sPyNNaker neural_modelling 7.3.1
Loading...
Searching...
No Matches
stoc_exp_common.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2023 The University of Manchester
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * https://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
19
20static inline uint32_t stoc_exp_ceil_accum(UREAL value) {
21 uint32_t bits = bitsuk(value);
22 uint32_t integer = bits >> 16;
23 uint32_t fraction = bits & 0xFFFF;
24 if (fraction > 0) {
25 return integer + 1;
26 }
27 return integer;
28}
29
34static const uint32_t MIN_TAU = 0x10B55;
35
37static inline uint32_t get_probability(UREAL tau, REAL p) {
38
39 if (p >= 0) {
40
41 // If tau is already more than 1, it will never get smaller here,
42 // so just immediately return a probability of "1"
43 if (tau >= 1.0k) {
44 return 0xFFFFFFFF;
45 }
46
47 // The amount of left shift that will result in a tau > 1 (where tau
48 // is 16-bits integer, 16-bits fractional, and < 1.0k, so we expect
49 // at least 16 leading zeros, thus this can only be >= 0). Note a
50 // a 1 at bit 16 means clz = 16, but we can shift 1 place before >= 1
51 // so we subtract 15 from clz to get the right number.
52 uint32_t over_left_shift = __builtin_clz(bitsuk(tau)) - 15;
53
54 // If tau is going to be shifted by this amount
55 if (p >= over_left_shift) {
56 return 0xFFFFFFFF;
57 }
58
59 // Shift left by integer part to perform power of 2
60 uint64_t accumulator = ((uint64_t) bitsuk(tau)) << (bitsk(p) >> 15);
61 uint32_t fract_bits = bitsk(p) & 0x7FFF;
62
63 // Multiply in fractional powers for each non-zero fractional bits
64 for (uint32_t i = 0; i < 15; i++) {
65 uint32_t bit = (fract_bits >> (14 - i)) & 0x1;
66 if (bit) {
67 // Do a U1616 * U1616 multiply here, which is safe in 64-bits
68 accumulator = (accumulator * fract_powers_2[i]) >> 16;
69
70 // If we are >= 1, return now as won't get smaller
71 if (accumulator >= bitsuk(1.0ulk)) {
72 return 0xFFFFFFFF;
73 }
74 }
75 }
76
77 // Multiply accumulated fraction (must be <= 1 here) by 0xFFFFFFFF
78 // to get final answer
79 return (uint32_t) ((accumulator * 0xFFFFFFFFL) >> 16);
80 } else {
81 // If tau is too big, we will never make it small enough with negative
82 // powers, so just return probability of 1
83 if (bitsuk(tau) > MIN_TAU) {
84 return 0xFFFFFFFF;
85 }
86
87 // Negative left shift = positive right shift; have to multiply here
88 // as accum negating seems to fail!
89 REAL val = p * REAL_CONST(-1);
90
91 // The amount of right shift that will make the MSB of tau disappear,
92 // and so the value will be 0. The most number of leading zeros is 32,
93 // so this is always >= 0. If we have a bit in position 31 (a very big
94 // tau), this clz = 0 so this is 32, which means we can shift by 32
95 uint32_t over_right_shift = 32 - __builtin_clz(bitsuk(tau));
96
97 // If p <= 0, tau can only get smaller through multiplication with
98 // fractional powers, so there is no point in doing the calculation if
99 // it will already be shifted out of range of an accum
100 if (val >= over_right_shift) {
101 return 0;
102 }
103
104 // Shift right by integer value to perform negative power of 2
105 uint64_t accumulator = ((uint64_t) bitsuk(tau)) >> (bitsk(val) >> 15);
106 uint32_t fract_bits = bitsk(val) & 0x7FFF;
107
108 // Multiply in fractional powers for each non-zero fractional bits
109 for (uint32_t i = 0; i < 15; i++) {
110 uint32_t bit = (fract_bits >> (14 - i)) & 0x1;
111 if (bit) {
112 // Do a U1616 * U1616 multiply here
113 accumulator = (accumulator * fract_powers_half[i]) >> 16;
114
115 // If we have reached a value of 0, return
116 if (accumulator == 0) {
117 return 0;
118 }
119 }
120 }
121
122 // Multiply accumulated fraction (must be <= 1 here) by 0xFFFFFFFF
123 // to get final answer
124 return (uint32_t) ((accumulator * 0xFFFFFFFFL) >> 16);
125 }
126}
#define REAL_CONST(x)
Define a constant of type REAL.
Definition maths-util.h:104
unsigned accum UREAL
Type used for "unsigned real" numbers.
Definition maths-util.h:94
accum REAL
Type used for "real" numbers.
Definition maths-util.h:91
static const uint32_t fract_powers_2[]
Definition maths-util.h:265
static const uint32_t fract_powers_half[]
Definition maths-util.h:274
static const uint32_t MIN_TAU
static uint32_t get_probability(UREAL tau, REAL p)
Calculates the probability as a uint32_t from 0 to 0xFFFFFFFF (which is 1)