sPyNNaker neural_modelling 7.3.1
Loading...
Searching...
No Matches
connection_generator_one_to_one_offset.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2024 The University of Manchester
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * https://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
23
26 // Amount to add to the pre by to get the post
27 int32_t offset;
28 // Whether to wrap around the post values or just clip
29 uint32_t wrap;
30 // The group size to consider for the offset
31 uint32_t n_neurons_per_group;
32
33};
34
35
43 // Allocate the data structure for parameters
44 struct one_to_one_offset *params = spin1_malloc(sizeof(struct one_to_one_offset));
45 struct one_to_one_offset *params_sdram = *region;
46
47 // Copy the parameters into the data structure
48 *params = *params_sdram;
49 *region = &params_sdram[1];
50
51 log_debug("one_to_one_offset connector, one_to_one_offset = %u, wrap = %u, "
52 "n_neurons_per_group = %u",
53 params->offset, params->wrap, params->n_neurons_per_group);
54
55 return params;
56}
57
62static void connection_generator_one_to_one_offset_free(UNUSED void *generator) {
63 // Nothing to do
64}
65
86 void *generator, uint32_t pre_lo, uint32_t pre_hi,
87 uint32_t post_lo, uint32_t post_hi, UNUSED uint32_t post_index,
88 uint32_t post_slice_start, uint32_t post_slice_count,
89 unsigned long accum weight_scale, accum timestep_per_delay,
90 param_generator_t weight_generator, param_generator_t delay_generator,
91 matrix_generator_t matrix_generator) {
92
93 struct one_to_one_offset *obj = generator;
94
95 // Get the actual ranges to generate within
96 uint32_t post_start = max(post_slice_start, post_lo);
97 uint32_t post_end = min(post_slice_start + post_slice_count - 1, post_hi);
98
99 // Work out where we are in the generation
100 // We need to connect each pre-neuron to each post-neuron in each group
101 // (but not to itself). We are currently generating a subset of the post
102 // neurons, so we need to work out which group we are in within that subset,
103 // and which is the first post-neuron in the group that we are generating
104 // for now.
105 uint32_t post_group;
106 uint32_t post_value;
107 div_mod(post_start, obj->n_neurons_per_group, &post_group, &post_value);
108
109 // Work out where the pre-neurons start and end for the group that we are
110 // in at the start of the post-neurons.
111 uint32_t pre_start = pre_lo + post_group * obj->n_neurons_per_group;
112 uint32_t pre_end = min(pre_start + obj->n_neurons_per_group - 1, pre_hi);
113
114 // Go through the post neurons in this slice
115 for (uint32_t post = post_start; post <= post_end; post++) {
116 uint32_t local_post = post - post_slice_start;
117
118 // Find the pre that occurs after offset; as the offset is post from
119 // pre, we subtract it to get pre from post (note it might be negative already)
120 int32_t pre = post - obj->offset;
121 bool use = true;
122 if (pre < (int32_t) pre_start) {
123 if (obj->wrap) {
124 pre += obj->n_neurons_per_group;
125 } else {
126 use = false;
127 }
128 } else if (pre > (int32_t) pre_end) {
129 if (obj->wrap) {
130 pre -= obj->n_neurons_per_group;
131 } else {
132 use = false;
133 }
134 }
135
136 if (use) {
137 accum weight = param_generator_generate(weight_generator);
138 uint16_t delay = rescale_delay(
139 param_generator_generate(delay_generator), timestep_per_delay);
141 local_post, weight, delay, weight_scale)) {
142 log_error("Matrix not sized correctly!");
143 return false;
144 }
145 }
146
147 // Work out next loop iteration. If we have reached the end of a group
148 // of values, we need to move onto the next group.
149 post_value += 1;
150 if (post_value == obj->n_neurons_per_group) {
151 post_value = 0;
152 pre_start += obj->n_neurons_per_group;
153 pre_end = min(pre_start + obj->n_neurons_per_group - 1, pre_hi);
154 if (pre_start > pre_hi) {
155 break;
156 }
157 }
158 }
159
160 return true;
161}
#define use(x)
static bool connection_generator_one_to_one_offset_generate(void *generator, uint32_t pre_lo, uint32_t pre_hi, uint32_t post_lo, uint32_t post_hi, uint32_t post_index, uint32_t post_slice_start, uint32_t post_slice_count, unsigned long accum weight_scale, accum timestep_per_delay, param_generator_t weight_generator, param_generator_t delay_generator, matrix_generator_t matrix_generator)
Generate connections with the one_to_one_offset connection generator.
static void connection_generator_one_to_one_offset_free(void *generator)
Free the one_to_one_offset connection generator.
static void * connection_generator_one_to_one_offset_initialise(void **region)
Initialise the one_to_one_offset connection generator.
The parameters to be passed around for this connector.
void log_error(const char *message,...)
void log_debug(const char *message,...)
General types associated with generators.
static uint16_t rescale_delay(accum delay, accum timestep_per_delay)
Rescales a delay to account for timesteps and type-converts it.
bool matrix_generator_write_synapse(matrix_generator_t generator, uint32_t pre_index, uint16_t post_index, accum weight, uint16_t delay, unsigned long accum weight_scale)
Write a synapse with a matrix generator.
The data for a matrix generator.
accum param_generator_generate(param_generator_t generator)
Generate value with a parameter generator.
region
spike source array region IDs in human readable form
#define min(a, b)
static stdp_params params
Configuration parameters.