live_spikes_connection =

SpynnakerLiveSpikesConnection(

receive_labels=None, local_port=19996, send_labels=["spike_sender’])

Injecting spikes into PyNN scripts Injecting spikes into PyNN scripts

PyNN script changes: Setting up c injector Behaviour with Behaviour with Live
(SpikeSourceArray) injection!

# create c injector SpiNNaker

void send_spike(str label, SpynnakerLiveSpikeConnection sender){

sender.send_spike(label, 0, send_full_keys=True) }
# import c injector connection
#include<SpynnakerLiveSpikeConnection.h>
# set up c injector connection
SpynnakerLiveSpikesConnection live_spikes_connection =

spikes

spikes

spikes

SpynnakerLiveSpikesConnection( b= SAME!N N
receive_labels=None, local_port=19996, send_labels=[“spike_sender” B .-
. . s P ) - Pspike_ D BUT BORING!!! "
# register c injector with injector connection »
live_spikes_connection.add_start_callback(“spike_sender”, send_spike) - o - - . 00 N a0 500




DEMO TIME!!! Injection Live output from PyNN scripts

PyNN script changes: declaring live output population
import pyNN.spiNNaker as p

PYTHON DEMO!!! P setup(timestep=1.0) SpiNNaker

p1 = p.Population(1, p.IF_curr_exp, {}, label="pop_1")

input_proj = p.Projection(input, p1, p.OneToOneConnector(

input = p.Population(1, p.SpikeSourceArray,
— {'spike_times': [0]}, label=“input") -—>e
@ Sj\
|

P\
@4 weights=5.0, delays=1))

A

21 22

Live output from PyNN scripts Live output from PyNN scripts

PyNN script changes: declaring live output population PyNN script changes: python receiver

import pyNN.spiNNaker as p # declare python code when received spikes for a timer tick
p.setup(timestep=1.0) - def receive_spikes(label, time, neuron_ids): -
p1 = p.Population(1, p.IF_curr_exp, {}, label=“pop_1") / SpiNNaker for neuron_id in neuron_ids: / SpiNNaker

input = p.Population(1, p.SpikeSourceArray,
{'spike_times’: [0]}, label="input”)
input_proj = p.Projection(input, p1, p.OneToOneConnector(
weights=5.0, delays=1))
# declare a live output for a given population.
import spynnaker_external_devices_plugin.pyNN as ExternalDevices
ExternalDevices.activate_live_output_for(p1)

print “Received spike at time {} from {}-{}"
format(time, label, neuron_id)

23 24




Live output from PyNN scripts

PyNN script changes: python receiver

# declare python code when received spikes for a timer tick
def receive_spikes(label, time, neuron_ids):
for neuron_id in neuron_ids:
print “Received spike at time {} from {}-{}"
format(time, label, neuron_id)
# import python live spike connection
from spynnaker_external_devices_plugin.pyNN.connections.\
spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection

Live output from PyNN scripts

PyNN script changes: python receiver

# declare python code when received spikes for a timer tick

def receive_spikes(label, time, neuron_ids): /
for neuron_id in neuron_ids:

SpiNNaker

print “Received spike at time {} from {}-{}"
format(time, label, neuron_id)
# import python live spike connection
from spynnaker_external_devices_plugin.pyNN.connections.\
spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection

# set up python live spike connection
live_spikes_connection = SpynnakerLiveSpikesConnection(
receive_labels=["receiver”], local_port=19995, send_labels=None)

25 26

Live output from PyNN scripts Live output from PyNN scripts

PyNN script changes: python receiver

# declare python code when received spikes for a timer tick
def receive_spikes(label, time, neuron_ids): /
for neuron_id in neuron_ids:

PyNN script changes: c receiver

# declare ¢ code when received spikes for a timer tick
void receive_spikes(str label, int time, vector<int> neuron_ids){

SpiNNaker

for (int index =0; index < neuron_ids.size(); index ++) { / SpiNNaker

printf (“Received spike at time %d from %s-%d”,
time, label, neuron_id.next()); } }

print “Received spike at time {} from {}-{}"
format(time, label, neuron_id)
# import python live spike connection
from spynnaker_external_devices_plugin.pyNN.connections.\
spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection
# set up python live spike connection
live_spikes_connection = SpynnakerLiveSpikesConnection(
receive_labels=[“receiver”], local_port=19995, send_labels=None)
# register python receiver with live spike connection
live_spikes_connection.add_receive_callback(“receiver”, receive_spikes)

p.run(500)
27 28




Live output from PyNN scripts

29

PyNN script changes: c receiver

# declare c code when received spikes for a timer tick
void receive_spikes(str label, int time, vector<int> neuron_ids){

for (int index =0; index < neuron_ids.size(); index ++) {
printf (‘Received spike at time %d from %s-%d”",
time, label, neuron_id.next()); } }

# import c live spike connection
# include<SpynnakerLiveSpikesConnection.h>

/

SpiNNaker

Live output from PyNN scripts

31

PyNN script changes: c receiver

# declare ¢ code when received spikes for a timer tick
void receive_spikes(str label, int time, vector<int> neuron_ids){

for (int index =0; index < neuron_ids.size(); index ++) {
printf (“Received spike at time %d from %s-%d”,
time, label, neuron_id.next()); } }

# import c live spike connection
# include<SpynnakerLiveSpikesConnection.h>

# set up c live spike connection
SpynnakerLiveSpikesConnection live_spikes_connection =

SpynnakerLiveSpikesConnection(

receive_labels=[“receiver’], local_port=19995, send_labels=None);
# register c receiver with live spike connection
live_spikes_connection.add_receive_callback(“receiver”, receive_spikes);

/

SpiNNaker

Live output from PyNN scripts

30

DEMO TIME!!! receive live spikes

32

PyNN script changes: c receiver

# declare c code when received spikes for a timer tick
void receive_spikes(str label, int time, vector<int> neuron_ids){

for (int index =0; index < neuron_ids.size(); index ++) {
printf (‘Received spike at time %d from %s-%d”,
time, label, neuron_id.next()); } }

# import c live spike connection
# include<SpynnakerLiveSpikesConnection.h>

# set up c live spike connection
SpynnakerLiveSpikesConnection live_spikes_connection =

SpynnakerLiveSpikesConnection(

receive_labels=[‘receiver’], local_port=19995, send_labels=None);

PYTHON DEMO!I!

/

SpiNNaker




Visualisation Visualisation
-visualiser-) make -f Makefile.linux

)
How current supported visualisations work: et e

-visualiser-) ./vis -colour_map test_data/spikeio_colours

-visualiser-)
|nput parameters: awaiting tool chain hand shake to say database is ready

e -colour_map

1. Uses the live output functionality as discussed previously.

2. Uses the c based receiver and is planned to be open ° ::;gé;feglioﬁgﬂzmmg the population labels to receive, and their
source for users to augment with their own special visuals. e -hand_shake_ port
o optional port which the visualiser will listen to for database hand shaking
3. Currently contains raster plot support. e -database

o optional file path to where the database is located, if needed for manual
configuration

e -remote_host
33 34 o optional remote host, which will allow port triggering

Visualisation DEMO TIME!!! visualiser and
injection of spikes

Before run After run
A Raster Plot SRR A
Raster Plot Raster Plot
PYTHON DEMO!!!!
pop_boskuerd poo,_barkoird - _mm—
. = = e
\ Y e W=,
s/ ___/7 b 4 4/\
[ I=’
\ | -
pop_forward o foriad ‘.\\ /
o - __/_/
[ 80000 0 80000
Stdlon; Tene' (rs) Simuiction Tirme (ms)
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Injecting spikes into PyNN scripts

PyNN script changes:
registering a system to the notification protocol

Technical Detail!!!

Notification protocol under the hood!

e Everything so far uses the
notification protocol.

e [t supplies data to translate spikes
into population ids.

e [f you have more than 1 system
running to inject and/or receive,
then you need to register this with
the notification protocol.

SpiNNaker
5, Sends executables, # register socket addresses for each system

starts simulation p.register_database_notification_request(

hostname="local_host”

notify_port=19990,
1. Writes Database

ack_port=19992)
| Database

p.register_database_notification_request(
3. Reads

sjayoed

hostname="local_host”

notify_port=19993,

ack_port=19987)
p.register_database_notification_request(

hostname="local_host”

notify_port=19760,

ack_port=19232)

Database

2. send EIEIO command message
saying database ready to read

Visualiser

6. Sends EIEIO Data packets which

contain live spikes
anlaoal o} Apeal Jasiensia Buies
abessalu puewWod Q3|3 puss ‘v

37 38

Thanks for listening

Any questions?!

39
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W Numerical calculation on SpiNNaker

+ No floating point hardware on SpiNNaker

+ Software floating point available but too slow for most use cases (and larger binaries)

+ Until recently, has needed hand-coded fixed point types and manipulations

+ This approach not transparent so can be prone to maintenance issues & mysterious bugs
+ More difficult than necessary for developers to translate algorithms into source code

+ SO draft 18037 for fixed point types and operations seen as a good solution

WS Overview

1. Numerical calculation on SpiNNaker
2. ISO/IEC 18037 types and operations
3. Asimple example

4. Some practical considerations

5. Libraries currently available

6. An example using the libraries

7. Using fixed-point to solve ODEs

8. Future directions

M e |ISO 18037 types and operations

1824

+ Draft standard for native fixed point types & operations used like integer or floating point
+ Currently only available on GNU toolchain >= 4.7 and ARM target architecture

+ 8-, 16-, 32 and 64-bit precisions all available in (un-)saturated and (un-)signed versions
+ accum type is 32-bit 'general purpose real'; we support io_printf() with s16.15 & u16.16

+ fract type is 16-bit in [0,1]; we support io_printf() with s0.15 & u0.16

Operations supported are:

* prefix and postfix increment and decrement operators (++, --)

* unary arithmetic operators (+, -, !)

* binary arithmetic operators (+, -, *, /)

* binary shift operators (<<, >>)

* relational operators (<, <=, >=, >)

* equality operators (==, !=)

* assignment operators (+=, -=, *=, /=, <<=, >>=)

* conversions to and from integer, floating-point, or fixed-point types




A simple example

#include <stdfix.h>

#define REAL accum
#define REAL_CONST( x ) x##k

REAL a, b, ¢ = REAL_CONST( 100.001 );
accum d = REAL_CONST( 85.08765 );

int c_main( void )
{
for ( unsigned int i = 0; 1 < 50; i++ ) {
a =1 * REAL_CONST( 5.7 );

b =a - 1i;

if(a>d) c
else c -

+ bj

= a
= b;
io_printf( IO_STD,

"\n i %u a =%9.3k b =%9.3k c = %9.3k", i, a, b, c
}

return 0;

Libraries currently available - 1

1) random.h — suite of pseudo random number generators by MWH

Provides three high quality uniform generators of uint32_t values; Marsaglia's KISS 32
and KISS 64 and L'Ecuyer's WELL1024a.

# All three 'pass' the very stringent DIEHARD, dieharder and TestUO01 test suites
+ Trade-offs between speed, cycle length and equi-distributional properties

+ Available in both simple-to-use form and with full user control over seeds

Have used these Uniform PRNGs as the basis for a set of Non-Uniform PRNGs
including currently the following distributions:

+ Gaussian

+ Poisson (optimised for small rates at the moment)

# Exponential

...with more on the way. Let us know your requirements and we will try to help.

)i

Some practical considerations

+ Range & precision e.g. for accum (s16.15) must have 0.000031 <= | x | <= 65536

+ Still need to avoid divides in loops as these are slow on ARM architecture

+ saturated types safe from overflow but significantly slower

+ Need to remember that numerical precision is absolute rather than relative

+ Literal constants require type suffix — simplest way is via macro REAL_CONST()

+ Don't forget to #include <stdfix.h>

+ Disciplined use of REAL and REAL_CONST() macros can parameterise entire code base

+ Be careful to use the correct type suffix otherwise floating-point will be assumed

Libraries currently available - 2

2) stdfix-full-iso.h & stdfix-math.h —1SO & transcendental functions by DRL
Fill in the gaps in the GCC implementation of the ISO draft fixed point maths standard

and some extensions:
+ Standardised type conversions between fixed point representations
+ Utility functions for all types i.e. abs(x), min(x), max(x), round(x), countls(x)

+ Mechanism for automatically inferring the right argument type (uses GNU extension)

Fixed point replacements for essential floating point /ibm functions i.e. expk(x), sqrtk(x),
logk(x), sink(x), cosk(x) and others such as atank(x), powk(x,y), 1/x on the way

# Hand-optimised for speed and accuracy on ARM architecture

+ 10-30x faster than libm calls, hence feasible for use inside loops if necessary



WA An example using the libraries

WSS Using fixed-point to solve ODEs - 1

accum a, b, ¢, d;

uint32_t rl; . . . . . . .

unsigned fract  ufl; + Simulating neuron models usually means solving Ordinary Differential Equations (ODEs)
init_WELL1024a_simp(); // need to initialise WELL1024a RNG before use

+ This ranges from very easy (current input LIF has simple closed-form) solution to very
for ( unsigned int i = 0; i < 22; i++ ) { . . . . . . .
challenging i.e. Hodgkin-Huxley with 4 state variables, nonlinear and very 'stiff ODE

rl = WELL1024a_simp(); // draw from Uniform RNG

ufl = (unsigned fract) ulrbits( rl ); // convert to unsigned fract + Numerical calculations are required with a balance between accuracy & efficiency
// draw from Std Gaussian distribution using MARS64

a = gaussian dist _variate( mars kiss64_simp, NULL ); + With care and attention to detail, fixed-point can be used to get very close to floating-point
/7 some calculations on a and then log() results. However, models with more complex behaviour are a significant challenge

b = logk( absk( a * REAL_CONST( 100.0 ) ) );

// sqrt () of value drawn from Exponential distribution using WELL1024a > oy . . . .
C — sqrtk( exponential dist_variate( WELL1024a_simp, NULL ) ); A new approach called Explicit Solver Reduction (ESR) makes this easier in many cases
) ) and is described in: Hopkins & Furber (2015), “Accuracy and Efficiency in Fixed-Point Neural
d = expk( (accum) (i - 10 ) ); // exp() from -10 to 11

ODE Solvers”, Neural Computation 27, 1-35

io_printf( IO_STD, "\n i %4u
ufl=[Uniform{*}]= %8.6R a=[Gauss{*}]= %7.3k b=[1ln(abs (100 a))]l= %7.3k
(

- ial{*})]= %7. - i-10)]= %10.3k ", i, ufl, &, b, ¢, d ); oy e s ; ;
c=[sqrt (Exponential {*})] 3k d=lexp(i~10)]= %10.3k *, 1, ufl, a, b, e, d ) + Good results found for Izhikevich neuron at real-time simulation speed & 1 ms time step

WSS Using fixed-point to solve ODEs - 2 RWNOEIENSN Future directions

1824

/*
ESR algebraic reduction of the combination of Izhikevich neuron model and
Runge—-Kutta 2" order midpoint method. Hand-optimised interim variables and

arithmetic ordering for balance between speed and accuracy. See Neural Computation ¥ Opt|m|3e operations on dlffermg ﬁxed point types |e accum * /Ong fl’aCt
paper for more details.
*/ . . .
static inline void _rk2_kernel _midpoint ( REAL h, neuron_pointer_t neuron, *Add to stdflx-math (eg new argument types and SpeCIal fUnCtlonS)
REAL input_this_timestep ) {
// to match Mathematica names # Add to random (e.g. longer cycle uniform PRNG and more non-uniform distributions)

REAL lastVl = neuron->V;

REAL lastUl = neuron—->U; . . . .. . . .

REAL a = neuron->A; + New libraries such as probability distributions to allow Bayesian inference tools
REAL b = neuron—->B;

. . .

// generate common interim varisbles io_printf() to be extended to more types such as long fract, unsigned long fract

REAL pre_alph = REAL_CONST (140.0) + input_this_timestep - lastUl; . . . . .

REAL alpha = pre_alph + Linear Algebra operations such as matrix multiply, SVD and other decompositions

+ ( REAL_CONST (5.0) + REAL_CONST (0.0400) * lastVl ) * lastVl;

=1 1 h * alpha ); ; ; ; ; ; ;

REAL eta = lastVl + REAL HALF( alpha ) + SpiNNaker architecture potentially good choice for massively parallel algorithms e.g. MCMC

// could be represented as a long fract but need efficient mixed-arithmetic functions

REAL beta = REAL_HALF( h * ( b * lastVl - lastUl ) * a );

// update neuron state
neuron->V += h * ( pre_alph - beta

+ ( REAL_CONST (5.0) + REAL_CONST (0.0400) * eta ) * eta );

neuron->U += a * h * ( -lastUl - beta + b * eta );




MANCHESTER N CLHIE ST AR Required code separation

Adding New Neuron Models

= Any new neuron model requires both C and Python code

.
']

* o o opn
-
»

= C code makes the actual executable (on SpiNNaker), Python

a®t ' - “ / ". code configures the setup and load phases (on the host)
. . .:“ = These are separate but must be perfectly coordinated
Andrew Rowley, Michael Hopkins = In almost all cases, the C code will be solving an ODE which
SpiNNaker Workshop, September 2016 describes how the neuron state evolves over time and in
- S— , response to input
vy EPSRC SpiNNaker P P
Human Brain Project /4‘
Required code separation C Data Structures and Parameters

The parameters and state of a neuron at any point in time need to be stored

L]

Network Description PACMAN Binary Image SpiNNaker System

in memory

r[ SDRAM ]w r[ SDRAM |

s For each neuron, the C header defines the ordering and size of each stored
spnﬁ:::t:b':::' value
Synaptic [ Router ] [ Router ]

weights

/

Chip 1 Chip 2

\‘{ SDRAM ] (__spram ]

SpiNNaker System|
Description

The C types can be standard integer and floating-point, or ISO draft

1]

— // standard fixed-point, as required (see later talk Maths & fixed-point libraries)
model code
Routing tables . .
E gD | | gD = There is also one global data structure which services all neurons on a core
Chip3 Chip 4

A ) ) So here is an example using the Izhikevich neuron...
We will first describe the C requirements...



BN Specific neuron model — data structure

#include “neuron-model.h”
// Izhikevic neuron data structure defined in neuron_model_izh_curr_impl.h

typedef struct neuron_t {

// 'fixed' parameters - abstract units
REAL  A;
REAL B;
REAL C;
REAL  D;

// variable-state parameters
REAL v; // nominally in [mV]
REAL U;

// offset current [nA]
REAL I_offset;

// private variable used internally in C code
REAL this_h;

} neuron_t;

Implementing the state update

@ Neuron models are typically described as systems of initial value ODEs

L]

At each time step, the internal state of each neuron needs to be updated in response to
inherent dynamics and synaptic input

@ There are many ways to achieve this; there will usually be a 'best approach’ (in terms of
balance between accuracy & efficiency) for each neuron model

1]

A recently published paper gives a lot more detail: Hopkins & Furber (2015), “Accuracy
and Efficiency in Fixed-Point Neural ODE Solvers” , Neural Computation 27, 1-35

L]

The key function will always be neuron_model_state update(); the other functions are
mainly to support this and allow debugging etc.

Continuing the example by describing the key interfaces...

MANCHESgER Global data structure

/*
Global data structure defined in neuron_model_izh_curr_impl.h

*/
typedef struct global_neuron_params_t {

// Machine time step in milliseconds
REAL machine_timestep_ms;

} global_neuron_params_t;

WY Neuron model API

// pointer to a neuron data type - used in all access operations
typedef struct neuron_t* neuron_pointer_t;

// set the global neuron parameters

void neuron_model_set_global_neuron_params ( global_neuron_params_pointer_t params );

// key function in timer loop that updates neuron state and returns membrane voltage
state_t neuron_model_state_update (
input_t exc_input, input_t inh_input, input_t external_bias,
neuron_pointer_t neuron );

// return membrane voltage (= first state variable) for a given neuron
state_t neuron_model_get_membrane_voltage( restrict neuron_pointer_t neuron );

// update the neuron structure to take account of a spike
void neuron_model_has_spiked( neuron_pointer_t neuron );

// print out neuron definition and/or state variables (for debug)
void neuron_model_print_parameters( restrict neuron_pointer_t neuron );
void neuron_model_print_state_variables( restrict neuron_pointer_t neuron );



Specific neuron model - key functions

MAN CHESTER

/* simplified version of Izhikevic neuron code defined in neuron_model_izh_curr_impl.c

// key function in timer loop that updates neuron state and returns membrane voltage
state_t neuron_model_state_update (
input_t exc_input, input_t inh_input, input_t external_bias,
neuron_pointer_t neuron ) {

// collect inputs
input_t input_this_timestep =
exc_input - inh_input + external_bias + neuron->I_offset;

// most balanced ESR update found so far
_rk2_kernel_midpoint ( neuron->this_h, neuron, input_this_timestep );
neuron->this_h = global_params->machine_timestep_ms;

// return the value of the membrane voltage
return neuron->V;

// make the discrete changes to state after a spike has occurred

void neuron_model_has_spiked( neuron_pointer_t neuron ) {
neuron—->V = neuron—->C;
neuron—->U += neuron—->D;

// reset membrane voltage
// offset 2nd state variable

MANCHESTER
1824

Makefile

APP = my_model_curr_exp

# This is the folder where things will be built (this will be created)
BUILD_DIR = build/

# This is the neuron model implementation
NEURON_MODEL = $(EXTRA_SRC_DIR) /neuron/models/my_neuron_model_impl.c

# This is the header of the neuron model, containing the definition of neuron_t
NEURON_MODEL_H = $ (EXTRA_SRC_DIR) /neuron/models/neuron_model_my_model_curr_exp.h

# This is the header containing the input type (current in this case)
INPUT_TYPE_H = $(SOURCE_DIR)/neuron/input_types/input_type_current.h

# This is the header containing the threshold type (static in this case)
THRESHOLD_TYPE_TYPE_H = $ (SOURCE_DIR) /neuron/threshold_types/threshold_type_static.h

# This is the header containing the synapse shaping type (exponential in this case)
SYNAPSE_TYPE_H = $ (SOURCE_DIR) /neuron/synapse_types/synapse_types_exponential_impl.h

# This is the synapse dynamics type (in this case static i.e. no synapse dynamics)
SYNAPSE_DYNAMICS = $(SOURCE_DIR)/neuron/plasticity/synapse_dynamics_static_impl.c

# This includes the common Makefile that hides away the details of the build
include ../Makefile.common

11

*/

1824

Interface

// Pointer to threshold data type - used to access all operations
typedef struct threshold_type_t;

// Main interface function - determine if the value is above the threshold
static inline bool threshold_type_is_above_threshold (
state_t value, threshold_type_pointer_t threshold_type );

Static Threshold Implementation

typedef struct threshold_type_t {

// The value of the static threshold
REAL threshold_value;

} threshold_type_t;
static inline bool threshold_type_is_above_threshold (
state_t value, threshold_type_pointer_t threshold_type ) {

return REAL_COMPARE ( value, >=, threshold_type*threshold_value );

7

MANCHESTER
1824

Python Interface — Why?

PACMAN

sPyNNaker

\.

DataSpecification

7

WRWOSIBNWSN Threshold Models - Interface and Implementation

12
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Python Interface

from spynnaker.pyNN.models.neuron.neuron_models.abstract_neuron_model \
import AbstractNeuronModel

class NeuronModelIzh (AbstractNeuronModel) :
def __init__ (self, n_neurons, a, b, ¢, d, v_init, u_init, i_offset):
AbstractNeuronModel._ _init__ (self)
self._n_neurons = n_neurons

Python Interface — initializer

from spynnaker.pyNN.models.neuron.neuron_models.abstract_neuron_model \
import AbstractNeuronModel

class NeuronModelIzh (AbstractNeuronModel) :

def __init__ (self, n_neurons, a, b, ¢, d, v_init, u_init, i_offset):
AbstractNeuronModel._ init__ (self)
self._n_neurons = n_neurons
self._a = utility_calls.convert_param_to_numpy (a, n_neurons)
self._b = utility_calls.convert_param_to_numpy (b, n_neurons)
self._c = utility_calls.convert_param_to_numpy (c, n_neurons)

self._d = utility_calls.convert_param_to_numpy (d, n_neurons)

self._v_init = utility_calls.convert_param_to_numpy (v_init, n_neurons)
self._u_init = utility_calls.convert_param_to_numpy (u_init, n_neurons)
self._i_offset = utility_calls.convert_param_to_numpy (

i_offset, n_neurons)

13

15

MANCHESTER

1824 Python Interface - Parameters

« Parameters can be:

Individual values
Array of values (one per neuron)
RandombDistribution

« Normalise Parameters

MANCHESTER
1824

utility _calls.convert_param_to_numpy(
param, n_neurons)

14

Python Interface — properties

class NeuronModelIzh (AbstractNeuronModel) :

def

def

def

def

a(self):
return self._a

a(self, a):
self._a = utility_calls.convert_param_to_numpy (a, self.n_atoms)

b(self):
return self._b

b(self, b):
self._b = utility_calls.convert_param_to_numpy (b, self.n_atoms)

16



ML Python Interface — state initializers

class NeuronModelIzh (AbstractNeuronModel) :
def initialize_v(self, v_init):
self._v_init = utility_calls.convert_param_to_numpy (v_init, self.n_atoms)

def initialize_u(self, u_init):
self._u_init = utility_calls.convert_param_to_numpy (u_init, self.n_atoms)

17
MANCHESTER
tzam Python Interface — global params
class NeuronModelIzh (AbstractNeuronModel) :
def get_n_global_ parameters (self) :
return 1
@inject_items ({" \ine . step": "Macl 5 .Step"})
def get_global parameters (self, machine_time_step) :
return [
NeuronParameter (machine_time_step / 1000.0, DataType.S1615)
]
19

MANCHESTER
124 Python Interface — parameters

class NeuronModelIzh (AbstractNeuronModel) :

def get_n_neural_parameters (self):
Return 8

def get_parameters (self):

return [

# REAL a

NeuronParameter (self._a, DataType.S1615),
# REAL b

NeuronParameter (self._b, DataType.S1615),
# REAL c

NeuronParameter (self._c, DataType.S1615),
# REAL d

NeuronParameter (self._d, DataType.S1615),
# REAL v

NeuronParameter (self._v_init, DataType.S1615),
# REAL u

NeuronParameter (self._u_init, DataType.S1615),

# REAL I_offset

NeuronParameter (self._i_offset, DataType.S1615),

# REAL this_h

NeuronParameter (self._machine_time_step / 1000.0, DataType.S1615)

18

Python Interface - Injection

@inject_items ({"machine_time_step": "MachineTimeStep"})
def get_global_parameters (self, machine_time_step):

« Some items can be “injected” from the interface

- Specify a dictionary of parameter name to “type” to
inject
- Parameter is in addition to the interface
« Common types include:
- MachineTimeStep
- TimeScaleFactor
- TotalRunTime

20
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Python Interface — CPU

class NeuronModelIzh (AbstractNeuronModel) :
def get_n_cpu_cycles_per_neuron (self) :

# A bit of a guess
return 150

MANCHESTER
1824

class ThresholdTypeStatic (AbstractThresholdType) :

wnw

nun

@prope

def v_thresh(self):
return self._v_thresh

def v_thresh(self, v_thresh):
self._v_thresh =
v_thresh,

utility_calls.convert_param_to_numpy (
self._n_neurons)

Python Interface — Threshold type

MANCHESTER
1824

usage

Python Interface — Threshold type

class ThresholdTypeStatic (AbstractThresholdType) :

wn e +

nun

def __init__ (self,
AbstractThresho
self._n_neurons
self._v_thresh
v_thresh,

21

MANCHESTER
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class ThresholdTypeStat

o a .

nun

n_neurons, v_thresh):
1dType.__init__ (self)

n_neurons
= utility_calls.convert_param_to_numpy (

n_neurons)

22

Python Interface — Threshold type

ic(AbstractThresholdType) :

def get_n_threshold_parameters(self):

return 1
def get_threshold_p:
return [
NeuronParam
def get_n_cpu_cycle

# Just a compar
return 2

23

arameters (self) :

eter (self._v_thresh, DataType.S1615)

s_per_neuron (self) :

ison, but 2 just in case!

24



MANCHESTER Python Build M 8 Python Build — Class Definition

from spynnaker.pyNN.models.abstract_models.abstract_population_vertex import \
AbstractPopulationVertex

Build class IzkCurrExp (AbstractPopulationVertex) :

Neuron Model ] Input Type Synapse Type Threshold Type

25 26

Python Build Python Build — initializer

class IzkCurrExp (AbstractPopulationVertex): class IzkCurrExp (AbstractPopulationVertex):

_model_based_max_atoms_per_core = 255 def __init__ (

default_parameters = { self, n_neurons, spikes_per_second=None, ring_buffer_ sigma=None,

s 0,02 R 65.0 hrs 0.2 s 2.0 , o incoming_spike_buffer_size=None, constraints=None, label=None,
: 0.02, : -65.0, 'b': 0.2, 'd': 2.0, offset': 0,

- a=default_parameters|['a’'], b=default_parameters['H'],
e £rs ml4.0, fvdndtty 2700, ttausyn B 5.0, ftausyn L' 5.0} c=default_parameters[’'c’'], d=default_parameters['d’'],
i_offset=default_parameters|['i offset'],
u_init=default_parameters[ 'u_ £,
v_init=default_parameters['v_ £,

tau_syn_E=default_parameters|['tau syn E']
tau_syn_I=default_parameters|[ !

neuron_model = NeuronModelIzh (
n_neurons, a, b, c¢, d, v_init, u_init, i_offset)
synapse_type = SynapseTypeExponential (
n_neurons, tau_syn_E, tau_syn_TI)
input_type = InputTypeCurrent ()
threshold_type = ThresholdTypeStatic (n_neurons, _IZK_THRESHOLD)

AbstractPopulationVertex.__init__ (

self, n_neurons=n_neurons, binary="IZK curr exp.aplx", label=label,
max_atoms_per_core=IzkCurrExp._model_based_max_atoms_per_core,
spikes_per_second=spikes_per_second,
ring_buffer_sigma=ring_buffer_sigma,
incoming_spike_buffer_size=incoming_spike_buffer_size,

27 model_name="I17ZK curr_ exp'", neuron_model=neuron_model, 28
input_type=input_type, synapse_type=synapse_type,
threshold_type=threshold_type, constraints=constraints)
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Python Build — max atoms

class IzkCurrExp (AbstractPopulationVertex) :

def set_model_max_atoms_per_core (new_value) :
IzhikevichCurrentExponentialPopulation.\
_model_based_max_atoms_per_core = new_value

def get_max_atoms_per_core () :
return IzkCurrExp._model_based_max_atoms_per_core

MANCHESTER
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Using Your Model

import pyNN.spiNNaker as p
import python_models as new_models

my_model_pop = p.Population (
1, new_models.MyModelCurrExp,

{"my_parameter": 2.0,
"i_offset": i_offset},
label="my_model_pop")

29

31

~ [ c_models

~ [ src
~ [ neuron
~ [ additional_inputs
[ my_additional_inputh
~ [ builds
~ 5 my_model_curr_exp
= build
& Makefile
L my_model_curr_exp_my_additional_input
% my_model_curr_exp_my_threshold
5 my_model_curr_exp_stdp_mad_my_timing_my_weight
% my_model_curr_my_synapse_type
= Makefile.common
~ [ models
[ my_neuron_model_impl.c
[# my_neuron_model_impl.h
= plasticity
~ [ synapse_types
[ synapse_types_my_impl.h
~ [ threshold_types
[# my_threshold_type.h
o Makefile
= Makefile.common
& Makefile

New Model Template

~ H} examples
[ _init_py
[} my_example.py
~ H} python_models
Hi connectors
H model_binaries
~ i neuron
~ H} additional_inputs
[ _init_py
[ my_additional_input.py
~ i builds
B _init_.py
[} my_model_curr_exp_my_additional_input.py
[ my_model_curr_exp_my_threshold.py
[ my_model_curr_exp.py
[E) my_model_curr_my_synapse_type.py
~ 3 neuron_models
6] _init__.py
[ my_neuron_model.py
~ H} plasticity
i stdp
[ _init_py
~ H synapse_types
[ _init_py
&5 my_synapse_type.py
~ Hj threshold_types
[ _init_py
[ my_threshold_type.py 30
[ _init_py
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How to connect devices to a
spiNNaker board

Human Brain Project

Connect the device to the SpiNNaker link connector

= - LD I'G"‘.'.

SpOmnibot
(Retinas & Motors) FPGA connector

connecting to a
spinn-5 Board

connecting to a
spinn-3 Board

A Retina A Osaka retina A Cochlea



FPGA Programming Using an external device:
Calls from PYNN

import pynn.spinnaker as p

p.setup( timestep=1.0,
min_delay = 1.0,
max_delay = 32.0)

FPGA’S

1. The FPGA'’s need
repogramming to
support external
device plugin.

# set up populations
pop = p.Population(
1, p.IfCurExp, {} label="pop1))

2. This reprogramming
is not done by the

# set populations to record spikes
tools to date. pop P

pop.record()

gt PR T =353 °% # run the simulation for 10000 ms
T e IR et [ p.run(10000)

5

Using an external device: Which SpiNNaker Link is which?
Calls from PYNN

SpiNNakerLinklD =0
import pynn.spinnaker as p /
p.setup( timestep=1.0,
min_delay = 1.0,
max_delay = 32.0)

das_‘m‘awo!
E£-NN1dS RS

By

# set up populations
pop = p.Population(
1, p.ExternalDevice, {
‘spinnaker_link’:0,
‘board_address’:None OR 192.168.0.253,} label="pop1))

# set populations to record spikes
pop.record()  External devices cant be recorded

# run the simulation for 10000 ms
p.run(10000)

SpiNNakerLinkID =0 SpiNNakerLinkID = 1



How this works in detail

1.

Every Spinnaker link is defined as a link to a virtual chip
2. Your device vertex is then placed within this virtual chip.

Y

Virtual chip | . . o .
XY < chip 0, 0 < > chip 1, 0

9

Board Address?

@ 192.168.0.1

O 192.168.0.3

@ 192.168.0.5

When set to None
(default behaviour)

Virtual chip
X, Y

Why does it matter?

1. Routing won't work if mixed up

External
Device 2

1

vV ——
chip 0, 1 - chip1, 1
i / yy
Y
Device chip 0, 0 > chip1,0
| A A

SATA Link connected devices!

_<

torus
SATA
links

People who have devices Sl

1. Bernabe
Linares-Barranco

2. Jorg Conradt




How to represent this in your PyNN
scripts.

p.Population(2000, external_devices.ArbitraryFPGADevice,
{
‘fpga_link_id": 12,
'‘fpga_id": 1,
‘board_address’: None OR 192.168.0.1
}1

label="External sata thing')

13

What the input parameters mean?

F2-L00F2-L0T F2-102 F2-L03 F2-L04 F2-105 F2-L06 F2-L07
|
45 2 9 ® 2 1 o2 1 @ 2 1

Fi-L15—3 4,7 0—3 5,7 0—3 6,7 0|—{37,7 0| F2-Lo8
4 4 4

F1-L14
| F2-L09

“w 2 1 25 1 2 1 27 1 28 1
F1-L13=—3 3,6 03 4,6 0[——{3 5,6 013 6,6 0[~—37,6 O F2-L10
4 5 45 4 5 4 5 45

F1-L12
| F2-L11
- 2.1 12 1" 2 1 | w2 A ™ 2.1
Fi-L11—32,5 0—3 3,5 0——34.5 0—3 5,5 0—36,5 0——{37,5 0| F2-Li2

4 4 4 4 4 4

F1-L10
| F2-L13

2 2 1 23 1 0 1 3 1 a 1 " 1 0 1
Fi-Los —3 1,4 0—32,4 0—133,4 0——34,4 0—35,4 0——36,4 0—37,4 0 F2-L14
4 4 a4 4 4 4
F1-L08
1 F2-L15
w2 1 2 1 L] 1 2 1 1 1 5 1 15 1 EY 1
F1-Lo7 —3 0,3 0—31,3 0—{32,3 0[—{33,3 0—134,3 03 5,3 013 6,3 0—{37,3 O Fo-Loo
4 5 45 4 5 4 5 4 5 4 5 4 5 4 5
T
Fi-Los FO-LO1
w21 221 821 721 £ 21 w2 1 2.2 1
Fi-Los —{3 0,2 0—31,2 0—32,2 0332 0342 0—3 52 0—36,2 0| Fo-Loz
4 4 4 4 4 4 4 5
F1-L04 I
FO-L03
) 1 = 2 1 19 1 w2 1 72 1 = 1
Fi-L03 —3 0,1 0—31,1 0}—{32,1 0}—33,1 0}—{34,1 03 5,1 O} Fo-Los
4 5 4 5 4 5 4 5 4 5 4 5
F1-L02 I
FO-LOS
a2 1 7 2 1 s 2 1 21 w2 1
F1-Lo1 —3 0,0 0—{3 1,0 0—{32,0 0}—3 3,0 0|—{3 4,0 O Fo-Los
4 5 4 5 4 5 4 5 4 5

15 F1-L0D FO-L15 FO-L14 FO-L13 FO-L12 FO-L11 F0-L10 FO-L09 FO-L08 FO-L07

How do FPGA’s work in
Multi-board machines?

=
o =

== FPGAO

=
o

== FPGA1

== FPGA?Z2

O R N W P~ U1 OO N 0O
O R N W D U1 OO N 0 O

What the input parameters mean?
riLus - I I I
m 2 1 20 2 1 s 2 1
@L{IB—3U,1E 31,10 3210
4 5 4 5 4 5
@Lﬂi
| 2 1 w2 1 ¥ 2 1
@LU'I—EL']’DEI 31,00—32,0 0
4 5 4 5 4 5
Fro@is@ @@ @@
FPGA_|D=O



What the input parameters mean? Board Address again

rl—w’ I I I
w2 1 w 2 1 m 2 1
192.168.0.1
r1{09)—30,1 0—31,1 0|—32,1 0 ®
- S - & 4 5 @ 192.168.0.3
F1
A 2 1 7 2 1 w 2 1 . 192.168.0.5
F1—zu,u 0}—3 1,00—{32,0 o}—
4 5 4

5 4 5
F1{Lo0 FD—|€5>CDFD-@F“— “@ Fo-| ngeanufte;etﬁ:\l’?::r)
FPGA__link_ID = O
17

What you need to do to get SATA Summary
links working for your device.

1. Discussed External devices plugged in through the

SpiNNaker Link.
1. Reprogram the FPGA’s to support the communication
between device and PyNN related models. 2. Discussed External devices plugged in through the FPGA /
SATA connector.
2. The reprogramming needs to result in a disconnected
edge between two chips who’s communication is done 3. Discussed How the FPGA's interact in the communication
through the FPGA. fabric.

3. Extend or use the ArbitaryFPGADevice vertex to represent
any extra constraints you need.
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Adding new models of synaptic plasticity

e Introduction to spike-timing dependent plasticity
G e Simulating STDP
PR e Limitations of pair-based STDP
R e S e Triplet STDP
Nl e X e SpiNNaker implementation
Jamie Knight
SpiNNaker Workshop
September 2016
',n? m SpiNNafr
Human Brain Project 2
Introduction to spike-timing Simulating STDP - Traces
dependent plaSthlty Pre- synaptic trace Post-synaptic trace
1. 1y, Ui -
“Cells that fire together, wire together” : ;tj - =+ Z o(t — ff (Til — Yy Z o(t — 1‘{)
C v dt Ty
pre 51
Xw’] | Ve At pre-synaptic spike time At post-synaptic spike time
i | tftf tftf

7 i

17 §c Tj“/) =1 + T'(ff)ei p

awg o X rj(ty)e e yz:(t):1+yi(t.{)€ i
wij --A—Jéb
0 o ——2-05g omnoﬂa
—40

Pre
before post tf | I

Morrison, A., Diesmann, M., & Gerstner, W. (2008). Phenomenological models of synaptic plasticity based

3 http://www.scholarpedia.org/article/Spike-timing_dependent_plasticity 4 on spike timing. Biological Cybemnetics, 98, 459-478.



Simulating STDP - Weight update

Pre-synaptic weight update Post-synaptic weight update

Aw;; = Ff(ur,-j)yl-(tf) Au:jj'. = F+(wl-j):1:j(t{)

J

wo JL—"1 1 —

Limitations of pair-based STDP

1.0~ - T T T T
- - Pair rule (anti-causal)
0.8l — Pair rule (causal)
F -[ Experimental data (anti-causal) -
0.6l F Experimental data (causal) e -

706 !

0 10 20 30 40 50
Frequency [Hz]

Sjostrom, P. J., Turrigiano, G. G., & Nelson, S. B. (2001). Rate, timing, and cooperativity jointly determine
7 cortical synaptic plasticity. Neuron, 32(6), 1149-64.

Limitations of pair-based STDP

5 - Probability of connection p=11.6%
£ 218
24
i
e
o >
=
G o
@ 2
@ 3312
c 1
>
o
© 0

® ® &6 >0 00

Song, S., Sjostrom, P. J., Reigl, M., Nelson, S., & Chklovskii, D. B. (2005). Highly nonrandom features of
6 synaptic connectivity in local cortical circuits. PLoS Biology, 3(3), 0507-0519.

Triplet STDP

Slow post-synaptic trace Post-synaptic weight update

t—tf

i) = (1+93t)) e T Al = Fewy)a; (t)y2(])

v —4

Pfister, J. P., & Gerstner, W. (2006). Triplets of spikes in a model of spike timing-dependent plasticity. The

8 Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 26(38), 9673-82.



SpiNNaker - Pair traces

timing_pair_impl.h
line 7

typedef intl6_t post_trace_t;

timing_pair_impl.h
lines 46-49

static inline post_trace_t timing_get initial_post_trace()

{
}

return 0;

9

SpiNNaker - Pair trace update

timing_pair_impl.h , 2{
lines 54-66 yi(t) = 14 y;(t))e

// Get time since last spike
uint32_t delta_time = time - last_time;

// Decay previous trace (y)
int32_t new_y = STDP_FIXED_MUL_16X16(last_trace,
DECAY_TAU_Y(delta_time));

// Add energy caused by new spike to trace
new_y += STDP_FIXED_POINT_ONE;

log debug("\tdelta_time=%d, y=%d\n", delta_time, new_y);

// Return new trace_value
return (post_trace_t)new_y;

SpiNNaker - Triplet traces

timing_triplet_impl.h
line 7

typedef struct post_trace_t

{
intle_t y1;
intle_t y2;

} post_trace_t;

timing_triplet_impl.h
lines 46-49

static inline post_trace_t timing_get_initial_post_trace()

{
}

return (post_trace_t){.yl = 0, .y2 = 0};

10

SpiNNaker - Triplet trace update

tftf

RN

vi) = (1+03@)) e 7

// Y2 is sampled in timing_apply_post_spike BEFORE the spike
// Therefore, if this is the first spike, y2 must be zero
int32_t new_y2;

if(last_time == 0)

{

}
// Otherwise, add energy of spike to last value and decay

else

{

timing_triplet_impl.h
lines 77-87

new_y2 = 0;

new_y2 = STDP_FIXED MUL_16X16(
last_trace.y2 + STDP_FIXED_POINT_ONE,
DECAY_TAU_Y2(delta_time));




SpiNNaker - Pair weight update

timing_pair_impl.h

lines 136-150 Aw = Fy (wij)a;(t])

uint32_t delta_t = time - last_pre_time;

// If spikes are not co-incident
if (delta_t > 0)
{
// Calculate x(time) = x(last_pre_time) * e~(-delta_t/tau_x)
int32_t x = STDP_FIXED_MUL_16X16(last_pre_trace,
DECAY_TAU_X(delta_t));

log_debug("\t\t\tdelta_t=%u, x=%d\n",
delta_t, x);

// Apply potentiation to synapse state
return weight_one_term_apply potentiation(previous_state, x);

}

13

MANCHESTER
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Triplet model

.0

- Triplet rule (anti-causal)
08l — Triplet rule (causal)

F -l Experimental data (anti-causal) P
0.6L - Experimental data (causal) 2

Yii 2]

0 10 20 30 40 50
Frequency [Hz]

SpiNNaker - Triplet weight update

timing_triplet_impl.h ot
lines 165-179 Aw; = Fy (wi;)z; (t)yl ()

if (delta_t > 0)
{
// Calculate x(time) = x(last_pre_time) * e~(-delta_t/tau_x)
int32_t x = STDP_FIXED_MUL_16X16(last_pre_trace,
DECAY_TAU_X(delta_t));

// Multiply this by y2(time) to get triplet term
int32_t x_y2 = STDP_FIXED_MUL_16X16(x, trace.y2);

log debug("\t\t\tdelta_t=%u, x=%d, y2=%d, x_y2=%d\n",
delta_t, x, trace.y2, x_y2);

// Apply potentiation to synapse state
return weight_one_term_apply potentiation(previous_state, x_y2);

}

14

Thank you!

Any questions?

james.knight@manchester.ac.uk

-
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Graph Front End - Advanced
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Supported graphs (PACMAN)

Application Graph Machine Graph

SpiNNaker
S

Needs breaking down into Already has a 1:1 ratio
core sized chunks between vertices and core.

Contents

2

e Working with application graphs
e Buffered recordings
e Auto pause and resume

e Provenance data

Basic script to add application

vertices into the graph

import spinnaker_graph_front_end as front_end

from spinnaker_graph_front_end.examples.Conways.conways_application_cell\
import ConwayApplicationCell

# set up the front end and ask for the detected machines dimensions
front_end.setup()

front_end.add_application_vertex_instance(
ConwayApplicationCell(800, "ConwayCells"))

# run the simulation for 5 seconds
front_end.run(5000)

# clean up the machine for the next application
front_end.stop()



Creating a new type of application
vertex

from pacman.model.graphs.application.impl.application_vertex import ApplicationVertex
from pacman.model.resources.resource_container import ResourceContainer
from pacman.model.resources.cpu_cycles_per_tick_resource import CPUCyclesPerTickResource
from pacman.model.resources.dtcm_resource import DTCMResource
from pacman.model.resources.sdram_resource import SDRAMResource
class ConwayApplicationCell(ApplicationVertex):
""" Represents a collection of cells within the 2D grid
mnn
def __init_ (self, n_atoms, label):
ApplicationVertex.__init__ (self, label=label, max_atoms_per_core=200)
self._n_atoms = n_atoms

def get_resources_used_by atoms(self, vertex_slice):
resources = ResourceContainer(
sdram=SDRAMResource(4 * vertex_slice.n_atoms),
dtcm=DTCMResource(4 * vertex_slice.n_atoms),
cpu_cycles=CPUCyclesPerTickResource(100 * vertex_slice.n_atoms)

)

5

Basic Script adding application
edges
import spinnaker_graph_front_end as front_end

# build and add application vertex
vertex = ConwayApplicationCell(800, "ConwayCells")
front_end.add_application_vertex_instance(vertex)

# build an application edge
front_end.add_application_edge_instance(
ApplicationEdge(vertex, vertex),|"State")

front_end.run(5000) Partition id

front_end.stop()

Creating a new type of application
vertex

def create_machine_vertex(
self, vertex_slice, resources_required, label=None, constraints=None):

# return a partitioned vertex that’'s designed to handle multiple atoms within it
return ConwayMachineCell(
label=label, resources_required=resources_required,
constraints=constraints)

@property
def n_atoms(self):

# return the atoms this vertex contains
return self._n_atoms

6

Data generation

def generate_application_data_specification(
self, spec, placement, graph_mapper, application_graph, machine_graph,
routing_info, iptags, reverse_iptags, machine_time_step, time_scale_factor):

# get slice of atoms for machine vertex
vertex_slice = graph_mapper.get_slice(placement.vertex)



Application vertex c code

1000
atoms

Application Graph | Machine Graph

Hints:

1. You need to be able to distinguish from the received key
which atoms it effects on the core you are writing the data for

2. You need to execute your application ¢ code for every atom

on the core

9

Buffered Recordings

Solution
1. Store data in small chunks called buffers
2. During simulation, or during a pause, extract the buffers

NOTE: This only works in tandem with the simulation.h and
data_specification.h and python interfaces.

Buffered Recordings

Problem
1. SDRAM is limited on the SpiNNaker machines.

2. Recording of data is more reliable on SDRAM than live
transmissions.

3. Simulations run for long periods of time gathering data.

10

How does a extracted buffered
data region work?

2. Filled a Buffer!

A A

3. Gobbles up a Buffer!

Y

4. Tells vertex buffer is free.

Buffer Manager 7

5. | want my data!

6. Gobbles left over Buffers!

7. Data sent over

Spinnaker
machine




Buffered Recording - Python

class MyBufferedVertex(..., ReceiveBuffersToHostBasiclmpl):

def __init_ (...):
ReceiveBuffersToHostBasiclmpl.__init__ (self)

13

Buffered Recording - C

static uint32_t recording_flags = 0;
void ¢c_main(void) {
address_t address = data_specification_get_data_address();
address_t recording_region = data_specification_get_region(2, address);
uint8_t *regions_to_record[] = {4,5,7};
X

Buffered region ids (channels 0, 1 and 2)
bool success = recording_initialize(
3, regions_to_record, recording_region, 6, &recording_flags);

Number of buffered regions Extra region for storing buffered state

simulation_run();

Buffered Recording - Python

class MyBufferedVertex(..., ReceiveBuffersToHostBasiclmpl):

def generate_data_spec(...):
spec.reserve_memory_region(
region=2, size=self.get_recording_data_size(3), label="recording")
w
Number of buffered regions

spec.reserve_memory_region(
region=6, size=self.get_buffer_state_region_size(\S), label="state")

Extra region for storing buffered state

Buffered region ids

J
self.reserve_buffer_regions(spec, 6, [4,5,7], [1000000, 1900000, 100000])

. . Allocated buffer sizes
spec.switch_write_focus(2) " “

M
self.write_recording_data(spec, iptags, [1000000, 1000000, 100000], 16;384)

14 IP Tags holder Buffer size before request sent

Buffered Recording - C

void timer_callback(uint unusedO, uint unused1) {

if ((infinite_run != TRUE) && ((time + 1) >= simulation_ticks)) {
recording_finalize();

}

if (recording_is_channel_enabled(recording_flags, 0)) {

Recording channel number (= region 4)

uint32_t data = 23; ,/
recording_record(0, &data, 4);

}

Pointer to data to record Size of data to record in bytes

recording_do_timestep_update(time);



Auto pause and resume
functionality
1. Provides the ability to run a simulation for multiple periods

without remapping the application.

2. Provides the ability to extract buffers without affecting the
running simulation.

3. Supports the ability to reset a simulation to the state at t=0.

17

Auto Pause and Resume - Python

class AbstractPopulationVertex(..., AbstractChangableAfterRun):

def __init_ (......):
AbstractChangableAfterRun.__init__(self)

# bool for if state has changed.
self._change_requires_mapping = True

@property

def requires_mapping(self):
# determine if there are changes within which require a remapping
return self._change_requires_mapping

def mark_no_changes(self):
# restart the tracking of changes
self._change_requires_mapping = False

def set_recording_spikes(self):
self._change_requires_mapping = not self._spike_recorder.record
self._spike_recorder.record = True
19

How Auto Pause and Resume
works.

2. Stuff loaded onto SpiNaker machine

Ve Mapping

....... )
Loaded and ready

Full remap

Or 3. Initial Run time

Reload Auto Pause And >
binaries resume < 4. Completed run code

. for
5. New run time >\ vertex

6. Completed run

A

reset >
N 7. Remove ¢ code

Of application  Spinnaker machine

18

Auto Pause and Resume - C

void timer_callback(uint unusedO, uint unused1) {

if ((infinite_run != TRUE) && ((time + 1) >= simulation_ticks)) {
simuIatioﬁ_handIe_pause_resume(resume_callback);

-
}

void resume_callback() {

// restart the recording just before resuming
if (linitialise_recording()) {
rt_error(RTE_SWERR);
}
}

20



Provenance data gatherers

21

Data that can be used to prove 2 simulations are equivalent
to each other.

Data that can also be used for debug purposes.

Is stored in XML and searched through for errors by the main
tools.

Every vertex can provide its own provenance data.

Local Provenance Data - Python

class MyVertex(..., AbstractProvidesLocalProvenanceData):

23

def get_local_provenance_data(self)

self._data_items = list()

# store data in a provenance data item  Hierarchy of categories and names used to
self._data_items.append( group items in XML
ProvenanceDataltem( P
["my_object” "my_category”, "my_item"], my_value))
self._data_items.append(
ProvenanceDataltem(
["my_object"”, "my_category", "my_other_item"], my_other_value,
report=(my_other_value > error_value),
message="value {} was bigger than expected ({})".format(
my_value, error_value))

debug arguments

# return provenance items
return self._data_items

Provenance example output

<provenance_data_items name="my_object">
<provenance_data_items name="my_category">
<provenance_data_item name="my_item">0</provenance_data_item>
<provenance_data_item name="my_other_item">0</provenance_data_item>
</provenance_data_items>

</provenance_data_items>

<provenance_data_items name="0_0_5_my_vertex">
<provenance_data_items name="my_category">
<provenance_data_item name="my_machine_value">0</provenance_data_item>
</provenance_data_items>

</provenance_data_items>
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Simulation Provenance Data - Python

class MyVertex(..., ProvidesProvenanceDataFromMachinelmpl):

def get_provenance_data_from_machine(self, transceiver, placement):
provenance_data = self._read_provenance_data(transceiver, placement)

# translate system specific provenance data items
provenance_items = self._read_basic_provenance_items(
provenance_data, placement)

# translate application specific provenance data items

provenance_data = self._get_remaining_provenance_data_items(
provenance_data)

my_value = provenance_data[0]

label, x, y, p, names = self._get_placement_details(placement)

# translate into provenance data items
provenance_items.append(
ProvenanceDataltem(
self._add_names(names, ["my_category”, "my_machine_value"]),
my_value))

return provenance_items
24



Simulation Provenance Data - Python

class MyVertex(..., ProvidesProvenanceDataFromMachinelmpl):

def __init_ (self, ...)

ProvidesProveanceDataFromMachinelmpl.__init__(self, 9, 1)

def generate_data_spec(...):

self.reserve_provenance_data_region(spec)

25

Summary

1. Application graphs
2. Buffered recording
3. Auto pause and resume

4. Provenance data gathering

27

Number of custom

Provenance Region provenance data items

Simulation Provenance Data - C

static my_value = 0;
void ¢_main(void) {

if (lsimulation_initialise(
system_region, APPLICATION_NAME_HASH,
&timer_period, &simulation_ticks,
&infinite_run, SDP,
get_provenance_data,
data_specification_get_region(9, address))) {
log_error("Error in initialisation - exiting!");
rt_error(RTE_SWERR);
}

}

Provenance Region

void get_provenance_data(address_t provenance_data_address) {
provenance_data_address[0] = my_value;

}

26
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Intro Lab

This lab is meant to expose workshop participants to examples of problems which can be
applied to the SpiNNaker architecture.

Installation

The software installation instructions can be found here:
https://spinnakermanchester.github.io/latest/spynnaker_install.html
https://spinnakermanchester.github.io/latest/gfe install.html

File download

All of these examples can be found here:
https://spinnakermanchester.qithub.io/latest/intro_lab.html

Please download and open a terminal at the top level of the folder.

Run Applications

Below is a list of applications with the corresponding folders and execution commands,
please run each script as it currently stands, and attempt to understand what the application
is doing.

Neural Network Synfire Chain
Conductive Material with Applied Heat
Sudoku Game Through Neural Network
Graphic Ray Tracer of an Environment
Simple Learning Network

ok wbd =~



https://spinnakermanchester.github.io/latest/spynnaker_install.html
https://spinnakermanchester.github.io/latest/gfe_install.html
https://spinnakermanchester.github.io/latest/intro_lab.html

Neural Network Synfire Chain
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Figure 1: The output from a simple Synfire chain.
To run this example, from the top level of the folder type:
cd synfire
python synfire.py
A plot like the above should appear.
This example shows a PyNN Neural Network with a chain of 10 populations of 100 neurons

each, where 10 neurons from each population excite all the neurons in the next population in
the chain. The first population is then stimulated at the start of the simulation to start the

chain running.

\

Figure 2: The Synfire Chain of Populatlons



Conductive Material with Applied Heat
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Figure 3: The output from the conductive material simulation

To run this example, from the top level of the folder type:

cd heat_demo

python heat_demo.py
A visualiser should appear here, as shown in Figure 3. You can press “9” to randomize the
heat applied at each edge of the simulation, or press select a black square and press “+” to

increase the temperature, or “-” to decrease it, followed by

“g” to update it.

This example shows a piece of conductive material (e.g. a metal sheet) which is represented
by a collections of cells which represent atoms of the material. Temperature is transferred
between the atoms of the material in the simulation by sending packets over the SpiNNaker
network. Figure 4 shows this application in graphical form.

Figure 4: The conductive material application in graphical form



Sudoku Game Through Neural Network
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Figure 5: The output from the Sudoku game application

To run this example, from the top level of the folder type:
cd sudoku
python sudoku.py

A visualiser will pop up, which is shown in Figure 5.

This example shows a PyNN neural network which describes a neural network for running
sudoku problems. The spikes representing each cell are shown behind each number, with
green output indicating that the value is valid according to the rules of Sudoku and red
output indicating that the value is invalid. The problem to be solved is described near the top
of the sudoku.py file, with Os representing values to be computed. Note that on a small
SpiNNaker board, the network is not always successful at solving the problem.



Graphic Ray Tracer of an Environment

[B7 Path Tracer = [m] X

Figure 6: The output from the graphical ray tracer application

To run this example, from the top level of the folder type:
cd ray_trace
python ray_trace.py

A visualiser will pop up, which is shown in Figure 6.

This example shows a ray tracing application on SpiNNaker. This has been designed so
that to operate in parallel; the more cores in use, the faster it completes. Note that it is still
quite slow, and you may have to click on the window to force it to update.



Simple Learning Network
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Figure 7: The output from the learning application

To run this example, from the top level folder type:
cd learning
python learning.py

A plot like the above should appear.
This example shows the spike outputs from two populations of neurons. At the start, only

one of the populations spikes regularly. In the middle, some learning is done, and at the
end, both populations spike regularly.



Running PyNN Simulations on SpiNNaker

Introduction

This manual will introduce you to the basics of using the PyNN neural network language on SpiNNaker
neuromorphic hardware.

Installation
The PyNN toolchain for SpiNNaker (sPyNNaker), can be installed by following the instructions available
from here:

http://spinnakermanchester.github.io/2015.005.Arbitrary/PyNNOnSpinnakerlnstall.html

Matplotlib is marked as optional, but you will also need to install this dependency to complete some of the
forthcoming exercises.

Spiking Neural Networks

Biological neurons have been observed to produce sudden and short increases in voltage, commonly
referred to as spikes. The spike causes a charge to be transferred across the synapse between neurons.
The charge from all the presynaptic neurons connected to a postsynaptic neuron builds up, until that
neuron releases the charge itself in the form of a spike. The spike travels down the axon of the neuron
which then arrives after some delay at the synapses of that neuron, causing charge to be passed forward to
the next neuron, where the process repeats.

1) Neurons “spike”, causing charge to be passed
across the synapses between the neurons

3) The spike travels down the
axon of the neuron

2) When enough charge has been passed to
the post-synaptic neuron, it causes it to spike

Artificial spiking neural networks tend to model the membrane voltage of the neuron in response to the
incoming charge over time. The voltage is described using a differential equation over time, and the
solution to this equation is usually computed at fixed time-steps within the simulation. In addition to this, the
charge or current flowing across the synapse can also be modelled over time, depending on the model in
use.



The charge can result in either an excitatory response, in which the membrane voltage of the postsynaptic
neuron increases or an inhibitory response, in which the membrane voltage of the postsynaptic neuron
decreases as a result of the spike.

The PyNN Neural Network Description Language

PyNN is a language for building neural network models. PyNN models can then be run on a number of
simulators without modification (or with only minor modifications), including SpiNNaker. The basic steps of
building a PyNN network are as follows:

Setup the simulator

Create the neural populations

Create the projections between the populations
Setup data recording

Run the simulation

Retrieve and process the recorded data

ok LON =

An example of this is as follows:

import pyNN.spiNNaker as p

p.setup(timestep=1.0)

pop_1l = p.Population(1, p.IF_curr_exp, {}, label="pop_1")

input = p.Population(1l, p.SpikeSourceArray,

{"'spike_times': [[@]]}, label="input")

input_proj = p.Projection(input, pop_1, p.OneToOneConnector(
weights=5.0, delays=1), target="excitatory")

pop_1.record()

pop_1.record_v()

p.run(10)

import pylab

time = [i[1] for 1 in v if i[0@] == 0]
membrane_voltage = [i[2] for i in v if i[@] == O]
pylab.plot(time, membrane_voltage)
pylab.xlabel("Time (ms)")

pylab.ylabel("Membrane Voltage")

pylab.axis([@, 10, -75, -45])

pylab.show()

spike_time = [i[1] for i in spikes]
spike_id = [i[@] for i in spikes]
pylab.plot(spike_time, spike_id, ".")
pylab.xlabel("Time (ms)")
pylab.ylabel("Neuron ID")
pylab.axis([e, 10, -1, 1])
pylab.show()

This example runs using a 1.0ms timestep. It creates a single input source (A SpikeSourceArray) sending
a single spike at time 0, connected to a single neuron (with model IF _curr_exp). The connection is
weighted, so that a spike in the presynaptic neuron sends a current of 5 nanoamps (nA) to the excitatory
synapse of the postsynaptic neuron, with a delay of 1 millisecond. The spikes and the membrane voltage
are recorded, and the simulation is then run for 10 milliseconds. Graphs are then created of the membrane
voltage and the spikes produced.

PyNN provides a number of standard neuron models. One of the most basic of these is known as the
Leaky Integrate and Fire (LIF) model, and this is used above (IF_curr_exp). This models the neuron as a
resistor and capacitor in parallel; as charge is received, this builds up in the capacitor, but then leaks out
through the resistor. In addition, a threshold voltage is defined; if the voltage reaches this value, a spike is
produced. For a time after this, known as the refractory period, the neuron is not allowed to spike again.



Once this period has passed, the neuron resumes operation as before. Additionally, the synapses are
modelled using an exponential decay of the received current input (5 nA in the above example); the weight
of the current is added over a number of timesteps, with the current decaying exponentially between each.
A longer decay rate will result in more charge being added overall per spike that crosses the synapse.

In the above example, the default parameters of the IF_curr_exp are used. These are:

'cm': 1.0,
"tau_m': 20.9,
"tau_refrac': 2.0,
'v_reset': -70.0,
'v_rest': -65.0,
'v_thresh': -50.0,
"tau_syn_E': 5.0,

The capacitance of the LIF neuron in nano-Farads

The time-constant of the RC circuit, in milliseconds

The refractory period, in milliseconds

The voltage to set the neuron at immediately after a spike
The ambient rest voltage of the neuron

The threshold voltage at which the neuron will spike

The excitatory input current decay time-constant
"tau_syn_I': 5.0, The inhibitory input current decay time-constant
'i_offset': 0.0, # A base input current to add each timestep

H OH OH OH OHF OH K OH

PyNN supports both current-based models and conductance-based models. In conductance models, the
input is measured in microSiemens, and the effect on the membrane voltage also varies with the current
value of the membrane voltage; the higher the membrane voltage, the more input is required to cause a
spike. This is modelled as the reversal potential of the synapse; when the membrane potential equals the
reversal potential, no current will flow across the synapse. A conductance-based version of the LIF model
is provided, which, in addition to the above parameters, also supports the following:

‘e rev_E': 0., # The reversal potential of the exponential synapse
'e rev_I': -80.0 # The reversal potential of the inhibitory synapse

The initial value of the state variables of the neural model can also be set (such as the membrane voltage).
This is done via the initialize function of the population, which takes the name of the state variable as a
string (e.g. “v” for the membrane voltage), and the value to be assigned e.g. to set the voltage to -65.0mV:

pop.initialize(“v”, -65.0)

In PyNN, the neurons are declared in terms of a population of a number of neurons with similar properties.
The projection between populations therefore has a connector, which describes the connectivity between
the individual neurons in the populations. Some common connectors include:

e OneToOneConnector - each presynaptic neuron connects to one postsynaptic neuron (there should
be the same number of neurons in each population) with weight weights and delay delays.

e AllToAllConnector - all presynaptic neurons connect to all postsynaptic neurons with weight weights
and delay delays.

e FixedProbabilityConnector - each presynaptic neuron connects to each postsynaptic neuron with a
given fixed probability p_connect, with weight weights and delay delays.

e FromListConnector - the exact connectivity is described by conn_list, which is a list of
(pre_synaptic_neuron_id, post_synaptic_neuron_id, weight, delay)

Commonly, random weights and/or delays are used. To specify this, the value of the weights or delays of
the connector are set to a RandombDistribution (note that the FromListConnector requires the specification
of explicit weights and delays, and so does not support this; instead the next() method of the random
distribution can be called to give random values for this connector). This supports several parameters via
the parameters argument, depending on the value of the distribution argument which identifies the
distribution type. The supported distributions include a ‘uniform’ distribution, with parameters of [minimum
value, maximum value]; and a ‘normal’ distribution with parameters of [mean, standard deviation]. A
boundary can also be specified as [minimum, maximum] to constrain the values generated (where an
unbounded end can make use of -numpy.inf or numpy.inf); this is often useful for keeping the delays within



range allowed by the simulator. The RandombDistribution can also be used when specifying neural
parameters, or when initialising state variables.

In addition to neuron models, the PyNN language also supports some utility models, which can be used to
simulate inputs into the network with defined characteristics. These include:

e SpikeSourceArray - this sends spikes at predetermined intervals defined by spike times. In
general, PyNN forces each of the neurons in the population to spike at the same time, and so
spike_times is an array of times, but sPyNNaker also allows spike _times to be an array of arrays,
each defining the the times at which each neuron should spike e.g. spike_times=[[0], [1]] means that
the first neuron will spike at Oms and the second at 1ms.

e SpikeSourcePoisson - this sends spikes at random times with a mean rate of rate spikes per
second, starting at time start (0.0ms by default) for a duration of duration milliseconds (the whole
simulation by default).

Using PyNN with SpiNNaker
In addition to the above steps, sPyNNaker requires the additional step of configuration via the

.spynnaker.cfg file to indicate which physical SpiNNaker machine is to be used. This file is located in your
home directory, and the following properties must be configured:

[Machine]
machineName = None
version = None

The machineName refers to the host or IP address of your SpiNNaker board. For a 4-chip board that you
have directly connected to your machine, this is usually (but not always) set to 792.7168.240.253, and the
version is set to 3, indicating a “SpiNN-3" board (often written on the board itself). Most 48-chip boards are
given the IP address of 192.7168.240.1 with a version of 5.

The range of delays allowed when using sPyNNaker depends upon the timestep of the simulation. The
range is 1 to 144 timesteps, so at 1ms timesteps, the range is 1.0ms to 144.0ms, and at 0.1ms, the range is
0.1ms to 14.4ms.

The default number of neurons that can be simulated on each core is 256; larger populations are split up
into 256-neuron chunks automatically by the software. Note though that the cores are also used for other
things, such as input sources, and delay extensions (which are used when any delay is more than 16
timesteps), reducing the number of cores available for neurons.

Spike-Time-Dependent Plasticity

STDP plasticity is a form of learning that depends upon the timing between the spikes of two neurons
connected by a synapse. It is believed to be the basis of learning and information storage in the human
brain.

In the case where a presynaptic spike is followed closely by a postsynaptic spike, then it is presumed that
the presynaptic neuron caused the spike in the postsynaptic neuron, and so the weight of the synapse
between the neurons is increased. This is known as potentiation.

If a postsynaptic spike is emitted shortly before a presynaptic spike is emitted, then the presynaptic spike
cannot have caused the postsynaptic spike, and so the weight of the synapse between the neurons is
reduced. This is known as depression.

The size of the weight change depends on the relative timing of the presynaptic and postsynaptic spikes; in
general, the change in weight drops off exponentially as the time between the spikes gets larger, as shown
in the following figure [Sjostrom and Gerstner (2010), Scholarpedia]. However, different experiments have



highlighted different behaviours depending on the conditions (e.g. [Graupner and Brunel (2012), PNAS]).
Other authors have also suggested a correlation between ftriplets and quadruplets of presynaptic and
postsynaptic spikes to trigger synaptic potentiation or depression.
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STDP in PyNN

The steps for creating a network using STDP are much the same as previously described, with the main
difference being that some of the projections are given an synapse_dynamics argument to describe the
plasticity. Here is an example of the creation of a projection with STDP:

timing_rule = p.SpikePairRule(tau_plus=20.0, tau_minus=20.0)
weight_rule = p.AdditiveWeightDependence(
w_max=5.0, w_min=0.0, A plus=0.5, A_minus=0.5)

stdp_model = p.STDPMechanism(
timing_dependence=timing_rule, weight_dependence=weight_rule)

stdp_projection = p.Projection(
pre_pop, post_pop, p.OneToOneConnector(weights=0.0, delays=5.0),
synapse_dynamics=p.SynapseDynamics(slow=stdp_model))

In this example, firstly the timing rule is created. In this case, it is a SpikePairRule, which means that the
relative timing of the spikes that will be used to update the weights will be based on pairs of presynaptic
and postsynaptic spikes. This rule has two required parameters, tau_plus and tau_minus which describe
the respective exponential decay of the size of the weight update with the time between presynaptic and
postsynaptic spikes. Note that the decay can be different for potentiation (defined by tau_ plus) and
depression (defined by fau_minus). This rule also accepts a parameter of nearest (by default this is False).
If set to true, only the nearest pairs of spikes are considered when looking at weight updates.

The next thing defined is the weight update rule. In this case it is a AdditiveWeightDependence, which
means that the weight will be updated by simply adding to the current weight. This rule requires the
parameters w_max and w_min, which define the maximum and minimum weight of the synapse
respectively, and the parameters A_plus and A_minus which define the maximum weight to respectively
add during potentiation or subtract during depression. Note that the actual amount added or subtracted will
depend additionally on the timing of the spikes, as determined by the timing rule.

In addition, there is also a MultiplicativeWeightDependence supported, which means that the weight
change depends on the difference between the current weight and w_max for potentiation, and w_min for
depression. The value of A_plus and A_minus are then respectively multiplied by this difference to give the



maximum weight change; again the actual value depends on the timing rule and the time between the
spikes.

The timing and weight rules are combined into a single STDPMechanism object which describes the overall
desired mechanism. This is finally specified as the slow argument of a SynapseDynamics object, and then
added to the Projection using the synapse_dynamics argument. Note that the projection still requires the
specification of a Connector which includes weights and delays. This connector is still used to describe the
overall connectivity between the neurons of the pre- and post-populations, as well as the delay values
which are unchanged by the STDP rules, and the initial weight values. It is preferable that the initial
weights fall between w_min and w_mayx; it is not an error if they do not, but when the first update is
performed, the weight will be changed to fall within this range.

Note: In the implementation of STDP on SpiNNaker, the plasticity mechanism is only activated when the
second presynaptic spike is received at the postsynaptic neuron. Thus at least two presynaptic spikes are
required for the mechanism to be activated.

Task 1.1: A simple neural network [Easy]

This task will create a very simple network from scratch, using some of the basic features of PyNN and
SpiNNaker.

Write a network with a 1.0ms time step, consisting of two input source neurons connected to two
current-based LIF neurons with default parameters, on a one-to-one basis, with a weight of 5.0 nA and a
delay of 2ms. Have the first input neuron spike at time 0.0ms and the second spike at time 1.0ms. Run the
simulation for 10 milliseconds. Record and plot the spikes received against time.

Task 1.2: Changing parameters [Easy]

This task will look at the parameters of the neurons and how changing the parameters will result in different
network behaviour.

Using your previous script, set tau_syn_E to 1.0 in the IF_curr_exp neurons. Record the membrane
voltage in addition to the spikes. Print the membrane voltage out after the simulation (you can plot it if you
prefer, but you should note that the array returned from get_v() contains a list of [neuron_id, time, voltage]
and so you will need to separate out the voltages of the individual neurons).

1. Did any of the neurons spike?
2. What was the peak membrane voltage of any of the neurons, compared to the default threshold
voltage of -50mV?

Try increasing the weight of the connection and see what effect this has on the spikes and membrane
voltage.

Task 2.1: Synfire Chain [Moderate]

This task will create a network known as a Synfire chain, where a neuron or set of neurons spike and cause
activity in an ongoing chain of neurons or populations, which then repeats.

Setup the simulation to use 1ms timesteps.

Create an input population of 1 source spiking at 0.0ms.

Create a synfire population with 100 neurons.

With a FromListConnector, connect the input population to the first neuron of the synfire population,
with a weight of 5nA and a delay of 1ms.

5. Using another FromListConnector, connect each neuron in the synfire population to the next
neuron, with a weight of 5nA and a delay of 5ms.

~oobh -



6. Connect the last neuron in the synfire population to the first.
7. Record the spikes produced from the synfire populations.
8. Run the simulation for 2 seconds, and then retrieve and plot the spikes from the synfire population.

Task 2.2: Random Values [Easy]

Update the network above so that the delays in the connection between the synfire population and itself are
generated from a uniform random distribution with values between 1.0 and 15.0. Update the run time to be
5 seconds.

Task 3.1: Balanced Random Cortex-like Network [Hard]

This task will create a network that this similar to part of the Cortex in the brain. This will take some input
from outside of the network, representing other surrounding neurons in the form of poisson spike sources.
These will then feed into an excitatory and an inhibitory network set up in a balanced random network. This
will use distributions of weights and delays as would occur in the brain.

1. Set up the simulation to use 0.1ms timesteps.

2. Choose the number of neurons to be simulated in the network.

3. Create an excitatory population with 80% of the neurons and an inhibitory population with 20% of
the neurons.

4. Create excitatory poisson stimulation population with 80% of the neurons and an inhibitory poisson
stimulation population with 20% of the neurons, both with a rate of 1000Hz.

5. Create a one-to-one excitatory connection from the excitatory poisson stimulation population to the
excitatory population with a weight of 0.1nA and a delay of 1.0ms.

6. Create a similar excitatory connection from the inhibitory poisson stimulation population to the
inhibitory population.

7. Create an excitatory connection from the excitatory population to the inhibitory population with a
fixed probability of connection of 0.1, and using a normal distribution of weights with a mean of 0.1
and standard deviation of 0.1 (remember to add a boundary to make the weights positive) and a
normal distribution of delays with a mean of 1.5 and standard deviation of 0.75 (remember to add a
boundary to keep the delays within the allowed range on SpiNNaker).

8. Create a similar connection between the excitatory population and itself.

9. Create an inhibitory connection from the inhibitory population to the excitatory population with a
fixed probability of connection of 0.1, and using a normal distribution of weights with a mean of -0.4
and standard deviation of 0.1 (remember to add a boundary to make the weights negative) and a
normal distribution of delays with a mean of 0.75 and standard deviation of 0.375 (remember to add
a boundary to keep the delays within the allowed range on SpiNNaker).

10. Create a similar connection between the inhibitory population and itself.

11. Initialize the membrane voltages of the excitatory and inhibitory populations to a uniform random
number between -65.0 and -55.0.

12. Record the spikes from the excitatory population.

13. Run the simulation for 1 or more seconds.

14. Retrieve and plot the spikes.

The graph should show what is known as Asynchronous Irregular spiking activity - this means that the
neurons in the population don’t spike very often and when they do, it is not at the same time as other
neurons in the population.

Task 3.2: Network Behavior [Moderate]

Note in the above network that the weight of the inputs is the same as the mean weight of the excitatory
connections (0.1nA) and that the mean weight of the inhibitory connections is 4 times this value (-0.4nA).
Try setting the excitatory connection mean weight and input weights to 0.11nA and the inhibitory mean



weight to -0.44nA, and see how this affects the behavior. What other behavior can you get out of the
network by adjusting the weights?

Task 4.1: STDP Network [Easy]

This task will create a simple network involving STDP learning rules.

Write a network with a 1.0ms time step consisting of two single-neuron populations connected with an
STDP synapse using a spike pair rule and additive weight dependency, and initial weights of 0. Stimulate
each of the neurons with a spike source array with times of your choice, with the times for stimulating the
first neuron being slightly before the times stimulating the second neuron (e.g. 2ms or more), ensuring the
times are far enough apart not to cause depression (compare the spacing in time with the tau_plus and
tau_minus settings); note that a weight of 5.0 should be enough to force an IF_curr_exp neuron to fire with
the default parameters. Add a few extra times at the end of the run for stimulating the first neuron. Run the
network for a number of milliseconds and extract the spike times of the neurons and the weights.

You should be able to see that the weights have changed from the starting values, and that by the end of
the simulation, the second neuron should spike shortly after the first neuron.

Task 4.2: STDP Parameters [Easy]

Alter the parameters of the STDP connection, and the relative timing of the spikes. Try starting with a large
initial weight and see if you can get the weight to reduce using the relative timing of the spikes.

Task 5: STDP Curve [Hard]

This task will attempt to plot an STDP curve, showing how the weight change varies with timing between
spikes.

1. Set up the simulation to use a 1ms time step.

2. Create a population of 100 presynaptic neurons.

3. Create a spike source array population of 100 sources connected to the presynaptic population. Set
the spikes in the arrays so that each spikes twice 200ms apart, and that the first spike for each is
1ms after the first spike of the last e.g. [[0, 200], [1, 201], ...] (hint: you can do this with a list
comprehension).

4. Create a population of 100 postsynaptic neurons.

5. Create a spike source array connected to the postsynaptic neurons all spiking at 50ms.

6. Connect the presynaptic population to the postsynaptic population with an STDP projection with an
initial weight of 0.5 and a maximum of 1 and minimum of 0.

7. Record the presynaptic and postsynaptic populations.

8. Run the simulation for long enough for all spikes to occur, and get the weights from the STDP
projection.

9. Draw a graph of the weight changes from the initial weight value against the difference in
presynaptic and postsynaptic neurons (hint: the presynaptic neurons should spike twice but the
postsynaptic should only spike once; you are looking for the first spike from each presynaptic
neuron).



Graph Front End Lab Manual

The task is to build a python program that uses the Graph Front End (GFE).

Summary

This python script should use the GFE to instantiate a working example of the Conway’s
Game of Life'. Conway’s Game of Life consist of a 2D fabric of cells, each of which has 2
states. These states are either Alive or Dead, and switching between these two states is
decided upon the states of their 8 neighbouring cells.

The rules which dictate the changing of state are as follows:

1. Any live cell with fewer than two live neighbours dies, as if caused by
underpopulation.

2. Any live cell with two or three live neighbours lives on to the next generation.

3. Any live cell with more than three live neighbours dies, as if caused by
overpopulation.

4. Any dead cell with exactly three live neighbours becomes a live cell, as if by
reproduction.

The application needs to be able to handle different initial states of the cells within the 2d
fabric, but the default states for tasks 1 to 8 should look like Figure 1 and for task 9 to 13
should look like Figure 2.
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Figure 1: Basic initial state (7 by 7 grid) Figure 2: Advanced State (28 by 28 grid)

' https://en.wikipedia.org/wiki/Conway's_Game_of_Life



Step 1 (Easy)

Create a python class which will represent a Conway Cell.

Step 2 (Easy)

Build a python script which builds a collection of Conway cells (as vertices) in the GFE
machine graph to form a 7x7 grid (hint: use the add_machine_vertex_instance() functionality
supplied with the GFE __init__.py interface to add vertex instances). Add edges between
the cells.

Step 3 (Medium)

Build the c code that represents the functionality that will run on the SpiNNaker machine. It'll
be easier to use the interfaces provided in simulation.h and data_specification.h.

At this point running the script should not produce errors, but you won't be able to tell what's
happening inside.
Step 4 (Medium)

Add a data region for storing the state per timer tick iteration in SDRAM into both the ¢ and
python class. Add code to store the data in C and retrieve it from the machine in python.

Step 5 (Easy)
Build a simple text-based visualiser to replay a simulation run using the stored state.

At this point you should be able to run the simulation and get a textual display of the state of
the simulation per timer tick.

Step 6 (Hard)

Stream the state of the simulation to the host PC during the simulation run. Display the
output as text as the simulation runs.

Step 7 (Medium)

Use the tubogrid perl application supplied within spinnaker_tools to create a live
visualisation of the simulation, or build your own.

Step 8 (Easy)

Try building a 28x28 grid of cells and see what happens. Can you explain why it doesn't
work? What ways could you go about making it work (hint: there's at least 3 ways of doing
this)?



Step 9 (Fiendishly Hard)

Convert your application so that instead of using machine vertices, you use an application
vertex to represent the entire grid of cells. Note that this will require you to receive and
interpret several ids from each base routing key (hint: sPyNNaker does this using something
called a population table to map between a base key and a block of connections).

Step 10 (Easy)

Run your new simulation with both sets of initial parameters. Try scaling up so that you hit
the limits of the system to simulate the application, and therefore make the CPU calculation
correct so that the partitioner will stop you going over the limits.

Step 11 (Medium)

Upgrade turbogrid or your own visualisation to use the database so that it auto configures
itself for the shape of the application space.

Step 12 (Epically Hard)

Build your own application for SpiNNaker using the GFE front end.



Simple Data Input Output and Visualisation on
Spinnaker - Lab Manual

1. Introduction

This manual will introduce you to the basics of live retrieval and injection of data (in the form of
spikes) for PyNN scripts that are running on SpiNNaker neuromorphic hardware.

2. Installation
In addition to sPyNNaker, the sPyNNakerExternalDevicesPlugin must also be installed.

3. PyNN Support

This section discusses the standard support from PyNN related to spike injection and retrieval.

3.1 Output

The standard support for data output for a platform such as SpiNNaker, through the PyNN
language, is to use the methods record(), record_v(), for declaring the need to record, and
get_Spikes(), get_v(), for retrieval of the specific data.

The issue with the get functions are that they are called after run() completes, and therefore are
not live, and so not able to interact with an external device running in real-time. In the current
implementation of sPyNNaker, all of the data declared to be recorded via record(), record_v(),
is stored on the SDRAM of the chips that the corresponding populations were placed on. By
writing the data to SDRAM, the data is stored locally and therefore is guaranteed to be read at
some point in the future. In the current implementation, if the memory requirements for
recording cannot be met, the model will be run for less time, paused whilst the data is extracted,
and then resumed. This may be repeated a number of times until the whole simulation has
completed.

When used with an external simulation, it is possible to call run a number times, extracting the
data between each run and passing it to an external simulation. This mode of operation will not
work if the external device or simulation cannot also be paused.

3.2 Input

The standard support for data input for a platform such as SpiNNaker, through the PyNN
language, is to use the neural models SpikeSourceArray and SpikeSourcePoisson. The issue
with both of these models is that they are either random rate based (the spikeSourcePoisson) or
have to be supplied in advance with all the spikes to be sent (SpikeSourceArray). As with the
output of spikes, it is possible to change the input spikes of a SpikeSourceArray between
successive calls to run(). Again, this will only work if the external device or simulation can be
paused.



4. External Device Plugin Support

As stated previously, the issue with this is that PyNN 0.7 expects its run() method to block for
the entire time of the run, and therefore it is impossible to set up a real time extraction or
retrieval of data via this FrontEnd (sPyNNaker), and has no current support for live retrieval or
live injection.

It is worth noting that future releases of PyNN may use the MUSIC interface to support live
injection and retrieval of spikes, but the current software version of sPyNNaker only supports
PyNN 0.7 and therefore there is no built in support.

To compensate for this, the sPyNNakerExternalDevicesPlugin module was created that
contains support for live injection and retrieval of spikes from a running PyNN 0.7 simulation
during the simulation, whilst still maintaining the real-time operation of the simulation.

4.1 Live Output

To activate live retrieval from a given population, the command
activate_live_output_for(<Population_object>)

is used. This informs the sPyNNaker backend to add the supporting utility model (Live packet

gatherer) into the graph object (which sPyNNaker uses to represent your PyNN neural models)

and an edge between your population and the associate LPG for your ports.

Other parameters for the activate_live_output_for() function are defined below:

Parameter Description

port The port number to receive packets from the SpiNNaker
machine.

database notify _host The hostname for the database notification protocol; by default

the localhost is used, but any external host could act as a
receiver, provided it can read the file system that the database
is written to.

database_notify_port_num | The port number for the database notification protocol; by
default database notifications are sent to port 19998. However
this can be changed if there is more than one listener, or a
separate listener for each population.

database ack port_num The port number that the database notification protocol will
listen to, to receive the acknowledgement packet that the
database has been read. By default this is 19999. It is unlikely
that this needs to be changed.




4.2 Live Injection

To activate the live injection functionality, you need to instantiate a new neural model (called a
Spikelnjector) which is located in spynnaker_external_devices_plugin.pyNN.Spikelnjector

The Spikelnjector is considered as any other neural model in PyNN, so you can build a
population with a number of neurons etc in the normal way, as shown below:

injector_forward = Frontend.Population(

5, ExternalDevices.SpikeInjector, [‘port’: 12367],
label="spike_injector_forward")

The key parameters of the Spikelnjector are as follows:

Parameter Description

port

The port that packets are going to be sent to
on the SpiNNaker system - must be one per
injector, but any port other than 17893 or
54321 can be used (these are reserved for
SpiNNaker operations).

virtual_key The base routing key that the spike injector is

going to use for routing. This parameter is
optional.

4.3 Python Live reciever
The following block of code creates a live packet receiver to receive spikes from a live

simulation:

1
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# declare python code when received spikes for a timer tick
def receive_spikes(label, time, neuron_ids):
for neuron_id in neuron_ids:
print “Received spike at time {} from {}-{}”.format(
time, label, neuron_id)

# import python live spike connection
from spynnaker_external_devices_plugin.pyNN.connections.\
spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection

# set up python live spike connection
live_spikes_connection = SpynnakerLiveSpikesConnection(
receive_labels=[“receiver”])

# register python receiver with live spike connection
live_spikes_connection.add_receive_callback(“receiver”, receive_spikes)




1. Lines 1 to 5 creates a function that takes as its input all the neuron ids that fired at a
specific time, from the population with the given label. From here, it generates a print
message for each neuron.

2. Lines 7 to 9 imports the python support for live injection/live retrieval. The
SpynnakerLiveSpikesConnection handles both live retrieval and live injection.

3. Lines 11 to 13 instantiates the SpynnakerLiveSpikesConnection, and informs the
connection that it will receive data under the label “receiver”.

4. Lines 15 to 16 informs the connection that any packets being received with the “receiver”
label need to be forwarded to the function receive_spikes defined on lines 1 to 5.

This script must be run in advance of the script that sets up the simulation. The
SpynnakerLiveSpikesConnection will listen for the simulation script to complete the setup
operations and so starts synchronized with the simulation. It is possible to run the reception of
spikes within the same script as the simulation; to do this, ensure that the above code is placed
before the call to run().

If you need more than one SpynnakerLiveSpikesConnection on the same host, the connection
can take an additional parameter specifying the local port to listen on for notifications from the
simulation, by specifying the local_port parameter in the constructor e.qg.:

live_spikes_connection_1 = SpynnakerLiveSpikesConnection(

receive_labels=[“receiver”], local_port=19996)
live_spikes_connection_2 = SpynnakerLiveSpikesConnection(

receive_labels=[“receiver_2”], local_port=19997)

Note that you must then also tell the simulation side that these ports are in use. This can be
done when calling activate live output for for the population by specifying the
database_notify_port_num parameter e.g.
activate_live output_for(receiver, database_notify port_num=19996)
activate_live_ output_for(receiver_2, database_notify_ port_num=19997)

4.4 Python Live injector
The following block of code creates a live packet injector:

# create python injector
def send_spike(label, sender):
sender.send_spike(label, 0, send_full keys=True)

1

2

3

5

6 # import python injector connection

7 from spynnaker_external_devices_plugin.pyNN.connections.\
8 spynnaker_live_spikes_connection import SpynnakerLiveSpikesConnection
9

10 # set up python injector connection

11 live_spikes_connection = SpynnakerLiveSpikesConnection(
12 send_labels=[“spike_sender”])

13

14 # register python injector with injector connection



15 live_spikes_connection.add_start_callback(“spike_sender”, send_spike)

1. Lines 1 to 3 create a function that will be called when the simulation starts, allowing the
synchronized sending of spikes.

2. Lines 6 to 8 imports the python support for live injection/live retrieval. The
SpynnakerLiveSpikesConnection handles both live retrieval and live injection.

3. Lines 10 to 12 instantiates the SpynnakerLiveSpikesConnection, and informs the
connection it will inject data via the label spike_sender.

4. Lines 14 to 15 informs the connection that when the simulation starts, to call the
send_spike function defined on lines 1 to 3.

As with the live reception script, this must be called before the simulation script, or before run()
in the simulation script.

4.5 C++ Implementation of SpyNNakerLiveSpikesConnection and Visualiser
The host C++ version of the Python “SpynnakerLiveSpikesConnection” and example visualiser
is currently available from the following locations:
https://spinnakermanchester.github.io/latest/visualiser_code_zip.html
https://spinnakermanchester.github.io/latest/visualiser_code_tar_gz.html
This source code must be compiled before use, and depends on the pthread and sqlite libraries
for the library itself, and the freeglut and opengl libraries for the example visualiser application.
A Makefile exists at the top level folder which will make both the spynnaker_external_device_lib
library and the example visualiser, but each can be made separately by running make in the
appropriate subdirectory.

Dependency Installation

On OSX, using Macports, you can install the dependencies as follows:
sudo port install freeglut sqlite3

On Linux, you can install the dependencies as follows (depending on if you are using Fedora or
Ubuntu):

sudo yum install

sudo apt-get install

On Windows, the dependencies are included.

spynnaker_external_device_lib

The C++ implementation is designed to be similar to the Python implementation. A number of
sample applications are provided within the spynnaker_external_device_lib/examples folder
which show how the API can be used.

c_based_visualiser_framework
This contains an example visualiser for producing a spike raster plot, and is based on the
spynnaker_external_device_lib.



The visualiser application can accept 4 parameters. These are defined below:

Parameter Description

-colour_map Path to a file containing the population labels to receive, and
their associated colours. This must be specified.

-hand_shake_port Optional port which the visualiser will listen to for database
handshake (default is 19998).

-database Optional file path to where the database is located, if needed for
manual configuration.

-remote host Optional remote host address of the SpiNNaker board, which
allows port triggering if allowed by your firewall.

7.1 colour_map file format
The colour_map file consists of a collection of lines, where each line contains 4 values
separated by tabs. These values, in order are:
1. The population label.
2. The red colour value.
3. The green colour value.
4. The blue colour value.
An example file is shown below:
spike_forward© 7] 255
spike_backwards %] 255 %]

5. Database Notification protocol

The support built behind all this software is a simple notification protocol on a database that’s
written during compilation time. The notification protocol is illustrated below:
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The steps within the notification protocol are defined below:

1.

The sPyNNaker front end writes a database that contains all the data objects generated
from sPyNNaker during the compilation process.

2. The naotification protocol sends a message to all the notification protocol listeners
containing the path to the database to be read. The SpynnakerLiveSpikesConnection
Python and C implementations are set up to receive this message.

3. These devices then read the database to determine the information required. This
includes the port to listen on to receive live output spikes, the port to send like input
spikes to, and the mapping between SpiNNaker routing keys and neuron ids.

4. Once these devices have read the database, they notify the sPyNNaker front end that
they are ready for the simulation to start.

5. Once all devices have notified the sPyNNaker front end, the simulation begins. The
sPyNNaker front end also notifies the devices when the simulation has actually started,
in case it was still loading data when they became ready.

6. The SpiNNaker machine transmits live spike output packets and receives live spike input
packets.

6. Caveats

To use the live injection and retrieval functionality only supports the use of the Ethernet
connection, which means that there is a limited bandwidth of a maximum of approx 30 MB/s.
This bandwidth is shared between both types of functionality, as well as system support for
certain types of neural models, such as the SpikeSourceArray.



Furthermore, this functionality depends upon the lossy communication fabric of the SpiNNaker
machine. This means that even though a neuron fires a spike you may not see it via the live
retrieval functionality. If you need to ensure you receive every packet that has been transmitted,
we recommend using the standard PyNN functionality.

By using this functionality, you are making your script non portable between different simulators.
The activate_live_output_for(<pop_object>) and Spikelnjector models are not supported by
other PyNN backends (such as Nest, Brian etc).

Finally, this functionality uses a number of additional SpiNNaker cores. Therefore a network
which would just fit onto your SpiNNaker machine before would likely fail to fit on the machine
when these functionalities are added in.

8. Tasks

Task 1.1: A synfire chain with injected spike via python injector [Easy]

This task will create a synfire chain which is stimulated from a injector spike generated on host
and then injected into the simulation. Start with the synfire chain from PyNNExamples.

Remove the spike source array population.

Replace it with the Spikelnjector population.

Build a python injector function.

Import and instantiate an SpynnakerLiveSpikesConnection connection.

link a start callback to the python injector function.

ok wbd =~

Task 1.2: A synfire chain with live streaming via the python receiver [Easy]
Start with the synfire chain from PyNNExamples.
1. Call activate_live_output_for(<pop_object>) on the synfire population.
2. Build a python receiver function that prints out the neuron ids for the population.
3. Import and instantiate a SpynnakerLiveSpikesConnection connection.
4. Link a receive callback to the python receiver function and print when a spike is
received.

Task 1.3: A synfire chain with live injection and streaming via python [Easy]
Take the code from the previous 2 tasks and integrate them together to produce one that injects
and streams the packets back to the terminal.
1. Remember that you can use both the recieve labels and send_labels of the same
SpynnakerLiveSpikesConnection.

Task 1.4: A synfire chain with live injection via python and live streaming

via the c visualiser [Medium]

Take the code from the previous task and remove the python receiver code (or don't if you feel
confident) and activate the visualizer to take the packets the original python receiver code
processed.



1. Remember to compile the visualiser
2. Remember to generate the correct colour_map
3. Remember to remove the python receiver code (or don’t if you're feeling confident).

Task 1.5: 2 Synfire chains which set each other off using python injectors
whilst still using the c visualiser [Very Hard]
Take the code from the previous task and modify it so that there are two synfire populations
which are tied to one injector population. Modify the receive function so that it contains some
logic that fires the second neuron when the last neuron in the first synfire fires, and does the
same when the last neuron for the second synfire sets off some neuron id of the first synfire
chain.
1. you will need to change the number of neurons the spike injector contains.
2. You will need to change the connector from the spike injector and each synfire
population.
3. You will need to modify the receive function, and add a global variable for the
SpynnakerLiveSpikesConnection.
4. Youll need at least 2  SpynnakerLiveSpikesConnection and  multiple
activate_live_output_for(<pop_objevt>) for each population.
5. Remember that each population can only be tied to one LivePacketGatherer, so to
visualise and do closed loop systems require more populations.
6. You will need to modify the c visualiser colour_map to take into account the new synfire
population.

Task 1.6: 2 Synfire chains which set each other off using python injectors

and live retrieval with 2 visualiser instances [Very Hard/Easy]
This task takes everything you've learnt so far and raises the level. Using the code from the
previous task. Create two visualiser instances, each of which only processes one synfire
population.
1. Remember all the lessons from the previous tasks.
2. Remember to change the ports on the activate live_output for(<pop_ object>)
accordingly.
3. You will need to create at least 2 SpynnakerLiveSpikesConnection’s. But it might be
worth starting with 3 and reducing it to two once you’ve got it working.
4. Remember the different colour_maps

Task 2.1: A simple synfire chain with a injected spike via c injector [Easy]

This task requires that you replace the injector from task 1.1 with a c injector.
1. Remember to import the correct header file.
2. Remember to use c syntax.

Task 2.2: A simple synfire chain with live streaming via the c receiver [Easy]

This task requires that you replace the receiver from task 1.2 with a c receiver.
1. Remember to import the correct header file.



2. Remember to use c syntax.

Task 2.3: A simple synfire chain with live injection and live streaming via C
[Easy]

This task requires that you replace the injector and receiver from task 1.3 with a c injector and
receiver.

1. Remember to import the correct header file.

2. Remember to use c syntax.

Task 2.4: A simple synfire chain with live injection via ¢ and live streaming
via the c visualiser [Medium]
This task requires that you replace the injector from task 1.4 with a c injector and to set up the
visualiser.

1. Remember to import the correct header file.

2. Remember to use c syntax.

3. Remember to set up the visualiser correctly.

Task 2.5: 2 Synfire chains which set each other off using c injectors
[Medium]
This task requires that you replace the injectors and receivers from task 1.5 with ¢ injectors and
receivers and to set up the visualiser.

1. Remember to import the correct header file.

2. Remember to use c syntax.

Task 2.6: 2 Synfire chains which set each other off using c injectors and live
retrieval with 2 visualiser instances [Hard]
This task requires that you replace the injectors and receivers from task 1.6 with c injectors and
receivers and to set up the visualiser.

1. Remember to import the correct header file.

2. Remember to use c syntax.

3. Remember to set up the visualisers correctly.

Task 3: Create some model which uses all interfaces [Very Hard]
This task is the merging of all the functionalities covered in this lab manual. Take the codes
from both task 2.6 and 1.6 and integrate them together so that:
1. One injector is controlled by the ¢ code, whilst another is done via the python interface.
2. Still uses 2 visualisers to stream the results.
3. Uses the python receive interface to count 5 firings of a given neuron id and then
changes the neuron stimulated by the python injector.
Hint: remember to keep a global connection object for the python codes.
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Creating New Neuron Models for SpiNNaker

Introduction

This manual will guide you in the creation of new neuron models to be run on SpiNNaker. This includes the
C code that will be compiled to run on the SpiNNaker hardware, as well as the Python code which interacts
with the PyNN script to configure the model.

Installation
In order to create new models, you will need to ensure that you have set up a development environment
suitable for compiling C code for SpiNNaker. This can be done by following the instructions here:

http://spinnakermanchester.github.io/latest/spynnaker extensions.html

Project Layout

The recommended layout for a new model project is shown below; this example shows a model called
“my_model”, with current-based exponential synapses. It is recommended that the C and Python code is
kept in the same project to help keep them synchronized.

C code

v & c_models
~ (5 srC
~ [ neuron
~ [ additional_inputs
[% my_additional_inputh
~ & builds
~ [ my_model_curr_exp

& build
@ Makefile

> =% my_maodel_curr_exp_my_additional_input

% my_model_curr_exp_my_threshold

» =% my_model_curr_exp_stdp_mad_my_timing_my_weight

= my_model_curr_my_synapse_type
= Makefile.common
~ [ models
[# my_neuron_model_impl.c
[#) my_neuron_model_implh
=y plasticity
~ [y synapse_types
[ synapse_types_my_impl.h
~ [ threshold_types
[# my_threshold_type.h
Li Makefile
= Makefile.common
@ Makefile

Python code

~ H examples
[ _init_.py
[# my_example.py
~ i python_models
B3 connectors
» H§ model_binaries

~ H3 neuron
~ f} additional inputs
B _init__
B my_addltlonal_input.py
~ & builds
] _init__py

[l my_model_curr_exp_my_additional_input.py
[} my_model_curr_exp_my_threshold.py
[ my_model_curr_exp.py
[} my_model_curr_my_synapse_type.py
~ f} neuron_models
[ _init_.py
[l my_neuron_model.py
~ H#} plasticity
% stdp
[ _init_.py
~ B synapse types
[ _init_
B my_synapse_type.py
~ f threshold types
B _init_
] my_threshold_type.py
@ _init_.py

This template structure can be downloaded from one of the following locations:
https://spinnakermanchester.github.io/latest/spynnaker_new_model_template_zip.html

https://spinnakermanchester.qithub.io/latest/spynnaker_new_model_template tar_gz.html



http://spinnakermanchester.github.io/latest/spynnaker_extensions.html
https://spinnakermanchester.github.io/latest/spynnaker_new_model_template_zip.html
https://spinnakermanchester.github.io/latest/spynnaker_new_model_template_tar_gz.html

C model builds

All neuron builds consist of a collection of components which when connected together produce a complete
neural model. These components are defined in Table 1.

Component

Definition

Input component

The type of input the model takes. Currently there are conductance and
current based inputs supported by sPyNNaker. It is possible to define
other input types, but this is not described in this tutorial.

Synapse type component

The synapse type controls the shaping of the synapses in response to the
input weights. Within sPyNNaker, support so far includes exponential
synapses (with one excitatory and one inhibitory synapse per neuron
which decay exponentially with a configured time-constant) and
dual-excitatory exponential synapses (with 2 separate excitatory synapses
and one inhibitory synapse per neuron, decaying as per the previous type).

Threshold component

Determines the threshold of the membrane voltage which determines
when the neuron spikes. Currently the only implementation is a static
threshold.

Additional input component

Any additional input current that might be based on the membrane voltage
or other parameters. This is currently only implemented in the
SpyNNakerExtraModelsPlugin.

Neuron model component

Determines how the neuron state changes over time and the outputs the
current membrane voltage of the neuron. Currently there are IZK and LIF
implementations supported by sPyNNaker.

Synapse dynamics
component

Determines how plasticity works within the model. sPyNNaker implements
a model for no plasticity (i.e. static dynamics), and two different STDP
dynamics models. Only static dynamics are considered in this tutorial.

Table 1: Different supported components

Each build is stored within its own folder in the c_models->src->neuron->builds directory. Within each build
is a ¢ Makefile which describes the separate components required to build that specific form of Neuron

model.

If we look at the simple my_model_curr_exp’s makefile located in:
¢_models->src->neuron->builds->my_model_curr_exp->Makefile
we can see the lines show in Code 1.

BUILD_DIR = build/

©CoN>OhWN =

10.

APP = $(notdir $(CURDIR))

NEURON_MODEL = $(EXTRA_SRC_DIR)/neuron/models/my_neuron_model_impl.c
NEURON_MODEL_H = $(EXTRA_SRC_DIR)/neuron/models/my_neuron_model_impl.h
INPUT_TYPE_H = $(SOURCE_DIR)/neuron/input_types/input_type_current.h
THRESHOLD_TYPE_H = $(SOURCE_DIR)/neuron/threshold_types/threshold_type_static.h
SYNAPSE_TYPE_H = $(SOURCE_DIR)/neuron/synapse_types/synapse_types_exponential_impl.h
. SYNAPSE_DYNAMICS = $(SOURCE_DIR)/neuron/plasticity/synapse_dynamics_static_impl.c

11. include ../Makefile.common

Code 1: my_model_curr_exp’s Makefile




e Line 1 declares the name of the APP - here we are using the name of the current directory. The
aplx extension is added automatically.

e Line 2 declares the directory in which the model will be built. This is where object files and other
intermediate files are stored; the final aplx location is determined in Makefile.common (see later).

e Lines 4 and 5 states the files that make up the neuron model component (described in Table 1)
used for this model build (both the .c and .h files are needed). Note that these are stated to be in
the $(EXTRA_SRC_DIR) folder - this is declared to be the ¢c_models/src folder within the archive
within Makefile.common. The sPyNNaker standard source files are declared to be within
$(SOURCE_DIR), and these are used by other components.

e Line 6 states the input type component (described in Table 1) for this model. Input types are
implemented entirely in a header file.

e Line 7 states the threshold type component (described in Table 1) for this model. Threshold types
are implemented entirely in a header file.

e Line 8 states the synapse type component (described in Table 1) for this model. Synapse types are
implemented entirely in a header file.

Line 9 states the synapse dynamics component (described in Table 1) for this model.
Line 11 tells the make system to import the next level up Makefile so that it can detect where the
rest of the code needed to be linked in can be found.

Other Makefile instances might also include TIMING_DEPENDENCE_H and WEIGHT_DEPENDENCE_H;
these are used when the synapse dynamics includes plasticity. A tutorial on how to add new plasticity is
covered here.

To make a new Neuron model build, you must either:

1. Create a copy of the example builds discussed above,
2. Modify the names and component listings,
3. Mody Line 1 of the Makefile located in src->neuron->Makefile so that it includes your new build.

Or:

1. Change the template’s component listings directly.

Compiling a new model
Once the Makefile has been created, you can build the binary by simply changing to the directory
containing the Makefile and typing:

make

As the build relies on header files that are not explicitly specified in the Makefile, some of the changes that
you make may require you to clean the build before building it, by running
make clean

Finally, you can also build the application in debug mode by typing:
make SPYNNAKER DEBUG=DEBUG

This will enable the log_debug statements in the code, which print out information to the iobuf buffers on
the SpiNNaker machine. By default, the tools won’t extract the printed error messages. To enable this
behaviour, you can add the following to your .spynnaker.cfg file:

[Reports]
extract_iobuf=True


http://spinnakermanchester.github.io/2016.001.AnotherFineProductFromTheNonsenseFactory/spynnaker/NewPlasticityModels-LabManual.pdf

The “iobuf’ messages will then be downloaded after the execution is complete. These are stored relative to
your executing script in reports/latest/provenance_data/; each is a .txt file containing any output printed
from your program.

C code file interfaces

The rest of this section goes through the different components interfaces and tries to explain what each one
does, for the case where you need to create a new component for your neuron build.

Neuron Models
The C header file defines:

e The neuron data structure neuron_t. This includes the parameters and state for each neuron to be
executed on a core. This commonly includes the membrane voltage of the neuron, as well as an
offset input current.

e The global parameters data structure global neuron_params_t. This includes parameters that
are shared across all neurons within a population. This might include such things as the time step
of the simulation.

See neuron_model_my_model_curr_exp.h in the template for an example of a header file. Comments
show where the file should be updated to create your own model.

The C code file defines the functions that make up the interface of the neuron API. Note that pointer types
are automatically created for the data structures defined in the header as follows:

neuron_t * — neuron_pointer_t
global neuron_params_t * — global_neuron_params_pointer_t

@® void neuron_model set _global neuron_params(
global neuron_params_pointer_t params)
This function is used to set the global parameters after they have been read by the initialization
function. This would often be used to store the parameters in a static variable for later use.

@® state_t neuron_model state_update(

input_t exc_input, input_t inh_input,

input_t external_bias, neuron_pointer_t neuron)
This function takes the excitatory and inhibitory input; any external bias input (used in some
plasticity models); and a neuron data structure; and uses these to compute the new state of the
given neuron at this timestep. This function is where any differential equation solving should be
implemented. After the state update, the function should return the value of the membrane voltage.
Note that the input will always be presented as current - conductance input is converted to current
input in the input type. Additionally, the input values are all positive, including the inhibitory input;
thus if the total input current is being considered, the inhibitory input current should be subtracted
from the excitatory input current.

@ state_t neuron_model _get_membrane_voltage(neuron_pointer_t neuron)
This function should return the membrane voltage of the neuron from the given neuron structure.
This may simply return the value of a variable in the structure, or it might perform a more complex
calculation to obtain the membrane voltage. The value returned is used for the recording of the
membrane voltage in the simulation, and is taken before the state update is performed.

@® void neuron_model_has_spiked(neuron_pointer_t neuron);



This function is used to reset neuron parameters after it has spiked. It is called only if the
membrane voltage value returned from neuron_model state update is determined to be above
the threshold determined by the threshold type.

@® void neuron_model print_parameters(restrict neuron_pointer_t neuron)
This function is only used when the neuron model is compiled in “debug” mode. It should use the
“log_debug” function to print each of the parameters of the neuron that don’t change during the run,
and that might be useful in debugging.

@® void neuron_model print_state variables(restrict neuron_pointer_t neuron)
This function is only used when the neuron model is compiled in “debug” mode. It should use the
“log_debug” function to print each of the state variables of the neuron that change during a run and
that might be useful in debugging.

See neuron_model_my_impl.c in the template for an example of an implementation of the neuron interface.

A number of other modules are available for use for performing mathematical functions as part of the
neuron state update. The spinn_common library provides a number of efficient fixed-point implementations
of common functions. This includes random.h, which provides random number generation, normal.h,
which provides normal distributions, exp . h, which provides an exp function and 1log.h which provides a log
function.

Synapse types

The synapse type header file defines the synapse_param_t data structure that determines the parameters
required for shaping the synaptic input. For example, this might be done to compensate for the valve
behaviour of a synapse in biology (spike goes in, synapse opens, then closes slowly). The parameters for
all the synaptic inputs for a single neuron need to be defined in this structure; for example, if there are
different parameters for excitatory and inhibitory neurons, both of these parameters must be explicitly
defined in this structure. The structure might also contain parameters for computing the initial value that will
be added to the input buffer following a spike from a preceding neuron.

Note that the input will have already been delayed by the appropriate amount before it reaches this
function, and that the input weights from several spikes may be combined into a single weight. Additionally,
the input weights might be either current or conductance as determined by the input type. The synapse
type should not perform any conversion of the weights.

The synapse type header file also defines the functions that make up the interface of the synapse type API.
The synapse Type API requires the following interface functions to be implemented.

@® static void synapse_types_shape_input(

input_t *input_buffers, index_t neuron_index,

synapse_param_t* parameters);
Shapes the values (current or conductance) in the input buffers for the synapses of a given neuron.
The input buffers for all neurons and synapse types are given here, and the following function can
be used to obtain the index of the appropriate input buffer given the indices of the neuron and of the
synapse (e.qg. if there is an excitatory and inhibitory synapse per neuron, the indices might be 0 and
1 respectively):

index_t synapse_types_get input buffer_index(synapse_index,

neuron_index)

@® static void synapse_types_add_neuron_input(
input_t *input_buffers, index_t synapse_type_index, index_t
neuron_index,
synapse_param_t* parameters, input_t input)



Adds a synaptic weight input to the input buffer for a given synapse of a given neuron after a spike
has been received (and appropriately delayed). This allows the weight to be scaled as required
before it is added to the buffer.

@® static input_t synapse_types_get_excitatory_input(
input_t *input_buffers, index_t neuron_index)
Returns the total combined excitatory input from the buffers available for a given neuron id. Note
that if several synapses are excitatory, this function should add up the input values (or perform an
otherwise appropriate function) to return the total excitatory input value.

@® static input_t synapse_types get _inhibitory_input(
input_t *input_buffers, index_t neuron_index)
Extracts the total combined inhibitory input from the buffers available for a given neuron id. Note
that if several synapses are inhibitory, this function should add up the input values (or perform an
otherwise appropriate function) to return the total inhibitory input value. Note also that the value
should be a positive number; subtraction is performed in the neuron model as required.

@ static const char *synapse_types_get_type_char(index_t synapse_type_index)
Returns a human readable character for the type of synapse. Examples would be X = excitatory
types and | = inhibitory types.

@® static void synapse_types_print_parameters(synapse_param_t *parameters)
Prints the static parameters of the synapse type. This is currently only executed when the models
are in debug mode.

@® static void synapse_types_print_input(
input_t input_buffers, index_t neuron_index)
Prints the input for a neuron id given the available inputs. This is currently only executed when the
models are in debug mode.

See synapse_types_my_impl.h for an example of an implementation of a synapse type.

Threshold types

The threshold type header file defines the threshold_type_t data structure that declares the parameters
required for the threshold type. This might commonly include the actual threshold value amongst other
parameters. The header also defines the functions that make up the interface of the threshold type API.
The threshold Type API requires the following interface functions to be implemented.

@® static bool threshold_type_is_above_ threshold(
state_t value, threshold _type pointer_t threshold type)
Determines if the threshold has been reached; if the neuron is to spike, given the value of the state
variable, true is returned, otherwise false is returned.

Set my_threshold_type.h for an example of an implementation of a threshold type.

Additional inputs

The additional input header file defines the additional_ input_t data structure, which declares the
parameters required for the additional input. The header also defines the functions that make up the
interface of the additional input type API. The additional input Type API requires the following interface
functions to be implemented:

@® static input_t additional_input_get_input_value_as_current(
additional_input_pointer_t additional_input, state_t membrane_voltage)



Gets the value of current provided by the additional input. This may or may not be dependent on the
membrane voltage.

@ static void additional_input_has_spiked(
additional_input_pointer_t additional_input)
Notifies the additional input type that the neuron has spiked.

Python Model Builds

Once the C code has been constructed, the PyNN model must be created in Python to translate the PyNN
parameters into a form that the C code can understand. In PyNN, populations can be made up of an
arbitrary number of neurons, however to maintain real-time operation the number of neurons that are
simulated on each core must be limited. The PACMAN module is used by sPyNNaker to partition the
populations into subpopulations, based on the specified maximum number of atoms per core of the model,
as well as the resources required by the synaptic matrix. The DataSpecification module is then used to
write the data for each subpopulation. This is then loaded onto the machine, along with binary executable,
using SpiNNMan.

As with the C code, there are number of components that can be re-used, so that only properties relevant
to the new model itself need to be defined. This is done by constructing an individual component for:

1. Neuron model,

2. Input type,

3. Synapse type,

4. Threshold type,

5. Additional input.
These 5 components are then handed over to the main interface object that every neuron model has to
extend.

If we look at the my_model_curr_exp in python_models -> neuron -> builds directory, we will see the code
shown in Code 4 where the my_model_curr_exp builds its components and hands them over to the main
sPyNNaker interface. The breakdown is as follows:

1. On Lines 91 and 92 the neuron model component is created.
On Lines 96 and 97 the synapse type component is created.
On Line 101 the input type component is created.
On Line 105 the threshold type component is created.
Line 109 shows that this model does not contain any additional input components.
Lines 113 to 135 show the handing over of these separate components to the sPyNNaker main
system which will handle all the python support. Note that the binary must match the name of the
aplx file generated by the C code.

o0 k0N

89. # TODO: create your neuron model class (change if required)

90. # create your neuron model class

91. neuron_model = MyNeuronModel(

92. n_neurons, machine_time_step, i_offset, my_parameter)

93.

94. # TODO: create your synapse type model class (change if required)
95. # create your synapse type model

96. synapse_type = SynapseTypeExponential(

97. n_neurons, machine_time_step, tau_syn_E, tau_syn_1)

98.

99. # TODO: create your input type model class (change if required)
100. # create your input type model
101. input_type = InputTypeCurrent()



102.

103.  # TODO: create your threshold type model class (change if required)
104. # create your threshold type model

105.  threshold_type = ThresholdTypeStatic(n_neurons, v_thresh)

103.

107.  # TODO: create your own additional inputs (change if required).
108. # create your own additional inputs

109. additional_input = None

110.

111. # instantiate the sPyNNaker system by initializing

112. # the AbstractPopulationVertex

113.  AbstractPopulationVertex.__init_ (

114.

115. # standard inputs, do not need to change.

116. self, n_neurons=n_neurons, label=label,

117. machine_time_step=machine_time_step,

118. timescale_factor=timescale_factor,

119. spikes_per_second=spikes_per_second,

120. ring_buffer_sigma=ring_buffer_sigma,

121. incoming_spike_buffer_size=incoming_spike_buffer_size,
122.

123. # TODO: Ensure the correct class is used below

124. max_atoms_per_core=MyModelCurrExp._model_based_max_atoms_per_core,
125.

126. # These are the various model types

127. neuron_model=neuron_model, input_type=input_type,
128. synapse_type=synapse_type, threshold_type=threshold_type,
129. additional_input=additional_input,

130.

131. # TODO: Give the model a name (shown in reports)

132. model_name="MyModelCurrExp",

133.

134. # TODO: Set this to the matching binary name

135. binary="my_model_curr_exp.aplx")

Code 4: Subsection of the my_model_curr_exp.py class

Take care to note that the same components are used in the python as are used in the ¢ code’s Makefile.
This means for every new component you build for a neuron build in ¢ which is not originally supported by
the sPyNNaker tools, you need to build a corresponding python component file.

In the new_template folder there are a set of template files within the template directory for each python
component. These are located under python_models -> neuron. These detail the parts of the class that
need to be changed for your model.

Python __init__.py files

Most of the __init__.py files in the template do not contain any code. The one within python_models is the
exception; this file adds the model_binaries module to the executable paths, allowing sPyNNaker to
search this folder for your compiled binary. You can also import your module here to make it easy to use in
other scripts.

Python setup.py file
This file enables you to install the new module. This is set up to install all the modules in the template; if
you add any modules, these also need to be added to this file (it is not recursive; each module has to be



added separately). To add the module to your python environment in such a way that you can still edit it,
you can run:

[sudo] python setup.py develop [--user]
You need to use sudo if you are installing centrally on Linux or Mac OS X; on windows you need to be in an
Administrative console. Add --user instead if you want to install only for your username (you shouldn’t
mix these two options, or you will end up installing it only for the root user).

Using your module

In order to use the new module, you need to import your module in addition to PyNN e.g. for the template
module, you can do the following:

import pyNN.spiNNaker as p

from python models.neuron.builds.my model curr_exp import MyModelCurrExp

pop = p.Population(1l, MyModelCurrExp, {})

A more detailed example is shown in the template in examples/my_example.py.

Task 1: Simple Neuron Model [Easy]

This task will create a simple neural model using the template, and execute it on SpiNNaker.

1. Change the my neuron_model _impl.c and .h templates by adding two parameters, one
representing a decay and one representing a rest voltage. The parameters should be REAL values.

2. Change the model to subtract the difference between the current voltage and the rest voltage
multiplied by the decay from the membrane voltage, before adding the total input i.e.

v_membrane = v_membrane - ((v_membrane - v_rest) * decay) + input
3. Recompile the binary.

4. Update the python code model to accept the new decay and rest voltage parameters, ensuring that
they match the order of the C code (use DataType.S1615). Add getters and setters for the values
and update the number of neuron parameters.

5. Update the python code builds to accept the new parameters with default values of 0.1 for decay
and -65.0 for the rest voltage.

Run the example script and see what happens.

Task 2: Conductance-based Model [Moderate]

This task will build a conductance-based model.
1. Make a copy of the C build folder for my_model_curr_exp to my_model_cond_exp.

2. Change the Makefile so that it uses the conductance input type and ensure that the binary name is
different from the current based model.

3. Build the binary.

4. Copy the python model my_model_curr_exp.py to my_model_cond_exp.py and update the code to
use the conductance input type, including adding the new required parameters for conductance, and
the binary name and model name.

5. Update the example script to use the new model, adjusting the weights to be conductances (usually
much smaller values e.g. 0.1 should be enough)



Run the example script and see what happens.



Task 3: Stochastic Threshold Model [Hard]

This task will create a new threshold model for stochastic thresholds.

1.

8.

Update the template threshold type my_threshold type.c and .h, removing the parameter
my_param, and adding a parameter representing the probability of the neuron firing if it is over the
threshold value. This will be a uint32_t value in C (see later for details).

Add another parameter which is the seed of the random number generator. This is an array of 4
uint32_t values for the simplest random number generator in random. h (from the spinn_common
library - as this should have been installed, you can use #include <random.h>).

Update the threshold calculation so that when the membrane voltage is over the threshold voltage,
the RNG is called with the seed (mars_kiss64_seed(mars_kiss64_seed_t seed)).

Update the threshold calculation to only result in a spike if the value returned from the RNG is
greater than than the probability value.

Rebuild the my_model_curr_exp_my_threshold_type.

Update the my_threshold_type.py python code to include the new parameters, and to generate the
random seed. The probability parameter will be between 0 and 1 in Python (default of 0.5), but as
the random number generator generates an integer value, this should be converted into a uint32_t
value between 0 and 0x7FFFFFFF. The seed can be generated using a PyNN RNG, which can be
provided to the model as a parameter. Once generated, the seed should be validated using:

spynnaker.pyNN.utilities.utility calls.validate mars_kiss 64 seed(seed)
where seed is an array of 4 integer values. Note that seed will be updated in place.

Update the my_model_curr_exp_my_threshold type.py build to include the new parameters and
pass them in to the threshold type. Make rng an optional parameter, which if not set uses a new
NumpyRNG.

Update the example script to decrease the threshold value to ensure that the model fires.

Run the example script and see how the number of spikes differs for different settings of the spike
probability.



Adding new models of synaptic plasticity

August 28, 2015

Contents of package

examples/stdp _triplet.py PyNN script that reproduces experimental pro-
tocol developed by Sjdstrom et al. [2].

neural modelling/src/neuron/Makefile Makefile which lists all the neu-
ron models defined in this module.

neural modelling/src/neuron/builds/Makefile.common Makefile which
lists new STDP components defined by this module.

neural modelling/src/neuron/builds/IF curr exp stdp mad pair_additive/Makefile
Makefile to build SpiNNaker executable with spike-pair STDP rule.

neural modelling/src/neuron/builds/IF curr exp stdp mad triplet additive/Makefile
Makefile to build SpiNNaker executable with Pfister and Gerstner [1]
spike-triplet STDP rule.

neural modelling/src/neuron/plasticity /stdp/timing dependence/timing pair impl.c
C source file containing setup code for spike-pair STDP timing depen-
dence.

neural modelling/src/neuron/plasticity /stdp/timing dependence/timing pair implLh
C header file containing implementation of spike-pair STDP timing depen-
dence discussed in presentation.

neural modelling/src/neuron/plasticity /stdp/timing dependence/timing triplet impl.c
C source file containing setup code for spike-triplet STDP timing depen-
dence.

neural modelling/src/neuron/plasticity /stdp/timing dependence/timing triplet impl.h
C header file containing implementation of spike-triplet STDP rule dis-
cussed in presentation.

workshop 2015 adding synaptic_plasticity/ _ init _ .py Python mod-
ule entry point containing code to hook module into sPyNNaker and im-
port timing dependences sub-module.



workshop 2015 adding synaptic plasticity /spike pair time dependency.py
Python class to instantiate and configure spike-pair timing dependence
from PyNN.

workshop 2015 adding synaptic plasticity /spike triplet time dependency.py
Python class to instantiate and configure spike-triplet timing dependence
from PyNN.

Additional code changes

My presentation covered the code changes that are required to implement the
behaviour spike-triplet rule on SpiNNaker. However there are some other, less
interesting changes that are also required to build a functioning learning rule.
Remaining changes to Python and C are discussed in comments at the following
URL http://tinyurl.com/ouk2gj2.

Exercises

These are all more suggestions than anything else, I'd be interested to help with
any triplet-rule based experimentation.

Exercise 1

As mentioned in the presentation, the SpiNNaker package already comes with an
implementation of the full spike-triplet rule developed by Pfister and Gerstner
[1]. This is more computationally expensive than the version developed in this
workshop session, but the extra parameters may potentially allow it to better fit
experimental data. Try switching the stdp triplet.py example in the package
to use this rule, configured with the parameters fitted by Pfister and Gerstner:

timing dependence = sim.PfisterSpikeTripletRule (
tau plus=16.8, tau minus=33.7,
tau_x=101, tau_ y=114)

weight dependence = sim.AdditiveWeightDependence (
w_min=0.0, w_max=max weight,
A plus=bE—10 #* start w, A minus=7E-3 * start w,
A3 plus=6.2e—3 * start w, A3 minus=2.3E—4 x start w)

Does this actually reduce the error compared to the version developed in
this workshop? Why might this be? The talk this morning on ‘Maths & fixed
point libraries’ may give you some clues!

Exercise 2

Pfister and Gerstner [1] also fitted their model to some experimental data by
Wang et al. [3]. These follow the spike-triplet protocol shown in figure 1 which
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(a) Pre-post-pre triplet (b) Post-pre-post triplet
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Figure 1: Wang et al. [3] triplet protocol. Each experiment consists of 60 triplets
of spikes, one second apart.

—0.01 +0.04 5 -5 0.33 +0.04 -5 5
0.03 +0.04 10 | -10 0.344+0.04 | -10 10
0.01 £0.03 15 -5 0.22+£0.08 | -15 -5
0.24 4+ 0.06 5 -15 0.294+0.05 | -5 15

(a) Pre-post-pre triplets (b) Post-pre-post triple

Table 1: Weight changes induced by Wang et al. [3] triplet protocol.

resulted in the weight changes shown in table 1. Can you make a version of
stdp_triplet.py that reproduces this protocol?
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