sPyNNaker neural_modelling 7.3.1
Loading...
Searching...
No Matches
neuron_model_izh_impl.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2015 The University of Manchester
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * https://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
19#ifndef _NEURON_MODEL_IZH_CURR_IMPL_H_
20#define _NEURON_MODEL_IZH_CURR_IMPL_H_
21
22#include "neuron_model.h"
23
25struct neuron_params_t {
26 // nominally 'fixed' parameters
27 REAL A;
28 REAL B;
29 REAL C;
30 REAL D;
31
32 // Variable-state parameters
33 REAL V;
34 REAL U;
35
38
41
44};
45
47struct neuron_t {
48 // nominally 'fixed' parameters
49 REAL A;
50 REAL B;
51 REAL C;
52 REAL D;
53
54 // Variable-state parameters
55 REAL V;
56 REAL U;
57
60
63
66};
67
68static inline void neuron_model_initialise(neuron_t *state, neuron_params_t *params,
69 uint32_t n_steps_per_timestep) {
70 state->A = params->A;
71 state->B = params->B;
72 state->C = params->C;
73 state->D = params->D;
74 state->V = params->V;
75 state->U = params->U;
76 state->I_offset = params->I_offset;
77 state->this_h = params->next_h;
78 state->reset_h = kdivui(params->time_step, n_steps_per_timestep);
79}
80
81static inline void neuron_model_save_state(neuron_t *state, neuron_params_t *params) {
82 params->next_h = state->this_h;
83 params->V = state->V;
84 params->U = state->U;
85}
86
91static const REAL SIMPLE_TQ_OFFSET = REAL_CONST(1.85);
92
94#if 0
95// definition for Izhikevich neuron
96static inline void neuron_ode(
97 REAL t, REAL stateVar[], REAL dstateVar_dt[],
99 REAL V_now = stateVar[1];
100 REAL U_now = stateVar[2];
101 log_debug(" sv1 %9.4k V %9.4k --- sv2 %9.4k U %9.4k\n", stateVar[1],
102 neuron->V, stateVar[2], neuron->U);
103
104 // Update V
105 dstateVar_dt[1] =
106 REAL_CONST(140.0)
107 + (REAL_CONST(5.0) + REAL_CONST(0.0400) * V_now) * V_now - U_now
109
110 // Update U
111 dstateVar_dt[2] = neuron->A * (neuron->B * V_now - U_now);
112}
113#endif
114
119static const REAL MAGIC_MULTIPLIER = REAL_CONST(0.040008544921875);
120
129static inline void rk2_kernel_midpoint(
131 // to match Mathematica names
132 REAL lastV1 = neuron->V;
133 REAL lastU1 = neuron->U;
134 REAL a = neuron->A;
135 REAL b = neuron->B;
136
137 REAL pre_alph = REAL_CONST(140.0) + input_this_timestep - lastU1;
138 REAL alpha = pre_alph
139 + (REAL_CONST(5.0) + MAGIC_MULTIPLIER * lastV1) * lastV1;
140 REAL eta = lastV1 + REAL_HALF(h * alpha);
141
142 // could be represented as a long fract?
143 REAL beta = REAL_HALF(h * (b * lastV1 - lastU1) * a);
144
145 neuron->V += h * (pre_alph - beta
146 + (REAL_CONST(5.0) + MAGIC_MULTIPLIER * eta) * eta);
147
148 neuron->U += a * h * (-lastU1 - beta + b * eta);
149}
150
167 uint16_t num_excitatory_inputs, const input_t *exc_input,
168 uint16_t num_inhibitory_inputs, const input_t *inh_input,
169 input_t external_bias, REAL current_offset, neuron_t *restrict neuron) {
170 REAL total_exc = ZERO;
171 REAL total_inh = ZERO;
172
173 for (int i =0; i<num_excitatory_inputs; i++) {
174 total_exc += exc_input[i];
175 }
176 for (int i =0; i<num_inhibitory_inputs; i++) {
177 total_inh += inh_input[i];
178 }
179
180 input_t input_this_timestep = total_exc - total_inh
181 + external_bias + neuron->I_offset + current_offset;
182
183 // the best AR update so far
184 rk2_kernel_midpoint(neuron->this_h, neuron, input_this_timestep);
185 neuron->this_h = neuron->reset_h;
186
187 return neuron->V;
188}
189
193static inline void neuron_model_has_spiked(neuron_t *restrict neuron) {
194 // reset membrane voltage
195 neuron->V = neuron->C;
196
197 // offset 2nd state variable
198 neuron->U += neuron->D;
199
200 // simple threshold correction - next timestep (only) gets a bump
201 neuron->this_h = neuron->reset_h * SIMPLE_TQ_OFFSET;
202}
203
210 return neuron->V;
211}
212
213static inline void neuron_model_print_state_variables(const neuron_t *neuron) {
214 log_debug("V = %11.4k ", neuron->V);
215 log_debug("U = %11.4k ", neuron->U);
216 log_debug("This h = %11.4k", neuron->this_h);
217}
218
219static inline void neuron_model_print_parameters(const neuron_t *neuron) {
220 log_debug("A = %11.4k ", neuron->A);
221 log_debug("B = %11.4k ", neuron->B);
222 log_debug("C = %11.4k ", neuron->C);
223 log_debug("D = %11.4k ", neuron->D);
224
225 log_debug("I = %11.4k \n", neuron->I_offset);
226 log_debug("Reset h = %11.4k", neuron->reset_h);
227}
228
229#endif // _NEURON_MODEL_IZH_CURR_IMPL_H_
void log_debug(const char *message,...)
#define REAL_CONST(x)
Define a constant of type REAL.
Definition maths-util.h:104
accum REAL
Type used for "real" numbers.
Definition maths-util.h:91
static REAL kdivui(REAL a, uint32_t b)
Divides an accum by an unsigned integer.
Definition maths-util.h:258
#define ZERO
A REAL 0.0.
Definition maths-util.h:123
#define REAL_HALF(x)
Divide by two.
Definition maths-util.h:202
REAL state_t
The type of a state variable.
REAL input_t
The type of an input.
static uint n_steps_per_timestep
The number of steps to run per timestep.
The API for neuron models themselves.
static const REAL SIMPLE_TQ_OFFSET
For linear membrane voltages, 1.5 is the correct value. However with actual membrane voltage behaviou...
static state_t neuron_model_get_membrane_voltage(const neuron_t *neuron)
get the neuron membrane voltage for a given neuron parameter set
static state_t neuron_model_state_update(uint16_t num_excitatory_inputs, const input_t *exc_input, uint16_t num_inhibitory_inputs, const input_t *inh_input, input_t external_bias, REAL current_offset, neuron_t *restrict neuron)
primary function called in timer loop after synaptic updates
static void neuron_model_has_spiked(neuron_t *restrict neuron)
Indicates that the neuron has spiked.
static const REAL MAGIC_MULTIPLIER
The original model uses 0.04, but this (1 ULP larger?) gives better numeric stability.
static void rk2_kernel_midpoint(REAL h, neuron_t *neuron, REAL input_this_timestep)
Midpoint is best balance between speed and accuracy so far.
REAL reset_h
timestep to reset to when not just spiked
REAL next_h
next value of this_h (saved)
REAL I_offset
offset current [nA]
UREAL time_step
The timestep of the neuron being used.
REAL this_h
current timestep
REAL I_offset
offset current [nA]
definition of neuron parameters
definition for LIF neuron state
static uint16_t * input_this_timestep
The inputs to be sent at the end of this timestep.
static stdp_params params
Configuration parameters.